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Chapter 6

Structured Programming in Python

6.1 Introduction

In Part I you had an intensive introduction to Python (Chapter 2) followed by chapters on words, tags,
and chunks (Chapters 3-5). These chapters contain many examples and exercises that should have
helped you consolidate your Python skills and apply them to simple NLP tasks. So far our programs
— and the data we have been processing — have been relatively unstructured. In Part II we will focus
on structure: i.e. structured programming with structured data.

In this chapter we will review key programming concepts and explain many of the minor points
that could easily trip you up. More fundamentally, we will introduce important concepts in structured
programming that help you write readable, well-organized programs that you and others will be able
to re-use. Each section is independent, so you can easily select what you most need to learn and
concentrate on that. As before, this chapter contains many examples and exercises (and as before,
some exercises introduce new material). Readers new to programming should work through them
carefully and consult other introductions to programming if necessary; experienced programmers can
quickly skim this chapter.

6.2 Back to the Basics

Let’s begin by revisiting some of the fundamental operations and data structures required for natural
language processing in Python. It is important to appreciate several finer points in order to write Python
programs which are not only correct but also idiomatic — by this, we mean using the features of the
Python language in a natural and concise way. To illustrate, here is a technique for iterating over the
members of a list by initializing an index i and then incrementing the index each time we pass through
the loop:
>>> sent = ['I’, "am’, ’'the’, ’'Walrus’]
>>> i =0
>>> while i < len(sent):
sent[i] .lower ()

.. i+=1
>>> sent
["1’, ’'am’, "the’, ’'walrus’]

Although this does the job, it is not idiomatic Python. By contrast, Python’s statement allows
us to achieve the same effect much more succinctly:
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>>> sent = ['I’, "am’, ’'the’, 'Walrus’]
>>> s sent:
. s.lower ()
>>> sent
["i’, "am’, ’"the’, ’'walrus’]

We’ll start with the most innocuous operation of all: assignment. Then we will look at sequence
types in detail.

6.2.1 Assignment

Python’s assignment statement operates on values. But what is a value? Consider the following code
fragment:

>>> wordl = ’'Monty’

>>> word2 = wordl )
>>> wordl = ’'Python’ )
>>> word2

"Monty’

This code shows that when we write word2 = word1l in line (1), the value of word1 (the string
"Monty’)1is assigned to word2. That is, word2 is a copy of wordl, so when we overwrite word1l
with a new string / Python’ in line 2), the value of word2 is not affected.

However, assignment statements do not always involve making copies in this way. An important
subtlety of Python is that the “value” of a structured object (such as a list) is actually a reference to the
object. In the following example, line (1) assigns the reference of 1ist1 to the new variable 1ist2.
When we modify something inside 1ist1 on line (2), we can see that the contents of 11 st 2 have also
been changed.
>>> listl = ['Monty’, ’'Python’]
>>> list2 = listl D
>>> 1listl[1l] = ’'Bodkin’ @
>>> list2
['Monty’, ’'Bodkin’]

3130 3140 3150

Memory ¢ ¥

L L L Ll [ [ [elnfe] Jefale] | [ ] ]
Name Value

sentl |3133

sent2 |3133

Figure 6.1: List Assignment and Computer Memory

Thus line (1) does not copy the contents of the variable, only its “object reference”. To understand
what is going on here, we need to know how lists are stored in the computer’s memory. In Figure 6.1,
we see that a list sent1 is a reference to an object stored at location 3133 (which is itself a series of
pointers to other locations holding strings). When we assign sent2 = sentl, it is just the object
reference 3133 that gets copied.
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6. Structured Programming in Python Introduction to Natural Language Processing (DRAFT)

6.2.2 Sequences: Strings, Lists and Tuples

We have seen three kinds of sequence object: strings, lists, and tuples. As sequences, they have some
common properties: they can be indexed and they have a length:

>>> string = 'I turned off the spectroroute’
>>> words = ['I’, 'turned’, ’'off’, ’"the’, ’'spectroroute’]
>>> pair = (6, ’'turned’)

>>> string[2], words[3], pair[1l]

("t’, "the’, ’'turned’)

>>> len(string), len(words), len(pair)
(29, 5, 2)

We can iterate over the items in a sequence s in a variety of useful ways, as shown in Table 6.1.

Python Expression Comment
item S iterate over the items of s
item sorted (s) iterate over the items of s in order
item set (s) iterate over unique elements of s
item reversed (s) iterate over elements of s in reverse
item set (s) .difference (t) | iterate over elements of s notin t

Table 6.1: Various ways to iterate over sequences

The sequence functions illustrated in Table 6.1 can be combined in various ways; for example,
to get unique elements of s sorted in reverse, use reversed (sorted(set (s))). Sometimes
random order is required:

>>> random
>>> random.shuffle (words)

We can convert between these sequence types. For example, tuple (s) converts any kind of
sequence into a tuple, and 1ist (s) converts any kind of sequence into a list. We can convert a list of
strings to a single string using the join () function,e.g. / :’ . join (words).

Notice in the above code sample that we computed multiple values on a single line, separated by
commas. These comma-separated expressions are actually just tuples — Python allows us to omit the
parentheses around tuples if there is no ambiguity. When we print a tuple, the parentheses are always
displayed. By using tuples in this way, we are implicitly aggregating items together.

In the next example, we use tuples to re-arrange the contents of our list. (We can omit the
parentheses because the comma has higher precedence than assignment.)

>>> words[2], words[3], words[4] = words[3], words[4], words[2]
>>> words
["TI’, ’'turned’, ’'the’, ’'spectroroute’, 'off’]

This is an idiomatic and readable way to move items inside a list. It is equivalent to the following
traditional way of doing such tasks that does not use tuples (notice that this method needs a temporary
variable tmp).

>>> tmp = words[2]

>>> words[2] = words[3]
>>> words[3] = words[4]
>>> words[4] = tmp
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As we have seen, Python has sequence functions such as sorted () and reversed () which
rearrange the items of a sequence. There are also functions that modify the structure of a sequence and
which can be handy for language processing. Thus, zip () takes the items of two sequences and ’zips’
them together into a single list of pairs. Given a sequence s, enumerate (s) returns an iterator that
produces a pair of an index and the item at that index.

>>> words = ['I’, '"turned’, 'off’, 'the’, ’'spectroroute’]

>>> tags = ['nnp’, 'vbd’, 'in’, ’'dt’, 'nn’]

>>> zip (words, tags)

[(‘I', '"nnp’), ('turned’, 'vbd’), ('off’, ’'in’),

("the’, 'dt’), (’'spectroroute’, 'nn’)]

>>> list (enumerate (words))

[(O, "I"), (1, 'turned’), (2, 'off’), (3, ’'the’), (4, ’'spectroroute’)]

6.2.3 Combining different sequence types

Let’s combine our knowledge of these three sequence types, together with list comprehensions, to
perform the task of sorting the words in a string by their length.

>>> words = 'I turned off the spectroroute’ .split () D

>>> wordlens = [(len(word), word) word words] )

>>> wordlens

[(1, "I'), (6, "turned’'), (3, 'off’), (3, ’"the’), (12, ’'spectroroute’)
>>> wordlens.sort () ®

>>> ' '’ _join([word count, word wordlens]) @

"I off the turned spectroroute’

Each of the above lines of code contains a significant feature. Line (1) demonstrates that a simple
string is actually an object with methods defined on it, such as split (). Line (2) shows the construc-
tion of a list of tuples, where each tuple consists of a number (the word length) and the word, e.g. (
3, ’the’). Line (3 sorts the list, modifying the list in-place. Finally, line @) discards the length
information then joins the words back into a single string.

We began by talking about the commonalities in these sequence types, but the above code illustrates
important differences in their roles. First, strings appear at the beginning and the end: this is typical in
the context where our program is reading in some text and producing output for us to read. Lists and
tuples are used in the middle, but for different purposes. A list is typically a sequence of objects all
having the same type, of arbitrary length. We often use lists to hold sequences of words. In contrast, a
tuple is typically a collection of objects of different types, of fixed length. We often use a tuple to hold a
record, a collection of different fields relating to some entity. This distinction between the use of lists
and tuples takes some getting used to, so here is another example:

>>> lexicon = [
('the’, ’'DT’, ['Di:’, ’'DR’'1),
('off’, "IN', ['Qf", "O:£'1])
1

Here, a lexicon is represented as a list because it is a collection of objects of a single type — lexical

entries — of no predetermined length. An individual entry is represented as a tuple because it is a
collection of objects with different interpretations, such as the orthographic form, the part of speech,
and the pronunciations represented in the SAMPA computer readable phonetic alphabet. Note that
these pronunciations are stored using a list. (Why?)
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6. Structured Programming in Python Introduction to Natural Language Processing (DRAFT)

The distinction between lists and tuples has been described in terms of usage. However, there is
a more fundamental difference: in Python, lists are mutable, while tuples are immutable. In other
words, lists can be modified, while tuples cannot. Here are some of the operations on lists which do
in-place modification of the list. None of these operations is permitted on a tuple, a fact you should
confirm for yourself.
>>> lexicon.sort ()
>>> lexicon[l] = ('turned’, ’'VBD’, ['t3:nd’, "t3'nd’])
>>> lexicon[0]

6.2.4 Stacks and Queues

Lists are a particularly versatile data type. We can use lists to implement higher-level data types such
as stacks and queues. A stack is a container that has a first-in-first-out policy for adding and removing
items (see Figure 6.2).

STACK P — T «— PUSH
| VP = VNP : I'VP = VNP | VP = V NP
. VP = V NP NP
Last-In-First-Out VP — V NP PP
QUEUE
DEQUEUE ENQUEUE

E“tr;e":/ \{ the | cat | sat | on | the |Fn_ar:‘/
First-In-First-Out <:I

Figure 6.2: Stacks and Queues

Stacks are used to keep track of the current context in computer processing of natural languages
(and programming languages too). We will seldom have to deal with stacks explicitly, as the implemen-
tation of NLTK parsers, treebank corpus readers, (and even Python functions), all use stacks behind the
scenes. However, it is important to understand what stacks are and how they work.

In Python, we can treat a list as a stack by limiting ourselves to the three operations defined on
stacks: append (item) (to push item onto the stack), pop () to pop the item off the top of the
stack, and [—1] to access the item on the top of the stack. Listing 6.1 processes a sentence with phrase
markers, and checks that the parentheses are balanced. The loop pushes material onto the stack when
it gets an open parenthesis, and pops the stack when it gets a close parenthesis. We see that two are left
on the stack at the end; i.e. the parentheses are not balanced.

Although Listing 6.1 is a useful illustration of stacks, it is overkill because we could have done a
direct count: phrase.count (’ (') == phrase.count (’)’). However, we can use stacks
for more sophisticated processing of strings containing nested structure, as shown in Listing 6.2.
Here we build a (potentially deeply-nested) list of lists. Whenever a token other than a parenthesis
is encountered, we add it to a list at the appropriate level of nesting. The stack cleverly keeps track of
this level of nesting, exploiting the fact that the item at the top of the stack is actually shared with a
more deeply nested item. (Hint: add diagnostic print statements to the function to help you see what it
is doing.)
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Listing 12 Check parentheses are balanced
check_parens (tokens) :

stack = []
token tokens:
token == ' (': # push
stack.append (token)
token == ')’ : # pop

stack.pop ()
return stack

>>> phrase = "( the cat ) ( sat ( on ( the mat )"
>>> check_parens (phrase.split())

"¢, "1

Listing 13 Convert a nested phrase into a nested list using a stack
convert_parens (tokens) :
stack = [[]]
token input:
token == ' (’: # push
sublist = []
stack[-1] .append (sublist)
stack.append (sublist)
token == ')’ : # pop
stack.pop ()

: # update top of stack
stack[-1] . append (token)
return stack[0]

>>> phrase = "( the cat ) ( sat ( on ( the mat ) ) )"
>>> convert_parens (phrase.split())
[['the’, 'cat’], ['sat’, ['on’, ["the’, 'mat’]]1]]
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6. Structured Programming in Python Introduction to Natural Language Processing (DRAFT)

Lists can be used to represent another important data structure. A queue is a container that has a
last-in-first-out policy for adding and removing items (see Figure 6.2). Queues are used for scheduling
activities or resources. As with stacks, we will seldom have to deal with queues explicitly, as the
implementation of NLTK n-gram taggers (Section 4.6) and chart parsers (Section 8.2) use queues
behind the scenes. However, we will take a brief look at how queues are implemented using lists.

