Chapter 5

Chunking

5.1 Introduction

Chunking is an efficient and robust method for identifying short phrases in text, or “chunks”. Chunks
are non-overlapping spans of text, usually consisting of a head word (such as a noun) and the adjacent
modifiers and function words (such as adjectives and determiners). For example, here is some Wall
Street Journal text with noun phrase chunks marked using brackets (this data is distributed with NLTK):

[The/DT market/NN] for/IN [system-management/NN software/NN] for/IN [Digi-
tal/NNP] [’s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN [a/DT gi-
ant/NN] such/JJ as/IN [Computer/NNP Associates/NNPS] should/MD do/VB well/RB
there/RB ./.

There are two motivations for chunking: to locate information, and to ignore information. In the
former case, we may want to extract all noun phrases so they can be indexed. A text retrieval system
could use such an index to support efficient retrieval for queries involving terminological expressions.

The reverse side of the coin is to ignore information. Suppose that we want to study syntactic
patterns, finding particular verbs in a corpus and displaying their arguments. For instance, here are
some uses of the verb gave in the Wall Street Journal (in the Penn Treebank corpus sample). After
doing NP-chunking, the internal details of each noun phrase have been suppessed, allowing us to see
some higher-level patterns:

gave NP

gave up NP in NP
gave NP up

gave NP NP

gave NP to NP

In this way we can acquire information about the complementation patterns of a verb like gave, for
use in the development of a grammar (see Chapter 7).

Chunking in NLTK begins with tagged tokens, converted into a tree. (We will learn all about trees
in Part II; for now its enough to know that they are hierarchical structures built over sequences of tagged
tokens.)

>>> nltk_lite.parse Tree

>>> tagged_tokens = [("the", "DT"), ("little", "JJ"), ("cat", "NN"),
(IlsatH, HVBDH) , (HonH, HINH) , (cheII, HDTH) , (llmatll, HNN!I)]

>>> Tree(’'S’, tagged_tokens) .draw()

5.2. Defining and Representing Chunks

S

DT JJ NN VBD | DT N

the little cat sat on the mat

Next, we write regular expressions over tag sequences. The following example identifies noun
phrases that consist of an optional determiner, followed by any number of adjectives, then a noun.

>>> nltk lite chunk
>>> cp = chunk.Regexp ("NP: {<DT>?<JJ>*<NN>}")

We create a chunker cp which can then be used repeatedly to parse tagged input. The result of
chunking is also a tree, but with some extra structure:

>>> cp.parse (tagged_tokens) .draw ()

Nmp
/‘\ T EPZAN
D JJ NN sat on DT NN

the little cat the mat

In this chapter we explore chunking in depth, beginning with the definition and representation of
chunks. We will see regular expression and n-gram approaches to chunking, and will develop and
evaluate chunkers using the CoNLL-2000 chunking corpus.

5.2 Defining and Representing Chunks

5.2.1 An Analogy

Two of the most common operations in language processing are segmentation and labeling. Recall that
in tokenization, we segment a sequence of characters into tokens, while in tagging we label each of
these tokens. Moreover, these two operations of segmentation and labeling go hand in hand. We break
up a stream of characters into linguistically meaningful segments (e.g. words) so that we can classify
those segments with their part-of-speech categories. The result of such classification is represented by
adding a label to the segment in question.

In this chapter we do this segmentation and labeling at the phrase level, as illustrated in Figure 5.1.
The solid boxes show word-level segmentation and labeling, while the dashed boxes show a higher-
level segmentation and labeling. These larger pieces are called chunks, and the process of identifying
them is called chunking.

i — e |

:He:saw:the big dog:.
|

'|PRP ||| VBD || DT JJ NN |
|

| NP | | NP |

_ — - -4 e e e e e

Figure 5.1: Segmentation and Labeling at both the Token and Chunk Levels

Like tokenization, chunking can skip over material in the input. Tokenization omits white space
and punctuation characters. Chunking uses only a subset of the tokens and leaves others out.

May 16, 2007 2 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

5.2.2 Chunking vs Parsing

Chunking is akin to parsing in the sense that it can be used to build hierarchical structure over text.
There are several important differences, however. First, as noted above, chunking is not exhaustive, and
typically omits items in the surface string. Second, where parsing constructs deeply nested structures,
chunking creates structures of fixed depth, (typically depth 2). These chunks often correspond to the
lowest level of grouping identified in the full parse tree, as illustrated in the parsing and chunking
examples in (1) below:

(1a) NP
N%\P
G.K. Chesterion N%\P
— T
(1b) s
N , N of NP who was P
G.K. Chesterton author The Man ursday

A significant motivation for chunking is its robustness and efficiency relative to parsing. Parsing
uses recursive phrase structure grammars and arbitrary-depth trees. Parsing has problems with robust-
ness, given the difficulty in getting broad coverage and in resolving ambiguity. Parsing is also relatively
inefficient: the time taken to parse a sentence grows with the cube of the length of the sentence, while
the time taken to chunk a sentence only grows linearly.

