
SymbCompCC
—

A GAP4 Package
Version 1.3.2

by

Dörte Feichtenschlager
Institut Computational Mathematics, TU Brausnchweig

Pockelsstr. 14, 38106 Braunschweig, Germany

email: d.feichtenschlager@tu-braunschweig.de

February 2022

Contents

1 Installing and Loading the SymbCompCC Package 3

1.1 Installing the SymbCompCC Package . 3

1.2 Loading the SymbCompCC Package . 3

2 Introduction 4

2.1 Overview . 4

2.2 Background on (polycyclic) parametrised presentations 4

2.3 Computation of Schur multiplicators . 5

2.4 Computation of low-dimensional cohomology 5

2.5 Example . 5

3 p-power-poly-pcp-groups 6

3.1 Example . 6

3.2 Obtaining p-power-poly-pcp-groups . 7

3.3 Operations and functions for p-power-poly-pcp-group elements 8

3.4 Operations and functions for p-power-poly-pcp-groups 8

3.5 Info classes for the p-power-poly-pcp-groups 9

3.6 Global variables for the p-power-poly-pcp-groups 10

4 Parametrised Presentations 11

4.1 Provided pp-presentations . 11

5 Schur extensions for p-power-poly-pcp-groups 12

5.1 Computing Schur extensions . 13

5.2 Computing other invariants from Schur extensions 13

5.3 Info classes for the computation of the Schur extension 14

Bibliography 15

1
Installing and Loading

the SymbCompCC
Package

1.1 Installing the SymbCompCC Package

The following installation instruction is for unix although the package should work as well with any other operating
system.

To install the SymbCompCC package, unpack the archive file, which should have a name of the form SymbCompCC-

XXX.tar.gz for some version number XXX, by typing

bunzip2 SymbCompCC-XXX.tar.gz
tar -xvf SymbCompCC-XXX.tar

in the pkg directory of your version of GAP 4, or in a directory named pkg (e.g. in your home directory). (The only
essential difference with installing SymbCompCC in a pkg directory different to the GAP 4 home directory is that
one must start GAP with the -l switch, e.g. if your private pkg directory is a subdirectory of mygap in your home
directory you might type:

gap -l ";myhomedir/mygap"

where myhomedir is the path to your home directory, which may be replaced by a tilde. The empty path before the
semicolon is filled in by the default path of the GAP 4 home directory.)

1.2 Loading the SymbCompCC Package

To use the SymbCompCC Package you have to request it explicitly. This is done by calling

gap> LoadPackage("SymbCompCC");

true

The LoadPackage command is described in Section 76.2.1 in the GAP Reference Manual.

If you want to load the SymbCompCC package by default, you can put the LoadPackage command into your
.gaprc file (see Section “ref:the .gaprc file” in the GAP Reference Manual).

2 Introduction
2.1 Overview

The coclass of a finite p-group of order pn and nilpotency class c is defined as n− c. This invariant of finite p-groups
has been introduced by Leedham-Green and Newman in [LGN80] and it became of major importance in p-group
theory.

A first tool in the classification of all p-groups of coclass r is the coclass graph G(p, r). Its vertices are the isomorphism
types of finite p-groups of coclass r. Two vertices G and H are joined by an edge if G is isomorphic to the quotient
H/γ(H) where γ(H) is the last non-trivial term of the lower series of H.

Du Sautoy [dS00] and Eick and Leedham-Green [ELG08] proved that G(p, r) contains certain periodic patterns. Eick
and Leedham-Green [ELG08] define infinite coclass sequences of finite p-groups of coclass r which underpin this
periodic pattern. In G(2, r) and G(3, 1) almost all groups are contained in an infinite coclass sequence.

Eick and Leedham-Green [ELG08] also proved that the infinitely many p-groups in an infinite coclass sequence can
be defined by a single parametrised presentation.

The first aim of this package is the definition of polycyclic parametrised presentations; these are parametrised pre-
sentations as defined by Eick and Leedham-Green [ELG08] and additionally they have various features of polycyclic
presentations. Each such presentation defines all the infinitely many finite p-groups in an infinite coclass sequence.