>>> queue = ['the’, 'cat’, ’'sat’]
>>> queue.append(’'on’)

>>> queue.append(’the’)

>>> queue.append(’'mat’)

>>> queue.pop (0)

"the’

>>> queue.pop (0)

"cat’

>>> queue

["sat’, "on’, 'the’, 'mat’]

6.2.5 More List Comprehensions
You may recall that in Chapter 3, we introduced list comprehensions, with examples like the following:

>>> sent = ['The’, 'dog’, ’'gave’, ’'John’, ’'the’, ’'newspaper’]
>>> [word.lower () word sent]
["the’, 'dog’, ’'gave’, ’'john’, ’'the’, 'newspaper’]

List comprehensions are a convenient and readable way to express list operations in Python, and
they have a wide range of uses in natural language processing. In this section we will see some more
examples. The first of these takes successive overlapping slices of size n (a sliding window) from a
list (pay particular attention to the range of the variable i).

>>> sent = ['The’, ’'dog’, 'gave’, 'John’, ’'the’, ’'newspaper’]
>>> n = 3
>>> [sent[i:i+n] i range (len (sent)-n+1) ]

[['The’, "dog’, 'gave’],
["dog’, 'gave’, ’'John’],
["gave’, 'John’, ’'the’],

[ John’, ’"the’, ’'newspaper’]]

You can also use list comprehensions for a kind of multiplication. Here we generate all combina-
tions of two determiners, two adjectives, and two nouns. The list comprehension is split across three
lines for readability.

>>> [(dt, jj, nn) dt ('two’, ’'three’)
33 ("old’, ’"blind’)
nn ('men’, ’'mice’)]

[("two’, '0l1ld’, 'men’), ('two’, ’'old’, 'mice’), ('two’, ’'blind’, 'men’),
("two’, ’'blind’, ’'mice’), ('three’, '0ld’, 'men’), ('three’, ’'old’, ’'mice’),
('three’, ’'blind’, 'men’), (’'three’, ’'blind’, ’'mice’)]

The above example contains three independent loops. These loops have no variables in common,
and we could have put them in any order. We can also have nested loops with shared variables. The
next example iterates over all sentences in a section of the Brown Corpus, and for each sentence, iterates
over each word.
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>>> nltk_lite.corpora brown
>>> [word sent brown.raw(’'a’)
word sent

ce len (word) == 17]

[/ September-October’, ’'Sheraton-Biltmore’, ’'anti-organization’,
"anti-organization’, ’'Washington-Oregon’, ’York-Pennsylvania’,
"misunderstandings’, ’'Sheraton-Biltmore’, ’'neo-stagnationist’,
"cross—examination’, 'bronzy-green-gold’, ’‘Oh-the-pain-of-it’,
"Secretary-General’, ’'Secretary-General’, ’'textile-importing’,
"textile—-exporting’, ’'textile-producing’, ’'textile-producing’]

As you will see, the list comprehension in this example contains a final i © clause which allows us to
filter out any words that fail to meet the specified condition.

Another way to use loop variables is to ignore them! This is the standard method for building
multidimensional structures. For example, to build an array with m rows and n columns, where each
cell is a set, we would use a nested list comprehension, as shown in line (1) below. Observe that the

loop variables i and j are not used anywhere in the expressions preceding the clauses.
>>> pPprint pprint

>>m, n=3, 7

>>> array = [[set() i range (n) ] 3j range (m) ] @

>>> array[2] [5] .add (' foo’)
>>> pprint (array)
[[set([]), set([]), set([]), set([]), set([]), set([]), set([])],

[set ([1), set([]), set([]), set([]), set([]), set([]), set([])],
[set ([]), set([]), set([]), set([]), set([]), set(['foo’]), set([])]]

Sometimes we use a list comprehension as part of a larger aggregation task. In the following
example we calculate the average length of words in part of the Brown Corpus. Notice that we don’t
bother storing the list comprehension in a temporary variable, but use it directly as an argument to the
average () function.

>>> numpy average
>>> average ([len (word) sent brown.raw(’'a’) word sent])
4.40154543827

Now that we have reviewed the sequence types, we have one more fundamental data type to revisit.

6.2.6 Dictionaries

As you have already seen, the dictionary data type can be used in a variety of language processing
tasks (e.g. Section 2.6). However, we have only scratched the surface. Dictionaries have many more
applications than you might have imagined.

Note

The dictionary data type is often known by the name associative array. A normal
array maps from integers (the keys) to arbitrary data types (the values), while an
associative array places no such constraint on keys. Keys can be strings, tuples,
or other more deeply nested structure. Python places the constraint that keys must
be immutable.
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Let’s begin by comparing dictionaries with tuples. Tuples allow access by position; to access the
part-of-speech of the following lexical entry we just have to know it is found at index position 1.
However, dictionaries allow access by name:
>>> lexical_entry = ('turned’, 'VBD’, ['t3:nd’, "t3'nd’'])
>>> lexical_entry[1]

" VBD'

>>> entry dict = {’lexeme’:’turned’, 'pos’:’'VBD’, ’‘pron’:[’'t3:nd’, 't3'nd’]}
>>> entry_dict[’'pos’]

' VBD'

In this case, dictionaries are little more than a convenience. We can even simulate access by name
using well-chosen constants, e.g.:
>>> LEXEME = 0; POS = 1; PRON = 2
>>> entry_tuple[POS]

' VBD'

This method works when there is a closed set of keys and the keys are known in advance. Dic-
tionaries come into their own when we are mapping from an open set of keys, which happens when
the keys are drawn from an unrestricted vocabulary or where they are generated by some procedure.
Listing 6.3 illustrates the first of these. The function mystery () begins by initializing a dictionary
called groups, then populates it with words. We leave it as an exercise for the reader to work out
what this function computes. For now, it’s enough to note that the keys of this dictionary are an open
set, and it would not be feasible to use a integer keys, as would be required if we used lists or tuples for
the representation.

Listing 14 Mystery program
string join
mystery (input) :
groups = {}
word input:
key = join(sorted(list (word)), ’'')
key groups: @D
groups [key] = set () ®
groups [key] . add (word) ®
return sorted(join(sorted(v)) v groups.values () len(v) > 1)

>>> nltk_lite.corpora words
>>> text = words.raw()
>>> mystery (text)

Listing 6.3 illustrates two important idioms, which we already touched on in Chapter 2. First,
dictionary keys are unique; in order to store multiple items in a single entry we define the value to be
a list or a set, and simply update the value each time we want to store another item (line (3)). Second,
if a key does not yet exist in a dictionary (line (1)) we must explicitly add it and give it an initial value
(line ©).

The second important use of dictionaries is for mappings that involve compound keys. Suppose
we want to categorize a series of linguistic observations according to two or more properties. We can
combine the properties using a tuple and build up a dictionary in the usual way, as exemplified in
Listing 6.4.
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Listing 15 Illustration of compound keys
nltk_1lite.corpora ppattach
attachment = {}
vV, N=0, 1
entry ppattach.dictionary(’'training’):
key = verb, prep

key attachment:
attachment [key] = [0,0]
entry[’attachment’] == 'V':

attachment [key] [V] += 1

attachment [key] [N] += 1

6.2.7 Exercises

1. ¥* Find out more about sequence objects using Python’s help facility. In the interpreter,
type help (str), help(list), and help (tuple). This will give you a full list
of the functions supported by each type. Some functions have special names flanked
with underscore; as the help documentation shows, each such function corresponds to
something more familiar. For example x.__getitem__ (y) is just a long-winded way
of saying x [y 1.

2. 1t Identify three operations that can be performed on both tuples and lists. Identify three
list operations that cannot be performed on tuples. Name a context where using a list
instead of a tuple generates a Python error.

3. * Find out how to create a tuple consisting of a single item. There are at least two ways

to do this.
4, 3¢ Create a list words = [’is’, 'NLP’, ’fun’, ’?2’]. Use a series of assign-
ment statements (e.g. words[1l] = words[2]) and a temporary variable tmp to

transform this list into the list [ NLP’, ’“is’, ’“fun’, ’!’]. Now do the same
transformation using tuple assignment.

5. ¥ Does the method for creating a sliding window of n-grams behave correctly for the two
limiting cases: n=1,and n=len (sent) ?

6. (P Create a list of words and store it in a variable sent 1. Now assign sent2 = sentl.
Modify one of the items in sent1 and verify that sent 2 has changed.

a) Now try the same exercise but instead assign sent2 = sentl[:]. Modify
sent1 again and see what happens to sent 2. Explain.

b) Now define textl to be a list of lists of strings (e.g. to represent a text
consisting of multiple sentences. Now assign text2 = textl[:], assign
a new value to one of the words, e.g. text1[1][1] = ’"Monty’. Check
what this did to text 2. Explain.

¢) Load Python’s deepcopy () function (i.e. copy deepcopy),
consult its documentation, and test that it makes a fresh copy of any object.
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7. (P Write code which starts with a string of words and results in a new string consisting
of the same words, but where the first word swaps places with the second, and so on.
For example, ' the cat sat on the mat’ will be converted into ' cat the on
sat mat the’.

8. (P Initialize an n-by-m list of lists of empty strings using list multiplication, e.g. word_table
= [[’"] = n] * m. Whathappens when you set one of its values, e.g. word_table
[1][2] = "hello"? Explain why this happens. Now write an expression using
range () to construct a list of lists, and show that it does not have this problem.

9. (P Write code to initialize a two-dimensional array of sets called word_vowels and
process a list of words, adding each word to word_vowels[1] [v] where 1 is the
length of the word and v is the number of vowels it contains.

10. (P Write code that builds a dictionary of dictionaries of sets.

11. (P Use sorted () and set () to get a sorted list of tags used in the Brown corpus,
removing duplicates.

12. % Extend the example in Listing 6.4 in the following ways:

a) Define two sets verbs and preps, and add each verb and preposition as they
are encountered. (Note that you can add an item to a set without bothering to
check whether it is already present.)

b) Create nested loops to display the results, iterating over verbs and prepositions
in sorted order. Generate one line of output per verb, listing prepositions and
attachment ratios as follows: raised: about 0:3, at 1:0, by 9:
0, 3:0, 5:0, 5:5...

¢) We used a tuple to represent a compound key consisting of two strings. How-
ever, we could have simply concatenated the strings, e.g. key = verb + "
:" 4+ prep, resulting in a simple string key. Why is it better to use tuples for
compound keys?

6.3 Presenting Results

Often we write a program to report a single datum, such as a particular element in a corpus that meets
some complicated criterion, or a single summary statistic such as a word-count or the performance
of a tagger. More often, we write a program to produce a structured result, such as a tabulation of
numbers or linguistic forms, or a reformatting of the original data. When the results to be presented are
linguistic, textual output is usually the most natural choice. However, when the results are numerical,
it may be preferrable to produce graphical output. In this section you will learn about a variety of ways
to present program output.