5.2.3 Representing Chunks: Tags vs Trees

As befits its intermediate status between tagging and parsing, chunk structures can be represented using
either tags or trees. The most widespread file representation uses so-called IOB tags. In this scheme,
each token is tagged with one of three special chunk tags, I (inside), O (outside), or B (begin). A token
is tagged as B if it marks the beginning of a chunk. Subsequent tokens within the chunk are tagged I.
All other tokens are tagged O. The B and I tags are suffixed with the chunk type, e.g. B-NP, I-NP. Of
course, it is not necessary to specify a chunk type for tokens that appear outside a chunk, so these are
just labeled O. An example of this scheme is shown in Figure 5.2.

He||saw||the | |bigl||dog|.

PRP VBD DT JJ NN
B-NP o B-NP I-NP I-NP

Figure 5.2: Tag Representation of Chunk Structures

IOB tags have become the standard way to represent chunk structures in files, and we will also be
using this format. Here is an example of the file representation of the information in Figure 5.2:

Bird, Klein & Loper 3 May 16, 2007

5.3. Chunking

He PRP B-NP
saw VBD O

the DT B-NP
big JJ I-NP
dog NN I-NP

In this representation, there is one token per line, each with its part-of-speech tag and its chunk tag. We
will see later that this format permits us to represent more than one chunk type, so long as the chunks do
not overlap. This file format was developed for NP chunking by [Ramshaw & Marcus, 1995], and was
used for the shared NP bracketing task run by the Conference on Natural Language Learning (CoNLL)
in 1999. It has come to be called the IOB Format (or sometimes BIO Format). The same format was
adopted by CoNLL 2000 for annotating a section of Wall Street Journal text as part of a shared task on
NP chunking.

As we saw earlier, chunk structures can also be represented using trees. These have the benefit that
each chunk is a constituent that can be manipulated directly. An example is shown in Figure 5.3:

He||saw||the| big||ldog]|

PRP || VBD DT Jg NN
| |
s

Figure 5.3: Tree Representation of Chunk Structures

NLTK uses trees for its internal representation of chunks, and provides methods for reading and writing
such trees to the IOB format. By now you should understand what chunks are, and how they are
represented. In the next section you will see how to build a simple chunker.

5.3 Chunking

A chunker finds contiguous, non-overlapping spans of related tokens and groups them together into
chunks. Chunkers often operate on tagged texts, and use the tags to make chunking decisions. In this
section we will see how to write a special type of regular expression over part-of-speech tags, and then
how to combine these into a chunk grammar. Then we will set up a chunker to chunk some tagged text
according to the grammar.

5.3.1 Tag Patterns

A tag pattern is a sequence of part-of-speech tags delimited using angle brackets, e.g. <DT><JJ><
NN>. Tag patterns are the same as the regular expression patterns we have already seen, except for two
differences which make them easier to use for chunking. First, angle brackets group their contents into
atomic units, so “<NN>+"" matches one or more repetitions of the tag NN; and “<NN | JJ>"" matches the
NN or JJ. Second, the period wildcard operator is constrained not to cross tag delimiters, so that “<N.
*>" matches any single tag starting with N, e.g. NN, NNS.

Now, consider the following noun phrases from the Wall Street Journal:

May 16, 2007 4 Bird, Klein & Loper

file:bibliography.html#ramshaw1995tcu

5. Chunking Introduction to Natural Language Processing (DRAFT)

another/DT sharp/JJ dive/NN
trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS
earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP

We can match these using a slight refinement of the first tag pattern above: <DT>?<JJ. «>*<NN
.+>+. This can be used to chunk any sequence of tokens beginning with an optional determiner DT,
followed by zero or more adjectives of any type JJ. * (including relative adjectives like earlier/
JJR), followed by one or more nouns of any type NN . =. It is easy to find many more difficult examples:

his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG

3/CD %/NN to/TO 4/CD %/NN

more/JJR than/IN 10/CD %/NN

the/DT fastest/JJS developing/VBG trends/NNS

"s/POS skill/NN

Your challenge will be to come up with tag patterns to cover these and other examples.

5.3.2 Chunking with Regular Expressions

The chunker begins with a flat structure in which no tokens are chunked. Patterns are applied in turn,
successively updating the chunk structure. Once all of the patterns have been applied, the resulting
chunk structure is returned. Listing 5.1 shows a simple chunk grammar consisting of two patterns. The
first pattern matches an optional determiner, zero or more adjectives, then a noun. We also define some
tagged tokens to be chunked, and run the chunker on this input.