We then provide some algorithms to compute with polycyclic parametrised presentations. In particular, we introduce
a generalisation of the collection algorithm for polycyclic parametrised presentations. Based on this, we describe
algorithms to compute polycyclic parametrised presentations for Schur extensions, for the Schur multiplicator and for
some low-dimensional cohomology groups. We refer to [EF11] for details on the underlying algorithms and further
references.

Finally, we exhibit a database of polycyclic parametrised presentations for the infinite coclass families of the finite
2-groups of coclass at most 2 and the finite 3-groups of coclass 1.

2.2 Background on (polycyclic) parametrised presentations

In this section we describe the polycyclic parametrised presentations (pp-presentations) for infinite coclass sequences.

Let (Gx|x ∈ N), where N denotes the natural numbers, be an infinite coclass sequence; x is the parameter of this infinite
coclass sequence. Then every group Gx is an extension of a finite p-group P of order pn by an abelian p-group Tx of
rank d. Furthermore, every Gx has a polycyclic presentation (short pp-presentation) on generators g1, . . . , gn, t1, . . . , td
with relations of the form

gp
i = gai,i,i+1

i+1 · · · g
ai,i,n
n tαi,i,1(x)

1 · · · tαi,i,d(x)
d ,

ggj
i = gai,j,j+1

j+1 · · · g
ai,j,n
n tαi,j,1(x)

1 · · · tαi,j,d(x)
d ,

tgi
k = tbk,i,1(x)

1 · · · tbk,i,d(x)
d ,

ttl
k = tk,

tpx+e

k = 1,

where 1 ≤ j < i ≤ n and 1 ≤ k < l ≤ d; certain ai,j,m ∈ {0, . . . , p − 1}, a non-negative integer e, αk,l,m(x) of
the form ck,l,m + pxdk,l,m and bk,l,m with bk,l,m, ck,l,m, dk,l,m certain p-adic integers. The p-adic exponents arising in the

Section 5. Example 5

relations can be reduced modulo the relative orders of the involved elements and thus can be reduced to integers for
every specific x.

We call such a pp-presentation integral if all the p-adic numbers bk,l,m, ck,l,m, dk,l,m are integers. Our algorithms intro-
duced in this package compute with integral pp-presentations only.

We call such an pp-presentation consistent if for every x ∈ N the presentation is consistent as a polycyclic presentation;
where we possibly reduce the exponents in the presentation modulo the relative orders of the generators.

2.3 Computation of Schur multiplicators

In this section we recall briefly the method of [EF11] to determine the Schur multiplicators of almost all groups Gx in
an infinite coclass sequence.

Suppose we are given a consistent integral pp-presentation F/Rx for the groups Gx in an infinite coclass sequence,
where F is a free group and Rx is generated by parametrised relations as above. Note that the exponents in these
relations depend on x, while the number of generators and the number of relations does not depend on the parameter.

Using this presentation we can define a parametrised presentation for the Schur extensions G∗x = F/[F,Rx], corre-
sponding to the parametrised presentation F/Rx. The next step is to find the isomorphism types of Yx = Rx/[F,Rx]
since M(Gx) ∼= (F′ ∩ Rx)/[F,Rx] are the torsion subgroups of Yx as all Gx are finite p-groups.

Then Yx = Rx/[F,Rx] are generated by certain so-called consistency relations. Using this we can compute the isomor-
phism types of Yx and thus the isomorphism types of M(Gx) for almost all Gx in the chosen infinite coclass sequence.

2.4 Computation of low-dimensional cohomology

From the parametrised presentation F/Rx we can see that the Abelian invariants are the same for all groups Gx in an
infinite coclass sequence, and we can compute them. Using this and the computation of the Schur multiplicators one
obtains Hn(Gx,Z) and Hn(Gx,GF(p)) for 0 ≤ n ≤ 2, where the Gx act trivially on Z and GF(p), respectively.