6.3.1 Strings and Formats

We have seen that there are two ways to display the contents of an object:
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>>> word = ’cat’

>>> sentence = """hello
world"""
>>> word
cat
>>> sentence
hello
world
>>> word
"cat’
>>> sentence
"hello\nworld’
The command yields Python’s attempt to produce the most human-readable form of an

object. The second method — naming the variable at a prompt — shows us a string that can be used
to recreate this object. It is important to keep in mind that both of these are just strings, displayed for
the benefit of you, the user. They do not give us any clue as to the actual internal representation of the
object.

There are many other useful ways to display an object as a string of characters. This may be for the
benefit of a human reader, or because we want to export our data to a particular file format for use in
an external program.

Formatted output typically contains a combination of variables and pre-specified strings, e.g. given
a dictionary wordcount consisting of words and their frequencies we could do:

>>> wordcount = {’'cat’:3, ’'dog’:4, ’'snake’:1}
>>> word wordcount:

C word, ’'->’, wordcount|[word], ’;’,
dog -=> 4 ; cat —> 3 ; snake -> 1

Apart from the problem of unwanted whitespace, print statements that contain alternating variables
and constants can be difficult to read and maintain. A better solution is to use print formatting strings:

>>> word wordcount:
Ca "%$s=>%d;’ % (word, wordcount [word]),
dog->4; cat->3; snake->1

6.3.2 Lining things up

So far our formatting strings have contained specifications of fixed width, such as $6s, a string that is
padded to width 6 and right-justified. We can include a minus sign to make it left-justified. In case we
don’t know in advance how wide a displayed value should be, the width value can be replaced with a
star in the formatting string, then specified using a variable:

>>> '%6s’ % 'dog’

14 dogf

>>> '%—6s’ % 'dog’

’ dOg ’

>>> width = 6

>>> '%—xs’ % (width, ’'dog’)
14 dog 4
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Other control characters are used for decimal integers and floating point numbers. Since the percent
character $ has a special interpretation in formatting strings, we have to precede it with another % to
get it in the output:

>>> "accuracy for %d words: %2.4£f%%" % (9375, 100.0 * 3205/9375)
"accuracy for 9375 words: 34.1867%’

An important use of formatting strings is for tabulating data. The program in Listing 6.5 iterates
over five genres of the Brown Corpus. For each token having the md tag we increment a count. To
do this we have used ConditionalFregDist (), where the condition is the current genre and the
event is the modal, i.e. this constructs a frequency distribution of the modal verbs in each genre. Line
(D identifies a small set of modals of interest, and calls the function tabulate () which processes
the data structure to output the required counts. Note that we have been careful to separate the language
processing from the tabulation of results.

There are some interesting patterns in the table produced by Listing 6.5. For instance, compare
the rows for government literature and adventure literature; the former is dominated by the use of can
, may, must, will while the latter is characterised by the use of could and might. With
some further work it might be possible to guess the genre of a new text automatically, according to its
distribution of modals.

Our next example, in Listing 6.6, generates a concordance display. We use the left/right justification
of strings and the variable width to get vertical alignment of a variable-width window.

[TODO: explain ValueError exception]

6.3.3 Writing results to a file

We have seen how to read text from files (Section 3.2.1). It is often useful to write output to files as
well. The following code opens a file output . txt for writing, and saves the program output to the
file.

>>> nltk_lite.corpora genesis
>>> file = open(’output.txt’, ’'w’)
>>> words = set (genesis.raw())
>>> words.sort ()
>>> word words:
file.write(word + "\n")

When we write non-text data to a file we must convert it to a string first. We can do this conversion
using formatting strings, as we saw above. We can also do it using Python’s backquote notation, which
converts any object into a string. Let’s write the total number of words to our file, before closing it.

>>> len (words)

4408

>>> ‘len (words)

74408’

>>> file.write(‘len(words) ' + "\n")
>>> file.close()

6.3.4 Graphical presentation

So far we have focussed on textual presentation and the use of formatted print statements to get output
lined up in columns. It is often very useful to display numerical data in graphical form, since this often

Bird, Klein & Loper 149 April 27, 2007



6.3. Presenting Results

Listing 16 Frequency of Modals in Different Sections of the Brown Corpus
nltk_lite.probability ConditionalFreqgDist
count_words_by tag(t, genres):
cfdist = ConditionalFreqDist ()

genre genres: # each genre
sent brown.tagged (genre) : # each sentence
(word, tagqg) sent: # each tagged token
tag == # found a word tagged t

cfdist [genre] .inc(word.lower ())
return cfdist

tabulate (cfdist, words):

'%$-18s’ % ’'Genre’, ' ' .join([('%6s’ % w) w words])
genre cfdist.conditions () : # for each genre
"%-18s’ % brown.item name[genre], # print row heading
w words: # for each word
"%6d’ % cfdist[genre].count (w), # print table cell
# end the row
>>> genres = ['a’, 'd", 'e’, "h', 'n’]
>>> cfdist = count_words_by_ tag('md’, genres)
>>> modals = ['can’, 'could’, ’'may’, 'might’, ’‘must’, ’‘will’] @
>>> tabulate (cfdist, modals)
Genre can could may might must will
press: reportage 94 86 66 36 50 387
skill and hobbies 273 59 130 22 83 259
religion 84 59 79 12 54 64
miscellaneous: gov 115 37 152 13 929 237
fiction: adventure 48 154 6 58 27 48
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Listing 17 Simple Concordance Display
def concordance (word, context):
"Generate a concordance for the word with the specified context window"
for sent in brown.raw(’'a’):

try:
pos = sent.index (word)
left = ' ’.join(sent|[:pos])
right = ' ’.join(sent[pos+1l:])

print ’'%*s %s %—*s’ %\
(context, left[-context:], word, context, right|[:context])
except ValueError:
pass

>>> concordance(’line’, 32)
ce , is today closer to the NATO line .
n more activity across the state line in Massachusetts than in Rhode I
, gained five yards through the line and then uncorked a 56-yard touc
‘' Our interior line and out linebackers played excep
k then moved Cooke across with a line drive to left
chal doubled down the rightfield line and Cooke singled off Phil Shart
—-- Billy Gardner’s line double , which just eluded the d
—— Nick Skorich , the line coach for the football champion
Maris is in line for a big raise
uld be impossible to work on the line until then because of the large
Murray makes a complete line of ginning equipment except for
The company sells a complete line of gin machinery all over the co
tter Co. of Sherman makes a full line of gin machinery and equipment
fred E. Perlman said Tuesday his line would face the threat of bankrup
sale of property disposed of in line with a plan of liquidation
little effort spice up any chow line
es , filed through the cafeteria line .
1l be particularly sensitive to a line between first and second class c
A skilled worker on the assembly line , for example , earns $37 a week
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makes it easier to detect patterns. For example, in Listing 6.5 we saw a table of numbers showing
the frequency of particular modal verbs in the Brown Corpus, classified by genre. In Listing 6.7 we
present the same information in graphical format. The output is shown in Figure 6.3 (a color figure in
the online version).

Note

Listing 6.7 uses the PyLab package which supports sophisticated plotting functions
with a MATLAB-style interface. For more information about this package please see
http://matplotlib.sourceforge.net/.

Frequency of Six Modal Verbs by Genre
400 T T T T

[ press: reportage
350/ | M religion

E skill and hobbies
[ miscellaneous: gov

300f | fiction: adventure

2501

Frequency
N
=)
S

150

100}

Figure 6.3: Bar Chart Showing Frequency of Modals in Different Sections of Brown Corpus

From the bar chart it is immediately obvious that may and must have almost identical relative
frequencies. The same goes for could and might.

6.3.5 Exercises

1. £* Write code that removes whitespace at the beginning and end of a string, and normalizes
whitespace between words to be a single space character.
1) do this task using split () and join ()
2) do this task using regular expression substitutions

2. it What happens when the formatting strings $6s and $—-6s are used to display strings
that are longer than six characters?

3. & We can use a dictionary to specify the values to be substituted into a formatting string.
Read Python’s library documentation for formatting strings (http://docs.python.org/lib/typesseq-
strings.html), and use this method to display today’s date in two different formats.
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Listing 18 Frequency of Modals in Different Sections of the Brown Corpus

nltk_lite.corpora brown

colors = 'rgbcmyk’ # red, green, blue, cyan, magenta, yellow, black

>>>
>>>
>>>
>>>
>>>

>>>

bar_chart (categories, words, counts):
"Plot a bar chart showing counts for each word by category"
pylab
ind = pylab.arange (len (words))
width = 1.0 / (len(categories) + 1)
bar_groups = []
c range (len (categories)):
bars = pylab.bar (ind+c*width, counts[categories[c]], width, color=colors[c % len(c
bar_groups.append (bars)
pylab.xticks (ind+width, words)
pylab.legend([b[0] b bar_groups], [brown.item name[c][:18] c categories]
pylab.ylabel (' Frequency’)
pylab.title(’'Frequency of Six Modal Verbs by Genre’)
pylab.show()

genres = ['a’, 'd’, 'e’, "h', 'n’]
cfdist = count_words_by tag('md’, genres)
modals = ['can’, 'could’, 'may’, 'might’, 'must’, ’‘will’]
counts = {}
genre genres:
counts|[genre] = [cfdist[genre].count (word) word modals]
bar_chart (genres, modals, counts)
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4. (P Listing 4.4 in Chapter 4 plotted a curve showing change in the performance of a lookup
tagger as the model size was increased. Plot the performance curve for a unigram tagger,
as the amount of training data is varied.

6.4 Functions

Once you have been programming for a while, you will find that you need to perform a task that you
have done in the past. In fact, over time, the number of completely novel things you have to do in
creating a program decreases significantly. Half of the work may involve simple tasks that you have
done before. Thus it is important for your code to be re-usable. One effective way to do this is to
abstract commonly used sequences of steps into a function, as we briefly saw in Chapter 2.

For example, suppose we find that we often want to read text from an HTML file. This involves
several steps: opening the file, reading it in, normalizing whitespace, and stripping HTML markup. We
can collect these steps into a function, and give it a name such as get_text ():

Listing 19 Read text from a file
re
get_text (file) :
"""Read text from a file, normalizing whitespace
and stripping HTML markup."""
text = open(file) .read()
text = re.sub(’'\s+’, ' ', text)
text = re.sub(r’'<.*x?>", ' ', text)
return text

Now, any time we want to get cleaned-up text from an HTML file, we can just call get_text
() with the name of the file as its only argument. It will return a string, and we can assign this to a

variable, e.g.: contents = get_text ("test.html"). Each time we want to use this series of
steps we only have to call the function.

Notice that a function consists of the keyword de £ (short for “define”), followed by the function
name, followed by a sequence of parameters enclosed in parentheses, then a colon. The following lines
contain an indented block of code, the function body.

Using functions has the benefit of saving space in our program. More importantly, our choice of
name for the function helps make the program readable. In the case of the above example, whenever
our program needs to read cleaned-up text from a file we don’t have to clutter the program with four
lines of code, we simply need to call get_text (). This naming helps to provide some “semantic
interpretation” — it helps a reader of our program to see what the program “means”.

Notice that the above function definition contains a string. The first string inside a function
definition is called a docstring. Not only does it document the purpose of the function to someone
reading the code, it is accessible to a programmer who has loaded the code from a file:

>>> help (get_text)
get_text (file)
Read text from a file, normalizing whitespace and stripping HTML markup

We have seen that functions help to make our work reusable and readable. They also help make it
reliable. When we re-use code that has already been developed and tested, we can be more confident
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that it handles a variety of cases correctly. We also remove the risk that we forget some important step,
or introduce a bug. The program which calls our function also has increased reliability. The author of
that program is dealing with a shorter program, and its components behave transparently.

m [More: overview of section]

6.4.1 Function arguments
m multiple arguments
B named arguments

m default values

Python is a dynamically typed language. It does not force us to declare the type of a variable when
we write a program. This feature is often useful, as it permits us to define functions that are flexible
about the type of their arguments. For example, a tagger might expect a sequence of words, but it
wouldn’t care whether this sequence is expressed as a list, a tuple, or an iterator.