Listing 1 Simple Noun Phrase Chunker

grammar = r"""

NP:
{<DT>?<JJ>*<NN>} # chunk determiners, adjectives and nouns
{<NNP>+} # chunk sequences of proper nouns

mwn

cp = chunk.Regexp (grammar)
tagged_tokens = [("the", "DT"), ("little", "JJ"), ("cat", "NN"),
gg
("sat", HVBDH)’ (HonH’ HINH), (che", HDTH)’ ("mat", HNN")]

>>> cp.parse (tagged_tokens)
(S:
(NP: ('the’, 'DT’) (’little’, 'JJ’) ('cat’, ’'NN’))
("sat’, ’'VBD’)
("on’, "IN’)
(NP: ('the’, 'DT’) ('mat’, ’'NN’)))

If a tag pattern matches at overlapping locations, the first match takes precedence. For example, if
we apply a rule that matches two consecutive nouns to a text containing three consecutive nouns, then
only the first two nouns will be chunked:

>>> nouns = [("money", "NN"), ("market", "NN"), ("fund", "NN")]

Bird, Klein & Loper 5 May 16, 2007

5.3. Chunking

>>> grammar = "NP: {<NN><NN>} # Chunk two consecutive nouns"
>>> cp = chunk.Regexp (grammar)
>>> cp.parse (nouns)

(S: (NP: ('money’, 'NN’) ('market’, 'NN’)) (’fund’, 'NN’))

Once we have created the chunk for money market, we have removed the context that would have
permitted fund to be included in a chunk. This issue would have been avoided with a more permissive
chunk rule, e.g. NP: {<NN>+}.

5.3.3 Developing Chunkers

Creating a good chunker usually requires several rounds of development and testing, during which
existing rules are refined and new rules are added. In order to diagnose any problems, it often helps to
trace the execution of a chunker, using its t race argument. The tracing output shows the rules that are
applied, and uses braces to show the chunks that are created at each stage of processing. In Listing 5.2,
two chunk patterns are applied to the input sentence. The first rule finds all sequences of three tokens
whose tags are DT, JJ, and NN, and the second rule finds any sequence of tokens whose tags are either
DT or NN. We set up two chunkers one for each rule ordering, and test them on the same input.

Observe that when we chunk material that is already partially chunked, the chunker will only create
chunks that do not partially overlap existing chunks. In the case of cp2, the second rule did not find
any chunks, since all chunks that matched its tag pattern overlapped with existing chunks. Therefore it
is necessary to be careful to put chunk rules in the right order.

5.3.4 Exercises
1. 3¢ Chunking Demonstration: Run the chunking demonstration:

from nltk_lite import chunk
chunk.demo () # the chunker

2. 1+ IOB Tags: The IOB format categorizes tagged tokens as I, O and B. Why are three tags
necessary? What problem would be caused if we used I and O tags exclusively?

3. £t Write a tag pattern to match noun phrases containing plural head nouns, e.g. “many/JJ
researchers/NNS”, “two/CD weeks/NNS”, “both/DT new/]J positions/NNS”. Try to do
this by generalizing the tag pattern that handled singular noun phrases.

4. () Write tag pattern to cover noun phrases that contain gerunds, e.g. “the/DT receiv-
ing/VBG end/NN”, “assistant/NN managing/VBG editor/NN”. Add these patterns to the
grammar, one per line. Test your work using some tagged sentences of your own devising.

5. () Write one or more tag patterns to handle coordinated noun phrases, e.g. “July/NNP
and/CC August/NNP”, “all/DT your/PRP$ managers/NNS and/CC supervisors/NNS”,
“company/NN courts/NNS and/CC adjudicators/NNS”.

6. (P Sometimes a word is incorrectly tagged, e.g. the head noun in “12/CD or/CC so/RB
cases/VBZ”. Instead of requiring manual correction of tagger output, good chunkers are
able to work with the erroneous output of taggers. Look for other examples of correctly
chunked noun phrases with incorrect tags.

May 16, 2007 6 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

Listing 2 Two Noun Phrase Chunkers Having Identical Rules in Different Orders
cpl = chunk.Regexp(r"""
NP: {<DT><JJ><NN>} # Chunk det+adj+noun
{<DT |NN>+} # Chunk sequences of NN and DT
D)
cp2 = chunk.Regexp(r"""
NP: {<DT|NN>+} # Chunk sequences of NN and DT
{<DT><JJ><NN>} # Chunk det+adj+noun

nmnn ")

>>> print cpl.parse (tagged_tokens, trace=1)
Input:
<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk det+adj+noun:
{<DT> <JJ> <NN>} <VBD> <IN> <DT> <NN>
Chunk sequences of NN and DT:
{<DT> <JJ> <NN>} <VBD> <IN> {<DT> <NN>}
(S:

(NP: ('the’, ’'DT’) (’little’, ’'JJ’) ('cat’, ’'NN’))

("sat’, ’'VBD’)

(lonl, IINI)

(NP: ('the’, ’'DT’) ('mat’, ’'NN’)))
>>> print cp2.parse(tagged_tokens, trace=1)
Input:
<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk sequences of NN and DT:
{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}
Chunk det+adj+noun:
{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}
(S:

(NP: ('the’, 'DT’))

("little’, ’'JJ’)

(NP: (‘cat’, ’'NN’))

("sat’, '"VBD')

(IonI, IINI)

(NP: ('the’, 'DT’) (‘mat’, ’'NN’)))

Bird, Klein & Loper 7 May 16, 2007

5.4. Scaling Up

5.4 Scaling Up

Now that you have a taste of what chunking can do, you are ready to look at a chunked corpus, and
use it in developing and testing more complex chunkers. We will begin by looking at the mechanics of
converting IOB format into an NLTK tree, then at how this is done on a larger scale using the corpus
directly. We will see how to use the corpus to score the accuracy of a chunker, then look some more
flexible ways to manipulate chunks. Throughout our focus will be on scaling up the coverage of a
chunker.