2.5 Example

In this section we present the well-known example of quaternion groups Q2x+3 . It is well known that they have a
parametrised presentation of the following form:

{g1, g2, t1| g2
1 = t2x

1 , gg1
2 = g2t−1+2x+1

1 ,

g2
2 = t1, tg1

1 = t−1+2x+1

1 ,

t2x+1

1 = 1}·

Using this we can define the Schur extensions Q∗2x+3

{g1, g2, t1, c1, c2, c3|g2
1 = t2x

1 c3, gg1
2 = g2t−1+2x+1

1 c1−2x+1

2 ,

g2
2 = t1c1, tg1

1 = t−1+2x+1

1 c2−2x+1

2 ,

t2x+1

1 = c2x+1

2 ,

c1, c2, c3central}·

This yields M(Q2x+3) = 1.

3 p-power-poly-
pcp-groups

Eick and Leedham-Green [ELG08] defined for a prime p and a fixed coclass r infinite coclass sequences. These
sequences consist of finite p-groups of coclass r. For each infinite coclass sequence there exists a consistent pp-
presentation (see Section 2.2) such that if we choose a natural number for the parameter and possibly reduce the
exponents modulo the relative orders, we obtain a consistent polycyclic presentation for a group in the sequence; and
for each group in the sequence there exists a natural number such that using this as a value for the parameter, we
obtain a polycyclic presentation for the group.

We use these consistent pp-presentations to compute parametrised groups, which we call p-power-poly-pcp-groups.
Furthermore, methods for these are presented. Without specifying the parameter we compute certain properties and
using the p-power-poly-pcp-groups we do this for all groups they represent at once.

The p-power-poly-pcp-groups have a consistent pp-presentation with generators g1, . . . , gn, t1, . . . td and c1, . . . , cm,
for some non-negative integers n, d and m, and relations of the form, where rel[i, j] stores the right hand sides of the
relations (see Section 2.2 for more information on pp-presentations),

gp
i = rel[i, i],

texpo
i = rel[n + i, n + i],

cexpo vec[i]
i = rel[n + d + i, n + d + i],

ggj
i = rel[j, i],

tgj
i = rel[j, n + i],

ttj
i = rel[n + j, n + i],

where the ti’s commute modulo 〈c1, . . . , cm〉 and the ci’s are central. So rel (see Section 3.2) are the right hand sides
of the relations, where some depend on the parameter. The relative orders expo and expo vec[i] of the generators tj
and ci depend on the parameter.

3.1 Example

In this section we present the well-known example of quaternion groups Q2x+3 . They have a pp-presentation of the
following form:

{g1, g2, t1 |g2
1 = t2x

1 , gg1
2 = g2t−1+2x+1

1 ,

g2
2 = t1, tg1

1 = t−1+2x+1

1 ,

t2x+1

1 = 1}·

Section 2. Obtaining p-power-poly-pcp-groups 7

3.2 Obtaining p-power-poly-pcp-groups

To obtain p-power-poly-pcp-groups:

1 I PPPPcpGroups(rel, n, d, m, expo, expo vec, prime, cc, name) F
I PPPPcpGroups(rec) F

returns the p-power-poly-pcp-groups described by the consistent pp-presentation with generators g1, . . . , gn, t1, . . . td,
c1, . . . , cm, for some non-negative integers n, d and m, and relations of the form

gp
i = rel[i, i],

texpo
i = rel[n + i, n + i],

cexpo vec[i]
i = rel[n + d + i, n + d + i],

ggj
i = rel[j, i],

tgj
i = rel[j, n + i],

ttj
i = rel[n + j, n + i]·

The input consists of the following:

rel
is the list of the right hand sides of the relations, where each relation is presented by a list consisting of
tuples; the first entry i of a tuple is the index of the generator (if i ≤ n, then it represents generator gi, if
n < i ≤ d, then it represents generator ti−n and otherwise it represents generator ci−n−d) and the second entry
of the tuple is the corresponding exponent. Note that the exponents of the gi’s are saved as integers and all
other exponents as lists, representing elements depending on the parameter.