However, often we want to write programs for later use by others, and want to program in a
defensive style, providing useful warnings when functions have not been invoked correctly. Observe
that the tag () function in Listing 6.9 behaves sensibly for string arguments, but that it does not
complain when it is passed a dictionary.

Listing 20 A tagger which tags anything
tag(word) :
word ["a’, 'the’, "all’]:
return ’'dt’

return ’'nn’

>>> tag(’the’)

Idtl

>>> tag(’dog’)

Vnnl

>>> tag({’'lexeme’ :’'turned’, ’'pos’:’VBD’, ’'pron’:[’t3:nd’, 't3'nd’']})
Innl

It would be helpful if the author of this function took some extra steps to ensure that the word
parameter of the tag () function is a string. A naive approach would be to check the type of the
argument and return a diagnostic value, such as Python’s special empty value, None, as shown in
Listing 6.10.

However, this approach is dangerous because the calling program may not detect the error, and
the diagnostic return value may be propagated to later parts of the program with unpredictable conse-
quences. A better solution is shown in Listing 6.11.

This produces an error that cannot be ignored, since it halts program execution. Additionally, the
error message is easy to interpret. (We will see an even better approach, known as “duck typing” in
Chapter 10.)

Another aspect of defensive programming concerns the return statement of a function. In order to
be confident that all execution paths through a function lead to a return statement, it is best to have
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Listing 21 A tagger which only tags strings

tag (word) :
type (word) str:
return None
word ["a’, 'the’, "all’]:

return ’'dt’

return 'nn’

Listing 22 A tagger which generates an error message when not passed a string

tag (word) :
type (word) str:
raise ValueError, "argument to tag() must be a string"
word ["a’, 'the’, ’"all’]:

return ’'dt’

return 'nn’

a single return statement at the end of the function definition. This approach has a further benefit: it
makes it more likely that the function will only return a single type. Thus, the following version of our
tag () function is safer:

>>> tag (word) :
result = 'nn’ # default value, a string
word ["a’, 'the’, 'all’]: # in certain cases...
result = ’dt’ # overwrite the wvalue
return result # all paths end here

A return statement can be used to pass multiple values back to the calling program, by packing
them into a tuple. Here we define a function that returns a tuple consisting of the average word length
of a sentence, and the inventory of letters used in the sentence. It would have been clearer to write two
separate functions.

Of course, functions do not need to have a return statement at all. Some functions do their work as
a side effect, printing a result, modifying a file, or updating the contents of a parameter to the function.
Consider the following three sort functions; the last approach is dangerous because a programmer could
use it without realizing that it had modified its input.

>>> my_sortl (1) : # good: modifies its argument, no return value
1l.sort ()

>>> my_sort2(1l): # good: doesn’t touch its argument, returns value
return sorted(l)

>>> my_sort3 (1) : # bad: modifies its argument and also returns it
1l.sort ()

return 1

6.4.2 An Important Subtlety

Back in Section 6.2.1 you saw that in Python, assignment works on values, but that the value of a
structured object is a reference to that object. The same is true for functions. Python interprets function
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parameters as values (this is known as call-by-value). Consider Listing 6.12. Function set_up () has
two parameters, both of which are modified inside the function. We begin by assigning an empty string
to w and an empty dictionary to p. After calling the function, w is unchanged, while p is changed:

Listing 23
set_up (word, properties):
word = ’cat’
properties[’'pos’] = ’'noun’

>>> w ="/
>>> p = {}

>>> set_up(w, p)
>>> W

rr

>>> p

{'pos’: 'noun’}

To understand why w was not changed, it is necessary to understand call-by-value. When we called
set_up (w, p), the value of w (an empty string) was assigned to a new variable word. Inside the
function, the value of word was modified. However, that had no affect on the external value of w. This
parameter passing is identical to the following sequence of assignments:

>>> w = '/
>>> word =
>>> word = ’'cat’

>>> w
rr

|
]

In the case of the structured object, matters are quite different. When we called set_up (w, p),
the value of p (an empty dictionary) was assigned to a new local variable properties. Since the
value of p is an object reference, both variables now reference the same memory location. Modifying
something inside properties will also change p, just as if we had done the following sequence of
assignments:

>>> p = {}
>>> properties = p

>>> properties|[’'pos’] = 'noun’
>>> p

{’'pos’: 'noun’}

Thus, to understand Python’s call-by-value parameter passing, it is enough to understand Python’s
assignment operation. We will address some closely related issues in our later discussion of variable
scope (Section 10.1.1).

6.4.3 Functional Decomposition

Well-structured programs usually make extensive use of functions. When a block of program code
grows longer than 10-20 lines, it is a great help to readability if the code is broken up into one or more
functions, each one having a clear purpose. This is analogous to the way a good essay is divided into
paragraphs, each expressing one main idea.
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Functions provide an important kind of abstraction. They allow us to group multiple actions into
a single, complex action, and associate a name with it. (Compare this with the way we combine the
actions of go and bring back into a single more complex action fetch.) When we use functions, the
main program can be written at a higher level of abstraction, making its structure transparent, e.g.

>>> data = load_corpus()
>>> results = analyze (data)
>>> present (results)

Appropriate use of functions makes programs more readable and maintainable. Additionally, it
becomes possible to reimplement a function — replacing the function’s body with more efficient code
— without having to be concerned with the rest of the program.

Consider the freq_words function in Listing 6.13. It updates the contents of a frequency
distribution that is passed in as a parameter, and it also prints a list of the n most frequent words.

Listing 24
freq words (url, freqdist, n):
nltk_lite.corpora web
word web.raw (url) :
freqdist.inc(word.lower())
freqdist.sorted_samples () [:n]

>>> constitution = "http://www.archives.gov/national-archives—-experience/charters/c
>>> nltk_lite.probability FreqDist

>>> fd = FreqgDist ()

>>> freq words (constitution, f£d, 20)

["the’, ’,’, 'of’, '"and’, ’'shall’, ’'.’, ’'be’, "to’, "in’, ’'states’, ’'or’,

";", 'united’, ’'a’, ’'state’, ’'by’, "for’, 'any’, ’'president’, ’‘which’]

This function has a number of problems. The function has two side-effects: it modifies the contents
of its second parameter, and it prints a selection of the results it has computed. The function would be
easier to understand and to reuse elsewhere if we initialize the FregDist () object inside the function
(in the same place it is populated), and if we moved the selection and display of results to the calling
program. In Listing 6.14 we refactor this function, and simplify its interface by providing a single ur1
parameter.

6.4.4 Documentation (notes)

m some guidelines for literate programming (e.g. variable and function naming)

m documenting functions (user-level and developer-level documentation)

6.4.5 Functions as Arguments

So far the arguments we have passed into functions have been simple objects like strings, or structured
objects like lists. These arguments allow us to parameterise the behavior of a function. As a result,
functions are very flexible and powerful abstractions, permitting us to repeatedly apply the same
operation on different data. Python also lets us pass a function as an argument to another function. Now
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Listing 25
freqg words (url):
nltk_lite.corpora web
nltk_lite.probability FreqgDist
freqdist = FreqgDist ()
word web.raw(url) :
freqdist.inc (word.lower())
return freqdist

>>> fd = freq words (constitution)

>>> fd.sorted _samples () [:20]
["the’, ',’, '"of’, "and’, ’'shall’, ’'.’, 'be’, '"to’, ’"in’, ’'states’, 'or’,
";", 'united’, ’'a’, ’'state’, 'by’, 'for’, ’'any’, ’'president’, ’'which’]

we can abstract out the operation, and apply a different operation on the same data. As the following
examples show, we can pass the built-in function 1en () or a user-defined function last_letter (
) as parameters to another function:

>>> extract_ property (prop) :
words = ['The’, ’'dog’, ’'gave’, ’'John’, 'the’, ’'newspaper’]
return [prop (word) word words]

>>> extract_property(len)
[3, 3, 4, 4, 3, 9]
>>> last_letter (word) :
.. return word[-1]
>>> extract_property(last_letter)
["e’, 'g’, 'e’, 'n", 'e", "r']
Surprisingly, 1en and 1ast_letter are objects that can be passed around like lists and dictio-
naries. Notice that parentheses are only used after a function name if we are invoking the function;
when we are simply passing the function around as an object these are not used.
Python provides us with one more way to define functions as arguments to other functions, so-called
lambda expressions. Supposing there was no need to use the above last_letter () function in

multiple places, we can equivalently write the following:
>>> extract_property ( w: w[-1])

[IeI, Igl, IeI, Inl, IeI, IrI]

Our next example illustrates passing a function to the sorted () function. When we call the latter
with a single argument (the list to be sorted), it uses the built-in lexicographic comparison function
cmp () . However, we can supply our own sort function, e.g. to sort by decreasing length.

>>> words = ’'I turned off the spectroroute’.split()
>>> sorted (words)

["I’, '"off’, ’'spectroroute’, ’'the’, ’'turned’]

>>> sorted(words, cmp)

["TI", '"off’, ’'spectroroute’, 'the’, ’'turned’]

>>> sorted(words, X, y: cmp(len(y), len(x)))
[/ spectroroute’, ’'turned’, 'off’, ’'the’, 'I’]
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In 6.2.5 we saw an example of filtering out some items in a list comprehension, using an 1 £ test.
Similarly, we can restrict a list to just the lexical words, using [word word sent
is_lexical (word) ]. This is a little cumbersome as it mentions the word variable three times. A
more compact way to express the same thing is as follows.

>>> is_lexical (word) :
.. return word. lower () ("a’, "an’, ’"the’, ’"that’, ’'to’)
>>> sent = ['The’, ’'dog’, ’'gave’, 'John’, ’'the’, ’'newspaper’]

>>> filter(is_lexical, sent)
["dog’, ’"gave’, ’'John’, ’'newspaper’]

The function is_lexical (word) returns True justin case word, when normalized to lowercase,
is not in the given list. This function is itself used as an argument to £ilter () ; in Python, functions
are just another kind of object that can be passed around a program; we will return to this in Section
6.4.5. The filter () function applies its first argument (a function) to each item of its second (a
sequence), only passing it through if the function returns true for that item. Thus filter (£, seq)
is equivalent to [item item seq apply (f,item) == True].

Another helpful function, which like filter () applies a function to a sequence, is map () . Here
is a simple way to find the average length of a sentence in a section of the Brown Corpus:

>>> average (map(len, brown.raw(’'a’)))
21.7461072664

Instead of 1en (), we could have passed in any other function we liked:

>>> sent = ['The’, ’'dog’, ’'gave’, 'John’, ’'the’, ’'newspaper’]
>>> is_vowel (letter) :

. return letter "AEIOUaeiou"
>>> vowelcount (word) :

.. return len(filter (is_vowel, word))
>>> map (vowelcount, sent)
1, 1, 2, 1, 1, 3]

Instead of using filter () to call a named function is_vowel, we can define a lambda expression
as follows:

>>> map ( w: len(filter( c: c "AEIOUaeiou", w)), sent)
1, 1, 2, 1, 1, 3]

6.4.6 Exercises

1. £ Review the answers that you gave for the exercises in 6.2, and rewrite the code as one
or more functions.

2. (P In this section we saw examples of some special functions suchas filter () and map
(). Other functions in this family are zip () and reduce (). Find out what these do,
and write some code to try them out. What uses might they have in language processing?

3. (B Write a function that takes a list of words (containing duplicates) and returns a list of
words (with no duplicates) sorted by decreasing frequency. E.g. if the input list contained
10 instances of the word table and 9 instances of the word chair, then table would
appear before chair in the output list.
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4. (J As you saw, zip () combines two lists into a single list of pairs. What happens
when the lists are of unequal lengths? Define a function myzip () which does something
different with unequal lists.