5.4.1 Reading IOB Format and the CoNLL 2000 Corpus

Using the n1tk_lite.corpora module we can load Wall Street Journal text that has been tagged,
then chunked using the IOB notation. The chunk categories provided in this corpus are NP, VP and PP.
As we have seen, each sentence is represented using multiple lines, as shown below:

he PRP B-NP
accepted VBD B-VP
the DT B-NP
position NN I-NP

A conversion function chunk.conllstr2tree () builds a tree representation from one of these
multi-line strings. Moreover, it permits us to choose any subset of the three chunk types to use. The
example below produces only NP chunks:

>>> text = 7’7
he PRP B-NP
accepted VBD B-VP
. the DT B-NP
. position NN I-NP
. of IN B-PP
. vice NN B-NP
chairman NN I-NP
of IN B-PP
Carlyle NNP B-NP
Group NNP I-NP
, » O
. a DT B-NP
.. merchant NN I-NP
. banking NN I-NP
concern NN I-NP
(o)

rrr

>>> chunk.conllstr2tree (text, chunk_types=('NP’,)) .draw()

s
NV W W N N WP A —

P%P aagpmd ﬁf/A\hr & NF//\\NN Jf NNE/A\ENP ! D N NN N !

he the position vice chairman Carlyle Group a merchant banking concern

We can use the NLTK corpus module to access a larger amount of chunked text. The CoNLL 2000
corpus contains 270k words of Wall Street Journal text, with part-of-speech tags and chunk tags in the

May 16, 2007 8 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

IOB format. We can access this data using an NLTK corpus reader called con112000. Here is an
example:

>>> from nltk_lite.corpora import conll2000, extract
>>> print extract (2000, conll2000.chunked())

(S:
(NP: (’'Health-care’, 'JJ’) (’'companies’, 'NNS’))
(VP: (’should’, 'MD’) ('get’, ’'VB'))
(" healthier’, ’'JJR’)
(PP: ('in’, "IN’))
(NP: ('the’, 'DT’) ('third’, ’'JJ’) ('quarter’, 'NN’))

(I . 4 , 4 . 14))
This just showed three chunk types, for NP, VP and PP. We can also select which chunk types to read:

>>> from nltk_lite.corpora import conll2000, extract
>>> print extract (2000, conll2000.chunked(chunk_types=('NP’,)))
(S:

(NP: (’'Health-care’, "JJ’) ('companies’, ’'NNS’))

(" should’, '"MD’)

(’get’, IVBI)

("healthier’, 'JJR’)

("in’, ’"IN’)

(NP: ('the’, ’'DT’) ('third’, "JJ’) ('quarter’, 'NN’))

(’.I’ I.I))

5.4.2 Simple Evaluation and Baselines

Armed with a corpus, it is now possible to do some simple evaluation. The first evaluation is to establish
a baseline for the case where nothing is chunked:

>>> cp = chunk.Regexp("")
>>> print chunk.accuracy(cp, conll2000.chunked (chunk_types=('NP’,)))
0.440845995079

Now let’s try a naive regular expression chunker that looks for tags beginning with letters that are
typical of noun phrase tags:

>>> grammar = r'"NP: {<[CDJNP].x*x>+}"

>>> cp = chunk.Regexp (grammar)

>>> print chunk.accuracy(cp, conll2000.chunked (chunk_types=('NP’,)))
0.874479872666

We can extend this approach, and create a function chunked_tags () that takes some chunked
data, and sets up a conditional frequency distribution. For each tag, it counts up the number of times
the tag occurs inside an NP chunk (the True case), or outside a chunk (the False case). It returns a
list of those tags that occur inside chunks more often than outside chunks.

>>> def chunked_tags(train):
"""Generate a list of tags that tend to appear inside chunks"""
from nltk_lite.probability import ConditionalFreqgDist
cfdist = ConditionalFreqgDist ()
for t in train:
for word, tag, chtag in chunk.tree2conlltags(t):

Bird, Klein & Loper 9 May 16, 2007

5.4. Scaling Up

chtag == "O":
cfdist[tag] .inc (False)

cfdist[tag] .inc (True)
return [tag tag cfdist.conditions () cfdist[tag] .max () == True]

The next step is to convert this list of tags into a tag pattern. To do this we need to “escape”
all non-word characters, by preceding them with a backslash. Then we need to join them into a
disjunction. This process would convert a tag list [/ NN/, ‘NNS$’] into the tag pattern <NN | NN
\ $>. The following function does this work, and returns a regular expression chunker:

>>> baseline_chunker (train):
re
chunk_tags = [re.sub(r’ (\W)’, r’\\\1’, tag)
tag chunked_tags (train)]

grammar = 'NP: {<’ + '|’.join(chunk_tags) + ’'>+}’
return chunk.Regexp (grammar)

The final step is to train this chunker and test its accuracy (this time on data not seen during training):

>>> cp = baseline_chunker (conll12000.chunked(files='train’, chunk_types=('NP’,)))
>>> chunk.accuracy (cp, conll2000.chunked(files='test’, chunk_types=('NP’,)))
0.914262194736

5.4.3 Splitting and Merging (incomplete)

[Notes: the above approach creates chunks that are too large, e.g. the cat the dog chased would be
given a single NP chunk because it does not detect that determiners introduce new chunks. For this we
would need a rule to split an NP chunk prior to any determiner, using a pattern like: "NP: <. x>} {<
DT>". We can also merge chunks, e.g. "NP: <NN>{}<NN>".]

5.4.4 Chinking

Sometimes it is easier to define what we don’t want to include in a chunk than it is to define what we
do want to include. In these cases, it may be easier to build a chunker using a method called chinking.

The word chink initially meant a sequence of stopwords, according to a 1975 paper by Ross and
Tukey [Church, Young, & Bloothooft, 1996]. Following Abney, we define a chink is a sequence of
tokens that is not included in a chunk. In the following example, sat /VBD on/IN is a chink:

[the/DT 1little/JJ cat/NN] sat/VBD on/IN [the/DT mat/NN]

Chinking is the process of removing a sequence of tokens from a chunk. If the sequence of tokens
spans an entire chunk, then the whole chunk is removed; if the sequence of tokens appears in the
middle of the chunk, these tokens are removed, leaving two chunks where there was only one before.
If the sequence is at the beginning or end of the chunk, these tokens are removed, and a smaller chunk
remains. These three possibilities are illustrated in Table 5.1.

Entire chunk Middle of a chunk End of a chunk
Input [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN]
Operation Chink “DT JJ NN” Chink “JJ” Chink “NN”
Pattern “1DT JJ NN{” “HI{ “INN{”

May 16, 2007 10 Bird, Klein & Loper

file:bibliography.html#abney1996pst

5. Chunking Introduction to Natural Language Processing (DRAFT)

| Output a/DT big/JJ cat/NN | [a/DT] big/JJ [cat/NN] | [&/DT big/JJ] cat/NN

Table 5.1: Three chinking rules applied to the same chunk

In the following grammar, we put the entire sentence into a single chunk, then excise the chink:

>>> grammar = r"""
. NP:
{<.*>+} # Chunk everything
}<VBD | IN>+{ # Chink sequences of VBD and IN

wnn

>>> cp = chunk.Regexp (grammar)
>>> print cp.parse(tagged_tokens)
(S:
(NP: ('the’, 'DT’) (’little’, 'JJ’) ('cat’, 'NN’))
("sat’, '"VBD')
("on’, "IN’)
(NP: ('the’, 'DT’) (‘mat’, 'NN’)))

>>> print chunk.accuracy(cp, conll2000.chunked(files='test’, chunk_types=('NP’,)))

0.581041433607

A chunk grammar can use any number of chunking and chinking patterns in any order.

5.4.5 Multiple Chunk Types (incomplete)

So far we have only developed NP chunkers. However, as we saw earlier in the chapter, the CoNLL
chunking data is also annotated for PP and VP chunks. Here is an example, to show the structure we
get from the corpus and the flattened version that will be used as input to the parser.

>>> example = extract (2000, conll2000.chunked())
>>> print example
(s:
(NP: (’'Health-care’, "JJ’) ('companies’, ’'NNS’))
(VP: (’should’, 'MD’) ('get’, 'VB'))
("healthier’, 'JJR’)
(PP: ('in’, "IN’))
(NP: ('the’, 'DT’) ('third’, ’"JJ’) ('quarter’, ’'NN’))
.7, "."))
>>> print example.flatten()
(s:
(' Health—care’, ’'JJ’)
(' companies’, 'NNS’)
(" should’, 'MD’)
("get’, 'VB')
(" healthier’, ’'JJR’)
("in’, ’"IN’)
("the’, 'DT’)
('third’, ’'JJ3’)
("quarter’, 'NN’)
. "))

Now we can set up a multi-stage chunk grammar, as shown in Listing 5.3. It has a stage for each of
the chunk types.