n
is the number of generators gi,

d
is the number of generators ti,

m
is the number of generators ci,

expo
is the relative order of all generators ti; note that expo is a list that represents an element depending on the
parameter,

expo vec
is the list of relative orders, where the ith entry of the list gives the relative order of the generator ci; note that
each relative order is a list that represents an element depending on the parameter,

prime
is the underlying prime p,

cc
if the p-power-poly-pcp-groups represent an infinite coclass sequence of p-groups of coclass r, then cc = r. If
they represent Schur extensions of groups in an infinite coclass sequence, then cc is the coclass of the groups
in this infinite coclass sequence.

name
a string to name the p-power-poly-pcp-groups.

rec
is a record of the form rec(rel, expo, n, d, m, prime, cc, expo vec, name).

8 Chapter 3. p-power-poly-pcp-groups

The pp-presentation is described at the beginning of Chapter “symbcompcc:p-power-poly-pcp-group”. Note that the
consistency of the presentation is checked and that the presentation has to be consistent.

gap> ParPresGlobalVar_2_1[1];

rec(

rel := [[[[1, 0]]], [[[2, 1], [3, -1+2*2^x]], [[3, 1]]],

[[[3, -1+2*2^x]], [[3, 1]], [[3, 0]]]], expo := 2*2^x,

n := 2, d := 1, m := 0, prime := 2, cc := 1, expo_vec := [], name := "D")

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

2 I PPPPcpGroupsElement(G, word) F

constructs an element in p-power-poly-pcp-groups, where G is a p-power-poly-pcp-group (thus representing an infinite
coclass sequence through a pp-presentation) with generators g1, . . . , gn, t1, . . . , td, c1, . . . , cm and word is a list of
tuples, where the first entry i in the tuple gives the index of the generator (if i ≤ n, then it represents generator gi, if
n < i ≤ d, then it represents generator ti−n and otherwise it represents generator ci−n−d) and the second entry of the
tuple is the corresponding exponent. Note that the exponents of the gi’s must be integers, while all other exponents
can be integers or lists, representing an element depending on the parameter.

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[3]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> g1 := PPPPcpGroupsElement(G , [[1,1]]);

g1

gap> g := PPPPcpGroupsElement(G , [[1,1],[2,1],[3,1]]);

g1*g2*t1

gap> h := PPPPcpGroupsElement(G , [[1,1],[2,1],[3,G!.expo-1]]);

g1*g2*t1^(-1+2*2^x)

3.3 Operations and functions for p-power-poly-pcp-group elements

The typical operations for group elements can be carried out for p-power-poly-pcp-group elements, like *, /, Inverse,
One, equality and ShallowCopy.

1 I CollectPPPPcp(a) F

collects the p-power-poly-pcp-group element a so that after reducing to integers for every specific value for the pa-
rameter x, the element is collected in the polycyclic group, represented by x in the underlying pp-presentation.

Note that the global variable COLLECT PPOWERPOLY PCP determines whether every element will be collected imme-
diately, when created, or not, see COLLECT PPOWERPOLY PCP, 3.6.1.

3.4 Operations and functions for p-power-poly-pcp-groups

For p-power-poly-pcp-groups:

1 I GeneratorsOfGroup(G)

returns a set of generators for the p-power-poly-pcp-groups G.

2 I One(G)

obtains the identity element of the p-power-poly-pcp-groups G.

3 I IsConsistentPPPPcp(G) F
I IsConsistentPPPPcp(ParPres) F

checks if the underlying pp-presentation of the p-power-poly-pcp-groups G is consistent or if the pp-presenta-tion
ParPres is consistent.

Section 5. Info classes for the p-power-poly-pcp-groups 9

4 I GetPcGroupPPowerPoly(ParPres, n) F
I GetPcGroupPPowerPoly(G, n) F

takes the pp-presentation given by the record ParPres as in PPPPcpGroups, 3.2.1 or the p-power-poly-pcp-groups G
and takes n, a non-negative integer, as a value for the parameter to obtain a pc-presentation for the corresponding finite
p-group.