5. (O Import the itemgetter () function from the operator module in Python’s stan-
dard library (i.e. operator itemgetter). Create a list words
containing several words. Now try calling: sorted (words, key=itemgetter (1)
),and sorted (words, key=itemgetter (-1)).Explain what itemgetter ()
is doing.

6.5 Algorithm Design Strategies

A major part of algorithmic problem solving is selecting or adapting an appropriate algorithm for the
problem at hand. Whole books are written on this topic (e.g. [Levitin, 2004]) and we only have space
to introduce some key concepts and elaborate on the approaches that are most prevalent in natural
language processing.

The best known strategy is known as divide-and-conquer. We attack a problem of size n by
dividing it into two problems of size n/2, solve these problems, and combine their results into a solution
of the original problem. Figure 6.4 illustrates this approach for sorting a list of words.

fish cat | dog [ lion | bird | pii‘] rat | ant |

SPLIT / / /

| fish cat lion b|rd rat a
SPLIT { *

fish cat dog lion bird rat ant
SPLIT

fish lion bird

MERGE

cat fish lion | | bird ant rat |
MERGE

nt|

Figure 6.4: Sorting by Divide-and-Conquer (Mergesort)

Another strategy is decrease-and-conquer. In this approach, a small amount of work on a problem
of size n permits us to reduce it to a problem of size n/2. Figure 6.5 illustrates this approach for the
problem of finding the index of an item in a sorted list.

A third well-known strategy is transform-and-conquer. We attack a problem by transforming it
into an instance of a problem we already know how to solve. For example, in order to detect duplicates
entries in a list, we can pre-sort the list, then look for adjacent identical items, as shown in Listing 6.15.
Our approach to n-gram chunking in Section 5.5 is another case of transform and conquer (why?).
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0 1 2 3 4 5 6 7
[ ant | bird | cat | dog | fish | lion | pig | rat |
cat < a[3] 0 1 5 3
[ ant | bird | cat | dog |
cat > a[1
1] 5 3
| _cat | dog |
cat < a[2]
2
cat

Figure 6.5: Searching by Decrease-and-Conquer (Binary Search)

Listing 26 Presorting a list for duplicate detection

duplicates (words) :
prev = None

dup = []
word sorted (words) :
word == prev:

dup . append (word)

prev = word
return dup

>>> duplicates([’'cat’, ’'dog’, 'cat’, 'pig’, ’'dog’, 'cat’, 'ant’, ’cat’])
["cat’, ’dog’]
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6.5.1 Recursion (notes)

We first saw recursion in Chapter 3, in a function that navigated the hypernym hierarchy of WordNet...
Iterative solution:

>>> factorial(n):
result =1
i range (n+1) :

result *= i
return result

Recursive solution (base case, induction step)

>>> factorial(n):
n ==
return n

return n * factorial (n-1)

[Simple example of recursion on strings.
Generating all permutations of words, to check which ones are grammatical:

>>> perms (seq) :
len(seq) <= 1:
yield seq

perm perms (seq[l:]):
i range (len (perm) +1) :
. yield perm[:i] + seq[0:1] + perm[i:]
>>> list (perms([’'police’, ’'fish’, ’'cream’]))
[['police’, '"fish’, ’'cream’], [’'fish’, ’'police’, ’'cream’],
["fish’, ’'cream’, ’'police’], ['police’, ’'cream’, 'fish’],
['cream’, ’'police’, 'fish’], ['cream’, ’'fish’, 'police’]]

6.5.2 Deeply Nested Objects (notes)

We can use recursive functions to build deeply-nested objects. Building a letter trie, Listing 6.16.

6.5.3 Dynamic Programming

Dynamic programming is a general technique for designing algorithms which is widely used in natural
language processing. The term ’programming’ is used in a different sense to what you might expect,
to mean planning or scheduling. Dynamic programming is used when a problem contains overlapping
sub-problems. Instead of computing solutions to these sub-problems repeatedly, we simply store them
in a lookup table. In the remainder of this section we will introduce dynamic programming, but in a
rather different context to syntactic parsing.

Pingala was an Indian author who lived around the 5th century B.C., and wrote a treatise on
Sanscrit prosody called the Chandas Shastra. Virahanka extended this work around the 6th century
A.D., studying the number of ways of combining short and long syllables to create a meter of length n.
He found, for example, that there are five ways to construct a meter of length 4: V4 = {LL, SSL, SLS,
LSS, SSSS). Observe that we can split V4 into two subsets, those starting with L and those starting with
S, as shown in (14).
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Listing 27 Building a Letter Trie
insert (trie, key, value):
key:
first, rest = key[0], key[1l:]
first trie:
trie[first] = {}
insert (trie[first], rest, wvalue)

trie[’'value’] = wvalue

>>> trie = {}

>>> insert (trie, 'chat’, ’cat’)
>>> insert (trie, ’'chien’, ’'dog’)
>>> trie[’c’]['h']

{"a’: {'t’: {'value’: ’'cat’}}, 'i’: {'e’: {'n’: {'value’: 'dog’}}}}
>>> trie['c’]['h’'][’a’]l['t’]1['value’]
"cat’

>>> pprint (trie)
{'c’": {'h: {'a’": {'t’: {'value’: ’'cat’}},
"i": {'e’: {'n’: {'value’: ‘'dog’}}}}}}

(14) Vy =
LL, LSS
i.e. L prefixed to each item of Vv, = {L, SS}
SSL, SLS, SSSS

i.e. S prefixed to each item of V3 = {SL, LS, SSS}

With this observation, we can write a little recursive function called virahankal () to compute
these meters, shown in Listing 6.17. Notice that, in order to compute V4 we first compute V3 and V.
But to compute V3, we need to first compute V; and V. This call structure is depicted in (15).

= V4

VS/\Z

N N

V2 Vi V1 Vo
v Vo

As you can see, V is computed twice. This might not seem like a significant problem, but it turns out
to be rather wasteful as n gets large: to compute Vg using this recursive technique, we would compute
V3, 4,181 times; and for V49 we would compute V, 63,245,986 times! A much better alternative is to
store the value of V5 in a table and look it up whenever we need it. The same goes for other values,
such as V3 and so on. Function virahanka2 () implements a dynamic programming approach to
the problem. It works by filling up a table (called 1 ookup) with solutions to a/l smaller instances of
the problem, stopping as soon as we reach the value we’re interested in. At this point we read off the
value and return it. Crucially, each sub-problem is only ever solved once.

Notice that the approach taken in virahanka2 () is to solve smaller problems on the way to solv-
ing larger problems. Accordingly, this is known as the bottom-up approach to dynamic programming.
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Listing 28 Three Ways to Compute Sansrit Meter
virahankal (n) :
n ==
return [""]
n ==
return ["S"]

s ["S" + prosody prosody virahankal (n-1)]

1l = ["L" + prosody prosody virahankal (n-2) ]
return s + 1

virahanka2 (n) :
lookup - [[""], ["S"]]

i range (n-1) :
s = [nsn + prosody prOSOdy lOOkUP[l+1]]
1 = ["L" + prosody prosody lookup[i]]

lookup.append(s + 1)
return lookup|[n]

virahanka3(n, lookup={0:[""], 1:["S"]}):

n lookup:
s = ["S" + prosody prosody virahanka3 (n-1)]
1l = ["L" + prosody prosody virahanka3 (n-2)]

lookup[n] = s + 1
return lookup[n]

>>> virahankal (4)

["SSSS’, ’'SSL’, ’SLS’, 'LSS’, ’'LL']
>>> wvirahanka2 (4)
["SSSS’, ’'SSL’, ’'SLS’, ’'LSS’, 'LL’]
>>> wvirahanka3 (4)
["SSSS’, ’'SSL’, ’'SLS’, 'LSS’, 'LL']
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Unfortunately it turns out to be quite wasteful for some applications, since it may compute solutions
to sub-problems that are never required for solving the main problem. This wasted computation can
be avoided using the top-down approach to dynamic programming, which is illustrated in the function
virahanka3 () in Listing 6.17. Unlike the bottom-up approach, this approach is recursive. It avoids
the huge wastage of virahankal () by checking whether it has previously stored the result. If not,
it computes the result recursively and stores it in the table. The last step is to return the stored result.

This concludes our brief introduction to dynamic programming. We will encounter it again in
Chapter 8.

Note

Dynamic programming is a kind of memoization. A memoized function stores
results of previous calls to the function along with the supplied parameters. If the
function is subsequently called with those parameters, it returns the stored result
instead of recalculating it.

6.5.4 Timing (notes)

We can easily test the efficiency gains made by the use of dynamic programming, or any other putative
performance enhancement, using the t ime it module:

>>> timeit Timer
>>> Timer ("PYTHON CODE", "INITIALIZATION CODE") .timeit ()

[MORE]

6.5.5 Exercises

1. (O Write a recursive function lookup (trie, key) that looks up a key in a trie,
and returns the value it finds. Extend the function to return a word when it is uniquely
determined by its prefix (e.g. vanguard is the only word which starts with vang-,
so lookup (trie, ’vang’) should return the same thing as lookup (trie, '
vanguard’)).

2. (P Read about string edit distance and the Levenshtein Algorithm. Try the implementation
provided in nltk_lite.utilities.edit_dist (). How is this using dynamic
programming? Does it use the bottom-up or top-down approach?

3. (P The Catalan numbers arise in many applications of combinatorial mathematics, includ-
ing the counting of parse trees (Chapter 8). The series can be defined as follows: Cy = 1,
and Cpp1 =20, (CiCn—i)-

a) Write a recursive function to compute nth Catalan number C,,

b) Now write another function that does this computation using dynamic program-
ming

c) Use the timeit module to compare the performance of these functions as n
increases.

4. % Write a recursive function that pretty prints a trie in alphabetically sorted order, as
follows
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5. % Write a recursive function that processes text, locating the uniqueness point in each
word, and discarding the remainder of each word. How much compression does this give?
How readable is the resulting text?

6.6 Conclusion

[TO DOJ

6.7 Further Reading

[Harel, 2004]
[Levitin, 2004]
http://docs.python.org/lib/typesseq-strings.html

About this document...

This chapter is a draft from /Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It
is distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Ver-
sion 0.7.4 beta, under the terms of the Creative Commons Attribution-ShareAlike
License [http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4444 Fri Apr 27 07:10:42 EST 2007
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Chapter 7

Grammars and Parsing

7.1 Introduction

Early experiences with the kind of grammar taught in school are sometimes perplexing. Your written
work might have been graded by a teacher who red-lined all the grammar errors they wouldn’t put up
with. Like the plural pronoun or the dangling preposition in the last sentence, or sentences like this one
which lack a main verb. If you learnt English as a second language, you might have found it difficult
to discover which of these errors need to be fixed (or needs to be fixed?). Correct punctuation is an
obsession for many writers and editors. It is easy to find cases where changing punctuation changes
meaning. In the following example, the interpretation of a relative clause as restrictive or non-restrictive
depends on the presence of commas alone:

(16a) The presidential candidate, who was extremely popular, smiled broadly.
(16b) The presidential candidate who was extremely popular smiled broadly.

In (16a), we assume there is just one presidential candidate, and say two things about her: that she
was popular and that she smiled. In (16b), on the other hand, we use the description who was extremely
popular as a means of identifying for the hearer which of several candidates we are referring to.

It is clear that some of these rules are important. However, others seem to be vestiges of antiquated
style. Consider the injunction that however — when used to mean nevertheless — must not appear at
the start of a sentence. Pullum argues that Strunk and White [Strunk and White, 1999] were merely
insisting that English usage should conform to “an utterly unimportant minor statistical detail of style
concerning adverb placement in the literature they knew” [Pullum, 2005]. This is a case where, a
descriptive observation about language use became a prescriptive requirement. In NLP we usually
discard such prescriptions, and use grammar to formalize observations about language as it is used,
particularly as it is used in corpora.