Bird, Klein & Loper 11 May 16, 2007

5.4. Scaling Up

Listing 3

cp = chunk.Regexp(r"""

NP: {<DT>?<JJ>*<NN.*>+} # noun phrase chunks

VP: {<TO>?<VB.x*>} # verb phrase chunks

PP: {<IN>} # prepositional phrase chunks

wn ")

>>> example = extract (2000, conll2000.chunked())
>>> print cp.parse(example.flatten(), trace=1l)
Input:
<JJ> <NNS> <MD> <VB> <JJR> <IN> <DT> <JJ> <NN> <.>
noun phrase chunks:
{<JJ> <NNS>} <MD> <VB> <JJR> <IN> {<DT> <JJ> <NN>} <.>
Input:
<NP> <MD> <VB> <JJR> <IN> <NP> <.>
verb phrase chunks:
<NP> <MD> {<VB>} <JJR> <IN> <NP> <.>
Input:
<NP> <MD> <VP> <JJR> <IN> <NP> <.>
prepositional phrase chunks:
<NP> <MD> <VP> <JJR> {<IN>} <NP> <.>
(S:
(NP: (’'Health-care’, 'JJ’) (’'companies’, ’'NNS’))
(' should’, 'MD’)
(VP: ('get’, 'VB'))
(' healthier’, 'JJR’)
(PP: ('in’, "IN’))
(NP: ('the’, 'DT’') ('third’, 'JJ’) ('quarter’, 'NN’))
(. mn))

May 16, 2007 12 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

5.4.6 Exercises

1. ¢ Pick one of the three chunk types in the CoNLL corpus. Inspect the CoNLL corpus
and try to observe any patterns in the POS tag sequences that make up this kind of chunk.
Develop a simple chunker using the regular expression chunker chunk . Regexp. Discuss
any tag sequences that are difficult to chunk reliably.

2. ¢ An early definition of chunk was the material that occurs between chinks. Develop a
chunker which starts by putting the whole sentence in a single chunk, and then does the rest
of its work solely by chinking. Determine which tags (or tag sequences) are most likely to
make up chinks with the help of your own utility program. Compare the performance and
simplicity of this approach relative to a chunker based entirely on chunk rules.

3. (D Develop a chunker for one of the chunk types in the CoNLL corpus using a regular-
expression based chunk grammar RegexpChunk. Use any combination of rules for
chunking, chinking, merging or splitting.

4. % We saw in the tagging chapter that it is possible to establish an upper limit to tagging
performance by looking for ambiguous n-grams, n-grams that are tagged in more than one
possible way in the training data. Apply the same method to determine an upper bound on
the performance of an n-gram chunker.

5. % Pick one of the three chunk types in the CoNLL corpus. Write functions to do the
following tasks for your chosen type:

a) List all the tag sequences that occur with each instance of this chunk type.

b) Count the frequency of each tag sequence, and produce a ranked list in order
of decreasing frequency; each line should consist of an integer (the frequency)
and the tag sequence.

¢) Inspect the high-frequency tag sequences. Use these as the basis for developing
a better chunker.

6. % The baseline chunker presented in the evaluation section tends to create larger chunks
than it should. For example, the phrase: [every/DT time/NN] [she/PRP] sees
/VBZ [a/DT newspaper/NN] contains two consecutive chunks, and our baseline
chunker will incorrectly combine the first two: [every/DT time/NN she/PRP].
Write a program that finds which of these chunk-internal tags typically occur at the start of
a chunk, then devise one or more rules that will split up these chunks. Combine these with
the existing baseline chunker and re-evaluate it, to see if you have discovered an improved
baseline.

7. % Develop an NP chunker which converts POS-tagged text into a list of tuples, where
each tuple consists of a verb followed by a sequence of noun phrases and prepositions, e.g.
the little cat sat on the mat becomes (' sat’, "on’, ’'NP’)..

8. % The Penn Treebank contains a section of tagged Wall Street Journal text which has been
chunked into noun phrases. The format uses square brackets, and we have encountered it
several times during this chapter. It can be accessed by importing the Treebank corpus
reader (nltk_lite.corpora treebank), then iterating over its

Bird, Klein & Loper 13 May 16, 2007

5.5. N-Gram Chunking

chunked items (sent treebank.chunked () :). These items are flat trees,
just as we got using con112000.chunked ().

a) Consult the documentation for the NLTK chunk package to find out how to gen-
erate Treebank and IOB strings from a tree. Write functions chunk2brackets
() and chunk2iob () which take a single chunk tree as their sole argument,
and return the required multi-line string representation.

b) Write command-line conversion utilities bracket2iob.py and iob2bracket
. py that take a file in Treebank or CoNLL format (resp) and convert it to the
other format. (Obtain some raw Treebank or CoNLL data from the NLTK
Corpora, save it to a file, and then use line open (filename
) to access it from Python.)

5.5 N-Gram Chunking

Our approach to chunking has been to try to detect structure based on the part-of-speech tags. We have
seen that the IOB format represents this extra structure using another kind of tag. The question arises
then, as to whether we could use the same n-gram tagging methods we saw in the last chapter, applied
to a different vocabulary.