5 I GetPcpGroupPPowerPoly(ParPres, n) F
I GetPcpGroupPPowerPoly(G, n) F

takes pp-presentation given by the record ParPres as in PPPPcpGroups, 3.2.1 or the p-power-poly-pcp-groups G and
takes n, a non-negative integer, as the parameter to obtain a pcp-presentation for the corresponding finite p-group, for
further information we refer to the polycyclic package.

6 I GAPInputPPPPcpGroups(file, G) F
I GAPInputPPPPcpGroups(file, ParPres) F

prints the p-power-poly-pcp-groups G defined by ParPres in the file file as a record that could be used as input to
PPPPcpGroups, 3.2.1 to create p-power-poly-pcp-groups.

7 I GAPInputPPPPcpGroupsAppend(file, G) F
I GAPInputPPPPcpGroupsAppend(file, ParPres) F

appends the pp-presentation of the p-power-poly-pcp-groups G defined by ParPres to the file file as a record that could
be used as input to PPPPcpGroups, 3.2.1 to create p-power-poly-pcp-groups.

8 I LatexInputPPPPcpGroups(file, G) F
I LatexInputPPPPcpGroups(file, ParPres) F

prints the pp-presentation of G as given by ParPres in latex-code to the file file. Note that only non-trivial relations
are printed.

9 I LatexInputPPPPcpGroupsAppend(file, G) F
I LatexInputPPPPcpGroupsAppend(file, ParPres) F

appends the pp-presentation of G as given by ParPres in latex-code to the file file. Note that only non-trivial relations
are appended.

10 I LatexInputPPPPcpGroupsAllAppend(file, G) F
I LatexInputPPPPcpGroupsAllAppend(file, ParPres) F

appends the pp-presentation of G as given by ParPres in latex-code to the file file. Note that all relations are appended.

3.5 Info classes for the p-power-poly-pcp-groups
The following info classes are available:

1 I InfoConsistencyPPPPcp V

is an InfoClass with the following levels.

level 1

displays the first consistency relation that fails during the consistency check;
level 2

displays which family of consistency relations have been checked during a consistency check.

the default value is 1.

2 I InfoCollectingPPPPcp V

is an InfoClass with the following levels.

level 1

displays some information during collecting;

the default value is 0.

10 Chapter 3. p-power-poly-pcp-groups

3.6 Global variables for the p-power-poly-pcp-groups

The following global variables are available with default value:

1 I COLLECT PPOWERPOLY PCP V

is a global variable determining if every p-power-poly-pcp-group element is collected, when created, the default value
is true.

4 Parametrised
Presentations

In this chapter we describe which pp-presentations for infinite coclass sequences (see [ELG08]) are provided.

4.1 Provided pp-presentations
1 I ParPresGlobalVar 2 1 V
I ParPresGlobalVar 2 2 V
I ParPresGlobalVar 3 1 V

are lists consisting of the pp-presentations of the infinite coclass sequences of finite p-groups of coclass r, where the
first number in the name gives the underlying prime and the second the underlying coclass. Each entry in the list is a
record rec(rel, expo, n, d, m, prime, cc, expo vec, name) with m = 0 and expo vec = []. The record entries are of a
form such that each record can be used as input for PPPPcpGroups, 3.2.1. See 3.2.1 for more information.

2 I ParPresGlobalVar p r Names V

gives the names of the infinite coclass sequences of finite p-groups of coclass r.

5
Schur extensions

for p-power-
poly-pcp-groups

In this chapter we describe how the consistent pp-presentations of infinite coclass sequences can be used to compute
a pp-presentation for the corresponding Schur extensions (see [EF11]).

For a group G = F/R the Schur extension H is defined as H = F/[F,R] (see [EN08]).