In this chapter we present the fundamentals of syntax, focusing on constituency and tree represen-
tations, before describing the formal notation of context free grammar. Next we present parsers as an
automatic way to associate syntactic structures with sentences. Finally, we give a detailed presentation
of simple top-down and bottom-up parsing algorithms available in NLTK. Before launching into the
theory we present some more naive observations about grammar, for the benefit of readers who do not
have a background in linguistics.

169



7.2. More Observations about Grammar

7.2 More Observations about Grammar

Another function of a grammar is to explain our observations about ambiguous sentences. Even when
the individual words are unambiguous, we can put them together to create ambiguous sentences, as in

7).

(17a) Fighting animals could be dangerous.
(17b) Visiting relatives can be tiresome.

A grammar will be able to assign two structures to each sentence, accounting for the two possible
interpretations.

Perhaps another kind of syntactic variation, word order, is easier to understand. We know that the
two sentences Kim likes Sandy and Sandy likes Kim have different meanings, and that likes Sandy Kim
is simply ungrammatical. Similarly, we know that the following two sentences are equivalent:

(18a) The farmer loaded the cart with sand
(18b) The farmer loaded sand into the cart

However, consider the semantically similar verbs filled and dumped. Now the word order cannot
be altered (ungrammatical sentences are prefixed with an asterisk.)

(19a) The farmer filled the cart with sand
(19b) *The farmer filled sand into the cart
(19c) *The farmer dumped the cart with sand
(19d) The farmer dumped sand into the cart

A further notable fact is that we have no difficulty accessing the meaning of sentences we have
never encountered before. It is not difficult to concoct an entirely novel sentence, one that has probably
never been used before in the history of the language, and yet all speakers of the language will agree
about its meaning. In fact, the set of possible sentences is infinite, given that there is no upper bound on
length. Consider the following passage from a children’s story, containing a rather impressive sentence:

You can imagine Piglet’s joy when at last the ship came in sight of him. In after-years he
liked to think that he had been in Very Great Danger during the Terrible Flood, but the only
danger he had really been in was the last half-hour of his imprisonment, when Owl, who
had just flown up, sat on a branch of his tree to comfort him, and told him a very long story
about an aunt who had once laid a seagull’s egg by mistake, and the story went on and on,
rather like this sentence, until Piglet who was listening out of his window without much
hope, went to sleep quietly and naturally, slipping slowly out of the window towards the
water until he was only hanging on by his toes, at which moment, luckily, a sudden loud
squawk from Owl, which was really part of the story, being what his aunt said, woke the
Piglet up and just gave him time to jerk himself back into safety and say, “How interesting,
and did she?” when -- well, you can imagine his joy when at last he saw the good ship,
Brain of Pooh (Captain, C. Robin; 1st Mate, P. Bear) coming over the sea to rescue him...
(from A.A. Milne In which Piglet is Entirely Surrounded by Water)
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Our ability to produce and understand entirely new sentences, of arbitrary length, demonstrates
that the set of well-formed sentences in English is infinite. The same case can be made for any human
language.

This chapter presents grammars and parsing, as the formal and computational methods for inves-
tigating and modelling the linguistic phenomena we have been touching on (or tripping over). As we
shall see, patterns of well-formedness and ill-formedness in a sequence of words can be understood with
respect to the underlying phrase structure of the sentences. We can develop formal models of these
structures using grammars and parsers. As before, the motivation is natural language understanding.
How much more of the meaning of a text can we access when we can reliably recognize the linguistic
structures it contains? Having read in a text, can a program "understand’ it enough to be able to answer
simple questions about “what happened” or “who did what to whom” Also as before, we will develop
simple programs to process annotated corpora and perform useful tasks.

7.3 What’s the Use of Syntax?

Earlier chapters focussed on words: how to identify them, how to analyse their morphology, and how to
assign them to classes via part-of-speech tags. We have also seen how to identify recurring sequences of
words (i.e. n-grams). Nevertheless, there seem to be linguistic regularities which cannot be described
simply in terms of n-grams.

In this section we will see why it is useful to have some kind of syntactic representation of
sentences. In particular, we will see that there are systematic aspects of meaning which are much
easier to capture once we have established a level of syntactic structure.

7.3.1 Syntactic Ambiguity

We have seen that sentences can be ambiguous. If we overheard someone say I went to the bank,
we wouldn’t know whether it was a river bank or a financial institution. This ambiguity concerns the
meaning of the word bank, and is a kind of lexical ambiguity.

However, other kinds of ambiguity cannot be explained in terms of ambiguity of specific words.
Consider a phrase involving an adjective with a conjunction: old men and women. Does old have wider
scope than and, or is it the other way round? In fact, both interpretations are possible, and we can
represent the different scopes using parentheses:

(20a) old (men and women)
(20b) (old men) and women

One convenient way of representing this scope difference at a structural level is by means of a tree
diagram, as shown in (21).
21a
(21a) NP
Adj NP

old N Conj N

l

men and women
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(21b) P

NmP

Adj N and [\|l

. l

old men women

Note that linguistic trees grow upside down: the node labeled S is the root of the tree, while the
leaves of the tree are labeled with the words.
In NLTK, you can easily produce trees like this yourself with the following commands:

>>> nltk lite.parse bracket_parse
>>> tree = bracket_parse(’ (NP (Adj old) (NP (N men) (Conj and) (N women)))’)
>>> tree.draw() # doctest: +SKIP

We can construct other examples of syntactic ambiguity involving the coordinating conjunctions
and and or, e.g. Kim left or Dana arrived and everyone cheered. We can describe this ambiguity in
terms of the relative semantic scope of or and and.

For our third illustration of ambiguity, we look at prepositional phrases. Consider a sentence like:
I saw the man with a telescope. Who has the telescope? To clarify what is going on here, consider the
following pair of sentences:

(22a) The policeman saw a burglar with a gun. (not some other burglar)
(22b) The policeman saw a burglar with a telescope. (not with his naked eye)

In both cases, there is a prepositional phrase introduced by wizh. In the first case this phrase modifies
the noun burglar, and in the second case it modifies the verb saw. We could again think of this in terms
of scope: does the prepositional phrase (PP) just have scope over the NP a burglar, or does it have scope
over the whole verb phrase? As before, we can represent the difference in terms of tree structure:

(23a) s
N/\P
f% V/\NP
szlw NP/\PP
the burglar with a gun
(23b)

fhe policeman \ NP PP

saw the burglar with a telescope

In (23)a, the PP attaches to the NP, while in (23)b, the PP attaches to the VP.
We can generate these trees in Python as follows:
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>>> sl
>>> g2
>>> treel = bracket_parse(sl)
>>> tree2 = bracket_parse(s2)

We can discard the structure to get the list of leaves, and we can confirm that both trees have the
same leaves. We can also see that the trees have different heights (given by the number of nodes in the
longest branch of the tree, starting at S and descending to the words):

>>> treel.leaves ()
["the’, ’'policeman’,

14

saw’, ’'the’, ’'burglar’, ’'with’, ’'a’, ’'gun’]

>>> treel.leaves () == tree2.leaves()
True

>>> treel.height () == tree2.height ()
False

In general, how can we determine whether a prepositional phrase modifies the preceding noun or
verb? This problem is known as prepositional phrase attachment ambiguity. The Prepositional
Phrase Attachment Corpus makes it possible for us to study this question systematically. The corpus
is derived from the IBM-Lancaster Treebank of Computer Manuals and from the Penn Treebank, and
distills out only the essential information about PP attachment. Consider the sentence from the WSJ in
(24a). The corresponding line in the Prepositional Phrase Attachment Corpus is shown in (24b).

(24a) Four of the five surviving workers have asbestos-related diseases, including three with recently
diagnosed cancer.

(24b) 16 including three with cancer N

That is, it includes an identifier for the original sentence, the head of the relevant verb phrase (i.e.,
including), the head of the verb’s NP object (three), the preposition (with), and the head noun within the
prepositional phrase (cancer). Finally, it contains an “attachment” feature (N or V) to indicate whether
the prepositional phrase attaches to (modifies) the noun phrase or the verb phrase. Here are some
further examples:

(25) 47830 allow visits between families N
47830 allow visits on peninsula V
42457 acquired interest in firm N

42457 acquired interest in 1986 V

The PP attachments in (25) can also be made explicit by using phrase groupings as in (26).

(26) allow (NP visits (PP between families))
allow (NP visits) (PP on peninsula)
acquired (NP interest (PP in firm))
acquired (NP interest) (PP in 1986)

Observe in each case that the argument of the verb is either a single complex expression (visits
(between families)) or a pair of simpler expressions (visits) (on peninsula).
We can access the Prepositional Phrase Attachment Corpus from NLTK as follows:

>>> nltk_lite.corpora ppattach, extract
>>> pprint pprint
>>> item = extract (9, ppattach.dictionary(’'training’))
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>>> pprint (item)
{’attachment’: 'N’,
"nounl’: ’'three’,
"noun2’ : ’'cancer’,
"prep’: ’'with’,
"sent’: ’'16’,
"wverb’: ’"including’}

If we go back to our first examples of PP attachment ambiguity, it appears as though it is the PP
itself (e.g., with a gun versus with a telescope) that determines the attachment. However, we can use
this corpus to find examples where other factors come into play. For example, it appears that the verb
is the key factor in (27).

27 8582 received offer from group V
19131 rejected offer from group N

7.3.2 Constituency

We claimed earlier that one of the motivations for building syntactic structure was to help make explicit
how a sentence says “who did what to whom”. Let’s just focus for a while on the “who” part of this
story: in other words, how can syntax tell us what the subject of a sentence is? At first, you might think
this task is rather simple — so simple indeed that we don’t need to bother with syntax. In a sentence
such as The fierce dog bit the man we know that it is the dog that is doing the biting. So we could say
that the noun phrase immediately preceding the verb is the subject of the sentence. And we might try to
make this more explicit in terms of sequences part-of-speech tags. Let’s try to come up with a simple
definition of noun phrase; we might start off with something like this, based on our knowledge of noun
phrase chunking (Chapter 5):

(28) DT JJ* NN

We’re using regular expression notation here in the form of J7* to indicate a sequence of zero or more
J3s. So this is intended to say that a noun phrase can consist of a determiner, possibly followed by some
adjectives, followed by a noun. Then we can go on to say that if we can find a sequence of tagged
words like this that precedes a word tagged as a verb, then we’ve identified the subject. But now think
about this sentence:

(29) The child with a fierce dog bit the man.
This time, it’s the child that is doing the biting. But the tag sequence preceding the verb is:
(30) DT NN IN DT JJ NN

Our previous attempt at identifying the subject would have incorrectly come up with the fierce dog
as the subject. So our next hypothesis would have to be a bit more complex. For example, we might
say that the subject can be identified as any string matching the following pattern before the verb:

(31) DT JJ* NN (IN DT JJ* NN)*

In other words, we need to find a noun phrase followed by zero or more sequences consisting of a
preposition followed by a noun phrase. Now there are two unpleasant aspects to this proposed solution.
The first is aesthetic: we are forced into repeating the sequence of tags (DT JJ* NN) that constituted
our initial notion of noun phrase, and our initial notion was in any case a drastic simplification. More
worrying, this approach still doesn’t work! For consider the following example:
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(32) The seagull that attacked the child with the fierce dog bit the man.

This time the seagull is the culprit, but it won’t be detected as subject by our attempt to match sequences
of tags. So it seems that we need a richer account of how words are grouped together into patterns, and
a way of referring to these groupings at different points in the sentence structure. This idea of grouping
is often called syntactic constituency.