The first step is to get the word, tag, chunk triples from the CoNLL corpus and map these to
tag, chunk pairs:

>>> nltk lite tag
>>> chunk_data = [[(t,c) w,t,c chunk.tree2conlltags (chtree)]
chtree conll2000.chunked()]

5.5.1 A Unigram Chunker
Now we can train and score a unigram chunker on this data, just as if it was a tagger:

>>> unigram_chunker = tag.Unigram()

>>> unigram_ chunker.train (chunk_ data)

>>> tag.accuracy (unigram chunker, chunk_data)
0.781378851068

This chunker does reasonably well. Let’s look at the errors it makes. Consider the opening phrase
of the first sentence of the chunking data, here shown with part of speech tags:

Confidence/NN in/IN the/DT pound/NN is/VBZ widely/RB expected/VBN to/TO take/VB
another/DT sharp/JJ dive/NN

We can try the unigram chunker out on this first sentence by creating some “tokens” using [t
t,c chunk_data[0]], then running our chunker over them using 1i st (unigram_chunker
.tag (tokens)). The unigram chunker only looks at the tags, and tries to add chunk tags. Here is
what it comes up with:

NN/I-NP IN/B-PP DT/B-NP NN/I-NP VBZ/B-VP RB/O VBN/I-VP TO/B-PP VB/I-VP
DT/B-NP JJ/I-NP NN/I-NP

May 16, 2007 14 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

Notice that it tags all instances of NN with I-NP, because nouns usually do not appear at the
beginning of noun phrases in the training data. Thus, the first noun Confidence/NN is tagged
incorrectly. However, pound/NN and dive are correctly tagged as I-NP; they are not in the initial
position that should be tagged B—NP. It incorrectly tags widely/RB as outside O, and it incorrectly
tags the infinitival t o/ TO as B-PP, as if it was a preposition starting a prepositional phrase.

5.5.2 A Bigram Chunker (incomplete)

[Why these problems might go away if we look at the previous chunk tag?]
Let’s run a bigram chunker:

>>> bigram_ chunker = tag.Bigram(backoff=unigram chunker)
>>> bigram_chunker.train(chunk_data)

>>> tag.accuracy (bigram_chunker, chunk_data)
0.89312652614

We can run the bigram chunker over the same sentence as before using 1ist (bigram_chunker
.tag (tokens)). Here is what it comes up with:

NN/B-NP IN/B-PP DT/B-NP NN/I-NP VBZ/B-VP RB/I-VP VBN/I-VP TO/I-VP VB/I-
VP DT/B-NP JJ/I-NP NN/I-NP

This is 100% correct.

5.5.3 Exercises

1. (D The bigram chunker scores about 90% accuracy. Study its errors and try to work out
why it doesn’t get 100% accuracy.

2. () Experiment with trigram chunking. Are you able to improve the performance any more?

3. % An n-gram chunker can use information other than the current part-of-speech tag and
the n — 1 previous chunk tags. Investigate other models of the context, such as the n — 1
previous part-of-speech tags, or some combination of previous chunk tags along with
previous and following part-of-speech tags.

4. % Consider the way an n-gram tagger uses recent tags to inform its tagging choice. Now
observe how a chunker may re-use this sequence information. For example, both tasks
will make use of the information that nouns tend to follow adjectives (in English). It
would appear that the same information is being maintained in two places. Is this likely to
become a problem as the size of the rule sets grows? If so, speculate about any ways that
this problem might be addressed.

5.6 Cascaded Chunkers

So far, our chunk structures have been relatively flat. Trees consist of tagged tokens, optionally grouped
under a chunk node such as NP. However, it is possible to build chunk structures of arbitrary depth,
simply by creating a multi-stage chunk grammar.

So far, our chunk grammars have consisted of a single stage: a chunk type followed by one or more
patterns. However, chunk grammars can have two or more such stages. These stages are processed

Bird, Klein & Loper 15 May 16, 2007

5.6. Cascaded Chunkers

in the order that they appear. The patterns in later stages can refer to a mixture of part-of-speech tags
and chunk types. Listing 5.4 has patterns for noun phrases, prepositional phrases, verb phrases, and
sentences. This is a four-stage chunk grammar, and can be used to create structures having a depth of
at most four.

Listing 4 A Chunker that Handles NP, PP, VP and S

cp = chunk.Regexp(r"""

NP: {<DT|JJ|NN.x>+} # Chunk sequences of DT, JJ, NN

PP: {<IN><NP>} # Chunk prepositions followed by NP

VP: {<VB.*><NP|PP|S>+$} # Chunk rightmost verbs and arguments/adjuncts

S: {<NP><VP>}

Chunk NP, VP

wn H)

tagged tokens = [("Mary", "NN"), ("saw", "VBD"), ("the", "DT"), ("cat", "NN"),
("sit", "vB"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(tagged_tokens)
(S:
(NP: ('Mary’, ’'NN’))
("saw’, 'VBD')
(S:
(NP: ("the’, 'DT’) ('cat’, 'NN’))
(VP:
("sit’, ’'VB’)
(PP: (‘on’, ’"IN’) (NP: ('the’, ’'DT’) (‘mat’, 'NN’))))))

Unfortunately this result misses the VP headed by saw. It has other shortcomings too. Let’s see
what happens when we apply this chunker to a sentence having deeper nesting.