So for a parameter x that can take values in the positive integers, let (Gx = F/Rx|x ∈ N), for N the positive integers,
describe an infinite coclass sequence of finite p-groups GX of coclass r. Then for each value for the parameter x, the
group Gx has a consistent polycyclic presentation with generators g1, · · ·, gn, t1, · · ·, td and relations

gp
i = rel[i][i],

texpo
i = rel[n + i][n + i],

ggj
i = rel[j][i],

tgj
i = rel[j][n + i],

ttj
i = 1·

Then we compute a consistent pp-presentation of the corresponding Schur extensions of with generators g1, ···, gn, t1, ··
·, td, c1, · · ·cm and relations

gp
i = rel[i][i],

texpo
i = rel[n + i][n + i],

cexpo vec[i]
i = rel[n + d + i, n + d + i],

ggj
i = rel[j][i],

tgj
i = rel[j][n + i],

ttj
i = rel[n + j][n + i],

cgj
i = 1,

ctj
i = 1,

ccj
i = 1·

where the ti’s commute modulo c 1, · · ·, c m and the ci’s are central.

Section 2. Computing other invariants from Schur extensions 13

5.1 Computing Schur extensions
1 I SchurExtParPres(G)

computes the Schur extensions corresponding to the p-power-poly-pcp-groups G and returns them as p-power-poly-
pcp-groups.

2 I SchurExtParPres(ParPres) F

computes a consistent pp-presentation of Schur extensions of the groups defined by the record ParPres which describes
p-power-poly-pcp-groups. The output is a record rec(rel, expo, n, d, m, prime, cc, expo vec, name), which describes the
Schur extensions as p-power-poly-pcp-groups; it is encoded in a form that it can be used as input for PPPPcpGroups,
3.2.1.

gap> SchurExtParPres(ParPresGlobalVar_2_1[1]);

rec(prime := 2,

rel := [[[[7, 1]]], [[[2, 1], [3, -1+2*2^x], [6, 1-2*2^x]],

[[3, 1], [5, 1]]],

[[[3, -1+2*2^x], [4, 1], [6, 2-2*2^x]], [[3, 1]],

[[4, 1], [6, 2*2^x]]],

[[[4, 1]], [[4, 1]], [[4, 1]], [[4, 0]]],

[[[5, 1]], [[5, 1]], [[5, 1]], [[5, 1]], [[5, 0]]]

,

[[[6, 1]], [[6, 1]], [[6, 1]], [[6, 1]], [[6, 1]],

[[6, 0]]],

[[[7, 1]], [[7, 1]], [[7, 1]], [[7, 1]], [[7, 1]],

[[7, 1]], [[7, 0]]]], n := 2, d := 1, m := 4,

expo := 2*2^x, expo_vec := [2, 0, 0, 0], cc := fail, name := "SchurExt_D"

)

5.2 Computing other invariants from Schur extensions
1 I AbelianInvariantsMultiplier(G) F

computes the abelian invariants of the Schur multiplicators M(G) of the p-power-poly-pcp-groups G. The output is a
list [d1, · · ·, dk] consisting elements di, depending on the underlying parameter, such that M(G) ∼= Cd1 × . . .× Cdk .

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> AbelianInvariantsMultiplier(G);

[2]

2 I SchurMultiplicatorPPPPcps(G) F

computes the Schur multiplicators of the p-power-poly-pcp-groups G and then returns the corresponding PPPPcp-

Groups, 3.2.1.

gap> G := PPPPcpGroups(ParPresGlobalVar_3_1[1]);

< P-Power-Poly pcp-group with 5 generators of relative orders [3,3,3,3*3^x,3*3^x] >

gap> SchurMultiplicatorPPPPcps(G);

< P-Power-Poly-pcp-groups with 2 generators of relative orders [3,9*3^x] >

3 I AbelianInvariants(G) F

computes the abelian invariants of the p-power-poly-pcp-groups G and returns them as a list of list describing the
parametrised elements.