As we have just seen, a well-formed sentence of a language is more than an arbitrary sequence of
words from the language. Certain kinds of words usually go together. For instance, determiners like
the are typically followed by adjectives or nouns, but not by verbs. Groups of words form intermediate
structures called phrases or constituents. These constituents can be identified using standard syntactic
tests, such as substitution, movement and coordination. For example, if a sequence of words can be
replaced with a pronoun, then that sequence is likely to be a constituent. According to this test, we can
infer that the italicised string in the following example is a constituent, since it can be replaced by they:

(33a) Ordinary daily multivitamin and mineral supplements could help adults with diabetes fight off
some minor infections.

(33b) They could help adults with diabetes fight off some minor infections.

In order to identify whether a phrase is the subject of a sentence, we can use the construction
called Subject-Auxiliary Inversion in English. This construction allows us to form so-called Yes-No
Questions. That is, corresponding to the statement in (34a), we have the question in (34b):

(34a) All the cakes have been eaten.
(34b) Have all the cakes been eaten?

Roughly speaking, if a sentence already contains an auxiliary verb, such as has in (34a), then we
can turn it into a Yes-No Question by moving the auxiliary verb over’ the subject noun phrase to the
front of the sentence. If there is no auxiliary in the statement, then we insert the appropriate form of do
as the fronted auxiliary and replace the tensed main verb by its base form:

(35a) The fierce dog bit the man.
(35b) Did the fierce dog bite the man?

As we would hope, this test also confirms our earlier claim about the subject constituent of (32):
(36) Did the seagull that attacked the child with the fierce dog bite the man?

To sum up then, we have seen that the notion of constituent brings a number of benefits. By having
a constituent labeled NOUN PHRASE, we can provide a unified statement of the classes of word that
constitute that phrase, and reuse this statement in describing noun phrases wherever they occur in the
sentence. Second, we can use the notion of a noun phrase in defining the subject of sentence, which in
turn is a crucial ingredient in determining the “who does what to whom” aspect of meaning.
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7.3.3 More on Trees

A tree is a set of connected nodes, each of which is labeled with a category. It common to use a
’family’ metaphor to talk about the relationships of nodes in a tree: for example, S is the parent of VP;
conversely VP is a daughter (or child) of S. Also, since NP and VP are both daughters of S, they are
also sisters. Here is an example of a tree:

(37) s

Lee V NP
saw the dog

Although it is helpful to represent trees in a graphical format, for computational purposes we
usually need a more text-oriented representation. One standard method (used in the Penn Treebank) is
to use a combination of bracket and labels to indicate the structure, as shown here:

(s
(NP 'Lee’)
(VP
(V "saw’)
(NP
(Det 'the’)
(N ’"dog’))))

The conventions for displaying trees in NLTK are similar:
(S: (NP: '"Lee’) (VP: (V: ’'saw’) (NP: 'the’ ’'dog’)))

In such trees, the node value is a string containing the tree’s constituent type (e.g., NP or VP), while
the children encode the hierarchical contents of the tree.

Although we will focus on syntactic trees, trees can be used to encode any homogeneous hier-
archical structure that spans a sequence of linguistic forms (e.g. morphological structure, discourse
structure). In the general case, leaves and node values do not have to be strings.

In NLTK, trees are created with the Tree constructor, which takes a node value and a list of zero
or more children. Here’s a couple of simple trees:

>>> nltk_lite.parse Tree
>>> treel = Tree('NP’, [’John’])
>>> treel

(NP: ’"John’)

>>> tree2 = Tree('NP’, ['the’, 'man’])
>>> tree2

(NP: "the’ 'man’)

We can incorporate these into successively larger trees as follows:

>>> tree3 = Tree('VP’', ['saw’, tree2])

>>> treed = Tree(’'S’, [treel, tree3])

>>> tree4

(S: (NP: "John’) (VP: 'saw’ (NP: 'the’ 'man’)))
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Here are some of the methods available for tree objects:

>>> treed[l]

(VP: 'saw’ (NP: 'the’ 'man’))
>>> treed[1l] .node

IVPI

>>> treed.leaves ()

["John’, ’'saw’, ’'the’, ’'man’]
>>> tree[l,1,0]

" saw

4

The printed representation for complex trees can be difficult to read. In these cases, the draw
method can be very useful. It opens a new window, containing a graphical representation of the tree.
The tree display window allows you to zoom in and out; to collapse and expand subtrees; and to print
the graphical representation to a postscript file (for inclusion in a document).

>>> tree3.draw()

X! NLTK
Hle Zoom |

VP
P
saw NP
the man
| S ]

7.3.4 Treebanks (notes)

The nltk_lite.corpora module defines the t reebank corpus reader, which contains a 10%
sample of the Penn Treebank corpus.

>>> nltk_lite.corpora treebank, extract
>>> extract (0, treebank.parsed())
(S:

(NP-SBJ:

(NP: (NNP: ’'Pierre’) (NNP: ’'Vinken’))
G: ")
(ADJP: (NP: (CD: '61l’) (NNS: ’'years’)) (JJ: ’'old’))
G: "))
(VP:
(MD: ’'will’)
(VP:
(VB: ’join’)
(NP: (DT: ’'the’) (NN: ’'board’))
(PP-CLR:
(IN: "as’)
(NP: (DT: ’'a’) (JJ: "nonexecutive’) (NN: ’'director’)))
(NP-TMP: (NNP: ’'Nov.’) (CD: '297))))
(. 7."))

NLTK also includes a sample from the Sinica Treebank Corpus, consisting of 10,000 parsed
sentences drawn from the Academia Sinica Balanced Corpus of Modern Chinese. Here is a code
fragment to read and display one of the trees in this corpus.
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Listing 29
indent_tree(t, level=0, first=False, width=8):
first:
" 7% (width+1l) xlevel,
try:

"$=%xs" % (width, t.node),
indent_tree(t[0], level+l, first=True)
child t[1l:]:
indent_tree(child, level+l, first=False)
AttributeError:
t

>>> t = extract (0, treebank.parsed())
>>> indent_tree (t)

S NP-SBJ NP NNP Pierre
NNP Vinken
4 4
ADJP NP CD 61
NNS years
JJd old
4 4
VP MD will
VP VB join
NP DT the
NN board
PP-CLR IN as
NP DT
JJ
NN
NP-TMP NNP Nov.
CD 29

a
nonexecutive
director

April 27, 2007 178

Bird, Klein & Loper



7. Grammars and Parsing Introduction to Natural Language Processing (DRAFT)

>>> nltk_1lite.corpora sinica_treebank, extract
>>> extract (3450, sinica_treebank.parsed()) .draw()

NLTK

VP
=N
Ndabe Dd VC32 Di NP

S N cla e
O VH11 Nab %1 DE vH1e “Nab
mE w4 T T
(38)

Note that we can read tagged text from a Treebank corpus, using the tagged () method:

>>> extract (0, treebank.tagged())

[(/Pierre’, 'NNP’), (’Vinken’, ’'NNP’), (',’, ’,’), ('61’, 'CD’), ('years’, 'NNS’),
('old’, 'ag’y, ¢,’, ",’), ('will’, 'MD’), (’join’, ’'VB’), ('the’, ’'DT’),
("board’, 'NN’), ('as’, "IN’), ('a’, 'DT’), (’'nonexecutive’, 'JJ'),

('director’, 'NN’), ('Nov.’, 'NNP’), ('29’, ’'CD’), (".’, ".")]

7.3.5 Exercises

1. £+ Can you come up with grammatical sentences which have probably never been uttered
before? (Take turns with a partner.) What does this tell you about human language?

2. £+ Recall Strunk and White’s prohibition against sentence-initial however used to mean
“although”. Do a web search for however used at the start of the sentence. How widely
used is this construction?

3. &t Consider the sentence Kim arrived or Dana left and everyone cheered. Write down the
parenthesized forms to show the relative scope of and and or. Generate tree structures
corresponding to both of these interpretations.

4. 3 The Tree class implements a variety of other useful methods. See the Tree help
documentation for more details, i.e. import the Tree class and then type help (Tree).

5. 3% Building trees:
a) Write code to produce two trees, one for each reading of the phrase old men

and women

b) Encode any of the trees presented in this chapter as a labeled bracketing and use
the nltk_lite.parse module’s bracket_parse () method to check
that it is well-formed. Now use the draw () to display the tree.

¢) Asin (a) above, draw a tree for The woman saw a man last Thursday.
6. 3 Write a recursive function to traverse a tree and return the depth of the tree, such that

a tree with a single node would have depth zero. (Hint: the depth of a subtree is the
maximum depth of its children, plus one.)
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7. &+ Analyze the A.A. Milne sentence about Piglet, by underlining all of the sentences it
contains then replacing these with S (e.g. the first sentence becomes S when:1x‘ ). Draw
a tree structure for this “compressed” sentence. What are the main syntactic constructions
used for building such a long sentence?

8. (P To compare multiple trees in a single window, we can use the draw_trees () method.
Define some trees and try it out:

>>> nltk lite.draw.tree draw_trees
>>> draw_trees(treel, tree2, tree3)

9. (D Using tree positions, list the subjects of the first 100 sentences in the Penn treebank; to
make the results easier to view, limit the extracted subjects to subtrees whose height is 2.

10. (D Inspect the Prepositional Phrase Attachment Corpus and try to suggest some factors
that influence PP attachment.

11. (D In this section we claimed that there are linguistic regularities which cannot be described
simply in terms of n-grams. Consider the following sentence, particularly the position of
the phrase in his turn. Does this illustrate a problem for an approach based on n-grams?

What was more, the in his turn somewhat youngish Nikolay Parfenovich also
turned out to be the only person in the entire world to acquire a sincere liking
to our “discriminated-against” public procurator. (Dostoevsky: The Brothers
Karamazov)

12. (D Write a recursive function that produces a nested bracketing for a tree, leaving out the
leaf nodes, and displaying the non-terminal labels after their subtrees. So the above exam-
ple about Pierre Vinken would produce: [ [ [NNP NNP]NP , [ADJP [CD NNS]NP
JJ]ADJP , JNP-SBJ MD [VB [DT NN]NP [IN [DT JJ NN]NP]PP-CLR [NNP
CD]NP-TMP]VP . ]S Consecutive categories should be separated by space.

1. (D Download several electronic books from Project Gutenberg. Write a program to scan
these texts for any extremely long sentences. What is the longest sentence you can find?
What syntactic construction(s) are responsible for such long sentences?

2. % One common way of defining the subject of a sentence S in English is as the noun
phrase that is the daughter of S and the sister of VP. Write a function that takes the tree
for a sentence and returns the subtree corresponding to the subject of the sentence. What
should it do if the root node of the tree passed to this function is not S, or it lacks a subject?

7.4 Context Free Grammar

As we have seen, languages are infinite — there is no principled upper-bound on the length of a sen-
tence. Nevertheless, we would like to write (finite) programs that can process well-formed sentences.
It turns out that we can characterize what we mean by well-formedness using a grammar. The way that
finite grammars are able to describe an infinite set uses recursion. (We already came across this idea
when we looked at regular expressions: the finite expression a+ is able to describe the infinite set {a
, aa, aaa, aaaa, ...}). Apartfrom their compactness, grammars usually capture important
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structural and distributional properties of the language, and can be used to map between sequences of
words and abstract representations of meaning. Even if we were to impose an upper bound on sentence
length to ensure the language was finite, we would probably still want to come up with a compact
representation in the form of a grammar.

A grammar is a formal system which specifies which sequences of words are well-formed in the
language, and which provides one or more phrase structures for well-formed sequences. We will be
looking at context-free grammar (CFG), which is a collection of productions of the form S — NP VP.
This says that a constituent S can consist of sub-constituents NP and VP. Similarly, the production v —
"saw’ | Y‘'walked’ means that the constituent V can consist of the string saw or walked. For a
phrase structure tree to be well-formed relative to a grammar, each non-terminal node and its children
must correspond to a production in the grammar.