>>> tagged_tokens = [("John", "NNP"), ("thinks", "VBZ"), ("Mary", "NN"),
("saw", "VBD"), ("the", "DT"), ("cat", "NN"), ("sit", "VB"),
("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse (tagged_tokens)
(S:
(NP: (’John’, ’'NNP'))
(’thinks’, ’'VBZ’)
(NP: ('Mary’, 'NN’))
("saw’, ’'VBD')
(S:
(NP: ('the’, 'DT’) ('cat’, 'NN’))
(VP:
("sit’, 'VB’)
(PP: (‘on’, "IN’) (NP: ('the’, 'DT’) ('mat’, 'NN’))))))

The solution to these problems is to get the chunker to loop over its patterns: after trying all of
them, it repeats the process. We add an optional second argument 1oop to specify the number of times
the set of patterns should be run:

>>> cp = chunk.Regexp (grammar, loop=2)

>>> print cp.parse (tagged_tokens)

(S:
(NP :

(" John’, ’'NNP’))

May 16, 2007 16 Bird, Klein & Loper

5. Chunking Introduction to Natural Language Processing (DRAFT)

('thinks’, ’'VBZ’)
(S:
(NP: ('Mary’, 'NN’))
(VP:
("saw’, ’'VBD')
(S:
(NP: ('the’, 'DT’') ('cat’, 'NN’))
(VP:
("sit’, ’'VB')
(PP: (‘on’, '"IN’) (NP: ('the’, 'DT’) (‘mat’, 'NN’))))))))

This cascading process enables us to create deep structures. However, creating and debugging a
cascade is quite difficult, and there comes a point where it is more effective to do full parsing (see
Chapter 7).

5.7 Conclusion

In this chapter we have explored efficient and robust methods that can identify linguistic structures in
text. Using only part-of-speech information for words in the local context, a “chunker” can successfully
identify simple structures such as noun phrases and verb groups. We have seen how chunking methods
extend the same lightweight methods that were successful in tagging. The resulting structured infor-
mation is useful in information extraction tasks and in the description of the syntactic environments of
words. The latter will be invaluable as we move to full parsing.

There are a surprising number of ways to chunk a sentence using regular expressions. The patterns
can add, shift and remove chunks in many ways, and the patterns can be sequentially ordered in many
ways. One can use a small number of very complex rules, or a long sequence of much simpler rules.
One can hand-craft a collection of rules, and one can write programs to analyze a chunked corpus to
help in the development of such rules. The process is painstaking, but generates very compact chunkers
that perform well and that transparently encode linguistic knowledge.

It is also possible to chunk a sentence using the techniques of n-gram tagging. Instead of assigning
part-of-speech tags to words, we assign IOB tags to the part-of-speech tags. Bigram tagging turned out
to be particularly effective, as it could be sensitive to the chunk tag on the previous word. This statistical
approach requires far less effort than rule-based chunking, but creates large models and delivers few
linguistic insights.

Like tagging, chunking cannot be done perfectly. For example, as pointed out by [Church, Young, &
Bloothooft, 1996], we cannot correctly analyze the structure of the sentence I turned off the spectroroute
without knowing the meaning of spectroroute; is it a kind of road or a type of device? Without knowing
this, we cannot tell whether off is part of a prepositional phrase indicating direction (tagged B—PP), or
whether off is part of the verb-particle construction furn off (tagged I-VP).

A recurring theme of this chapter has been diagnosis. The simplest kind is manual, when we
inspect the tracing output of a chunker and observe some undesirable behavior that we would like
to fix. Sometimes we discover cases where we cannot hope to get the correct answer because the
part-of-speech tags are too impoverished and do not give us sufficient information about the lexical
item. A second approach is to write utility programs to analyze the training data, such as counting the
number of times a given part-of-speech tag occurs inside and outside an NP chunk. A third approach is
to evaluate the system against some gold standard data to obtain an overall performance score. We can
even use this to parameterize the system, specifying which chunk rules are used on a given run, and
tabulating performance for different parameter combinations. Careful use of these diagnostic methods

Bird, Klein & Loper 17 May 16, 2007

file:bibliography.html#abney1996pst
file:bibliography.html#abney1996pst

5.8. Further Reading

permits us to optimize the performance of our system. We will see this theme emerge again later in
chapters dealing with other topics in natural language processing.

5.8 Further Reading

Abney’s Cass system: http://www.vinartus.net/spa/97a.pdf

About this document...

This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It is
distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Version
0.7.5, under the terms of the Creative Commons Attribution-ShareAlike License
[http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4518 Wed May 16 20:08:28 EST 2007

May 16, 2007 18 Bird, Klein & Loper

http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	Chunking
	Introduction
	Defining and Representing Chunks
	An Analogy
	Chunking vs Parsing
	Representing Chunks: Tags vs Trees

	Chunking
	Tag Patterns
	Chunking with Regular Expressions
	Developing Chunkers
	Exercises

	Scaling Up
	Reading IOB Format and the CoNLL 2000 Corpus
	Simple Evaluation and Baselines
	Splitting and Merging (incomplete)
	Chinking
	Multiple Chunk Types (incomplete)
	Exercises

	N-Gram Chunking
	A Unigram Chunker
	A Bigram Chunker (incomplete)
	Exercises

	Cascaded Chunkers
	Conclusion
	Further Reading