14 Chapter 5. Schur extensions for p-power-poly-pcp-groups

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> AbelianInvariants(G);

[2, 2]

4 I ZeroCohomologyPPPPcps(G[, p]) F

computes the zero-th-cohomology groups H0(G,R) of the p-power-poly-pcp-groups G with coefficients in R, where
R ∼= GF(p) if the prime p is given or R ∼= Z otherwise. The action of G on R is taken to be trivial. The function returns
a list of integers [a1, . . . , ak] where the cohomology group is isomorphic to Ca1 × . . .× Cak with Ci a cyclic group of
order i (for i > 0) and C0 is interpreted as Z.

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> ZeroCohomologyPPPPcp(G, 2);

[2]

5 I FirstCohomologyPPPPcps(G[, p]) F

computes the first-cohomology groups H1(G,R) of the p-power-poly-pcp-groups G with coefficients in R, where
R ∼= GF(p) if the prime p is given or R ∼= Z otherwise. The action of G on R is taken to be trivial. The function returns
a list of integers [a1, . . . , ak] where the cohomology group is isomorphic to Ca1 × . . .× Cak with Ci a cyclic group of
order i (for i > 0) and C0 is interpreted as Z.

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> FirstCohomologyPPPPcps(G);

[]

6 I SecondCohomologyPPPPcps(G[, p]) F

computes the second-cohomology groups H2(G,R) of the p-power-poly-pcp-groups G with coefficients in R, where
R ∼= GF(p) if the prime p is given or R ∼= Z otherwise. The action of G on R is taken to be trivial. The function returns
a list of integers [a1, . . . , ak] where the cohomology group is isomorphic to Ca1 × . . .× Cak with Ci a cyclic group of
order i (for i > 0) and C0 is interpreted as Z.

gap> G := PPPPcpGroups(ParPresGlobalVar_2_1[1]);

< P-Power-Poly-pcp-groups with 3 generators of relative orders [2,2,2*2^x] >

gap> SecondCohomologyPPPPcps(G, 2);

[2, 2, 2]

5.3 Info classes for the computation of the Schur extension

The following info classes are available

1 I InfoConsistencyRelPPowerPoly V

level 1

shows which consistency relations are computed and gives the result;

the default value is 0.

2 I InfoCollectingPPowerPoly V

level 1

shows what is done during collecting;

the default value is 0.

Bibliography

[dS00] M. du Sautoy. Counting p-groups and nilpotent groups. Inst. Hautes Etudes Sci. Publ. Math., 92:63–112,
2000.

[EF11] B. Eick and D. Feichtenschlager. Computation of low-dimensional (co)homology groups for infinite
sequences of p-groups with fixed coclass. Internat. J. Algebra Comput., 21(4):635–649, 2011.

[ELG08] B. Eick and C. R. Leedham-Green. On the classification of prime-power groups by coclass. Bulletin London
Math. Soc., 40(2), 2008.

[EN08] B. Eick and W. Nickel. Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic
group. J. Algebra, 320(2):927–944, 2008.

[LGN80] C. R. Leedham-Green and M. F. Newman. Space groups and groups of prime-power order I. Arch. Math.,
35:193–202, 1980.

	Contents
	Installing and Loading the SymbCompCC Package
	Installing the SymbCompCC Package
	Loading the SymbCompCC Package

	Introduction
	Overview
	Background on (polycyclic) parametrised presentations
	Computation of Schur multiplicators
	Computation of low-dimensional cohomology
	Example

	p-power-poly-pcp-groups
	Example
	Obtaining p-power-poly-pcp-groups
	Operations and functions for p-power-poly-pcp-group elements
	Operations and functions for p-power-poly-pcp-groups
	Info classes for the p-power-poly-pcp-groups
	Global variables for the p-power-poly-pcp-groups

	Parametrised Presentations
	Provided pp-presentations

	Schur extensions for p-power-poly-pcp-groups
	Computing Schur extensions
	Computing other invariants from Schur extensions
	Info classes for the computation of the Schur extension

	Bibliography