7.4.1 A Simple Grammar

Let’s start off by looking at a simple context-free grammar. By convention, the left-hand-side of the
first production is the start-symbol of the grammar, and all well-formed trees must have this symbol
as their root label.

(39) S—= NP VP
NP — Det N | Det N PP
VP —= VIV NPIV NP PP
PP — P NP

Det — ’the’ | ’a’
N — man’ | "park’ | ’dog’ | "telescope’
V — ’saw’ | *walked’

P —’in’ | ’with’

This grammar contains productions involving various syntactic categories, as laid out in Table 7.1.

Symbol | Meaning Example

S sentence the man walked
NP noun phrase adog

VP verb phrase saw a park

PP prepositional phrase with a telescope
Det determiner the

N noun dog

\" verb walked

P preposition in

Table 7.1: Syntactic Categories

In our following discussion of grammar, we will use the following terminology. The grammar
consists of productions, where each production involves a single non-terminal (e.g. S, NP), an arrow,
and one or more non-terminals and terminals (e.g. walked). The productions are often divided into two
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main groups. The grammatical productions are those without a terminal on the right-hand side. The
lexical productions are those having a terminal on the right-hand side. A special case of non-terminals
are the pre-terminals, which appear on the left-hand side of lexical productions. We will say that a
grammar licenses a tree if each non-terminal X with children Y; Y, corresponds to a production in

the grammar of the form: X = Y; Y,
In order to get started with developing simple grammars of your own, you will probably find it
convenient to play with the recursive descent parser demo, nltk_lite.draw.rdparser

.demo (). The demo opens a window which displays a list of grammar productions in the lefthand
pane and the current parse diagram in the central pane:

% Recursive Descent Parser Demo

-

Hle Edit Apply View Animate Help

Available Expansions 5
HP VP
Det M PP

M -="man’

M -="park’

M -="dog’

M -="telescope’

Last Operation: | katch: the

Step | Autostep | Expand | Match | Backtrack |

The demo comes with the grammar in (39) already loaded. We will discuss the parsing algorithm
in greater detail below, but for the time being you can get an idea of how it works by using the autostep
button. If we parse the string The dog saw a man in the park using the grammar in (39), we end up
with two trees:

40
(40a) s
N/\P
%\
Det N \Y NP PP
th‘e dolg sa|1w Det/\N mP
T AN
a man in N
the pa!rk
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(40b)

Det N \' NP
Mo aly s va N B
Ell an mP
||n Dt{\N
th|e pa!rk

Since our grammar licenses two trees for this sentence, the sentence is said to be structurally
ambiguous. The ambiguity in question is called a prepositional phrase attachment ambiguity, as we
saw earlier in this chapter. As you may recall, it is an ambiguity about attachment since the PP in the
park needs to be attached to one of two places in the tree: either as a daughter of VP or else as a
daughter of NP. When the PP is attached to VP, the seeing event happened in the park. However, if the
PP is attached to NP, then the man was in the park, and the agent of the seeing (the dog) might have been
sitting on the balcony of an apartment overlooking the park. As we will see, dealing with ambiguity is
a key challenge in parsing.

7.4.2 Recursion in syntactic structure
Observe that sentences can be nested within sentences, with no limit to the depth:

(41a) Jodie won the 100m freestyle

(41b) “The Age” reported that Jodie won the 100m freestyle

(41c) Sandy said “The Age” reported that Jodie won the 100m freestyle

(41d) Ithink Sandy said “The Age” reported that Jodie won the 100m freestyle

This nesting is explained in terms of recursion. A grammar is said to be recursive if a category
occurring on the lefthand side of a production (such as S in this case) also appears on the righthand
side of a production. If this dual occurrence takes place in one and the same production, then we have
direct recursion; otherwise we have indirect recursion. There is no recursion in (39). However, the
grammar in (42) illustrates both kinds of recursive production:

42) S — NP VP
NP — Det Nom | Det Nom PP | PropN
Nom — Adj Nom | N
VP - V | VNP | VNP PP | V S
PP — P NP

PropN — ’'John’ | ’'Mary’

Det — ’'the’ | "a’

N — ’'man’ | ’'woman’ | ’'park’ | ’"dog’ | ’'lead’ | "telescope’ | "butterfly’
Adj — ’'fierce’ | ’'black’ | "big’ | ’"European’

V — ’'saw’ | ’'chased’ | ’'barked’ | ’"disappeared’ | ’'said’ | ’reported’

P — ’"in’ | ’"with’
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Notice that the production NOoM — ADJ NOM (where NOM is the category of nominals) involves
direct recursion on the category NOM, whereas indirect recursion on S arises from the combination of
two productions, namely S = NP VP and VP — V S.

To see how recursion is handled in this grammar, consider the following trees. Example nested-
nominals involves nested nominal phrases, while nested-sentences contains nested sentences.

(43a) s
N/\P
Det/\Nom NP
e|1 Adj Nom chased Det Nom
fierce  Adj N the Adj Nom
black dog big Adj N
European butterfly
(43b) s

Det/\N v/\s
th|e mlan sa‘id NP/\P
o N v 3
th|e wor‘nan thot!ght N/\P

Det N \'

the dog barked

If you did the exercises for the last section, you will have noticed that the recursive descent parser
fails to deal properly with the following production: NP — NP PP. From a linguistic point of view, this
production is perfectly respectable, and will allow us to derive trees like this:

(44)

N/\PP | disapp!eared

P
De{\N mP in/\NP
I TN
the man with Det N Det N
ell dc|>g the pa!rk

More schematically, the trees for these compound noun phrases will be of the following shape:
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45) NP
NP PP
Det N

The structure in (45) is called a left recursive structure. These occur frequently in analyses of
English, and the failure of recursive descent parsers to deal adequately with left recursion means that
we will need to find alternative approaches.

7.4.3 Heads, Complements and Modifiers

Let us take a closer look at verbs. The grammar (42) correctly generates examples like (46), corre-
sponding to the four productions with VP on the lefthand side:

(46a) The woman gave the telescope to the dog
(46b) The woman saw a man

(46c) A man said that the woman disappeared
(46d) The dog barked

That is, gave can occur with a following NP and PP; saw can occur with a following NP; said can
occur with a following S; and barked can occur with no following phrase. In these cases, NP, PP and S
are called complements of the respective verbs, and the verbs themselves are called heads of the verb
phrase.

However, there are fairly strong constraints on what verbs can occur with what complements. Thus,
we would like our grammars to mark the following examples as ungrammatical':

(47a) *The woman disappeared the telescope to the dog
(47b) *The dog barked a man

(47c) *A man gave that the woman disappeared

(47d) *A man said

How can we ensure that our grammar correctly excludes the ungrammatical examples in (47)? We
need some way of constraining grammar productions which expand VP so that verbs only cooccur with
their correct complements. We do this by dividing the class of verbs into subcategories, each of which
is associated with a different set of complements. For example, transitive verbs such as saw, kissed
and hit require a following NP object complement. Borrowing from the terminology of chemistry, we
sometimes refer to the valency of a verb, that is, its capacity to combine with a sequence of arguments
and thereby compose a verb phrase.

Let’s introduce a new category label for such verbs, namely TV (for Transitive Verb), and use it in
the following productions:

'Tt should be borne in mind that it is possible to create examples which involve *non-standard’ but interpretable combina-
tions of verbs and complements. Thus, we can, at a stretch, interpret the man disappeared the dog as meaning that the man
made the dog disappear. We will ignore such examples here.
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(48) VP — TV NP
Tv — ’'saw’ | ’'kissed’ | ’'hit’

Now *the dog barked the man is excluded since we haven’t listed barked as a V_TR, but the woman
saw a man is still allowed. Table 7.2 provides more examples of labels for verb subcategories.

Symbol | Meaning Example

v intransitive verb barked

TV transitive verb saw a man

DatV dative verb gave a dog to a man
SV sentential verb said that a dog barked

Table 7.2: Verb Subcategories

The revised grammar for VP will now look like this:

49) VP — DATV NP PP
VP — TV NP
VP — SV S
VP — IV
DATV — 'gave’ | "donated’ | ’presented’
Tv — ’'saw’ | ’"kissed’ | ’'hit’ | ’sang’
sv — ’'said’” | ’"knew’ | ’"alleged’
1v — ’'barked’ | ’disappeared’ | 'elapsed’ | ’sang’

Notice that according to (49), a given lexical item can belong to more than one subcategory. For
example, sang can occur both with and without a following NP complement.

7.4.4 Dependency Grammar

Although we concentrate on phrase structure grammars in this chapter, we should mention an alterna-
tive approach, namely dependency grammar. Rather than taking starting from the grouping of words
into constituents, dependency grammar takes as basic the notion that one word can be dependent on
another (namely, its head). The head of a sentence is usually taken to be the main verb, and every other
word is either dependent on this head, or connects to it through a path of dependencies. Figure (50)
illustrates a dependency graph, where the head of the arrow points to the head of a dependency.

SUB /ﬁdggODWVMOD
OBJ
/N e 7\/ \ \

(50) Esso said the Whiting field started production Tuesday
As you will see, the arcs in Figure (50) are labeled with the particular dependency relation that
holds between a dependent and its head. For example, Esso bears the subject relation to said (which is
the head of the whole sentence), and Tuesday bears a verbal modifier (VMOD) relation to started.
An alternative way of representing the dependency relationships is illustrated in the tree (51), where
dependents are shown as daughters of their heads.
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D said
Esso started
field production Tuesday
the Whiting

One format for encoding dependency information places each word on a line, followed by its part-
of-speech tag, the index of its head, and the label of the dependency relation (cf. [Nivre et al., 2006]).
The index of a word is implicitly given by the ordering of the lines (with 1 as the first index). This is
illustrated in the following code snippet:

>>> nltk _lite.contrib.dependency DepGraph
>>> dg = DepGraph() .read("""Esso NNP 2 SUB
.. said VBD 0 ROOT
.. the DT 5 NMOD
. Whiting NNP 5 NMOD
field NN 6 SUB
.. started VBD 2 VMOD
. production NN 6 OBJ
Tuesday NNP 6 VMOD""")

As you will see, this format also adopts the convention that the head of the sentence is dependent
on an empty node, indexed as 0. We can use the deptree () method of a DepGraph () object to
build an NLTK tree like that illustrated earlier in (51).

>>> tree = dg.deptree()
>>> tree.draw()

7.4.5 Formalizing Context Free Grammars

We have seen that a CFG contains terminal and nonterminal symbols, and productions which dictate
how constituents are expanded into other constituents and words. In this section, we provide some
formal definitions.

A CFGisa4-tuple N,2 P,S ,where:

m X is a set of terminal symbols (e.g., lexical items);
m N is a set of non-terminal symbols (the category labels);
m P is a set of productions of the form A — a, where

— A is a non-terminal, and

— a is a string of symbols from (N X)* (i.e., strings of either terminals or non-terminals);
m S is the start symbol.

A derivation of a string from a non-terminal A in grammar G is the result of successively applying
productions from G to A. For example, (52) is a derivation of the dog with a telescope for the grammar
in (39).
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(52) NP
Det N PP
the N PP
the dog PP
the dog P NP
the dog with NP
the dog with Det N
the dog with a N

the dog with a telescope

Although we have chosen here to expand the leftmost non-terminal symbol at each stage, this is not
obligatory; productions can be applied in any order. Thus, derivation (52) could equally have started
off in the following manner:

(53) NP
Det N PP
Det N P NP
Det N with NP

We can also write derivation (52) as:

(54) NP = DET N PP = the N PP = the dog PP = the dog P NP = the dog with NP = the dog with a
N = the dog with a telescope

where = means “derives in one step”. We use =* to mean “derives in zero or more steps’:
B o =* o for any string o, and
m ifa=*pand f = vy, then a =*y.

We write A =* a to indicate that o can be derived from A.

In NLTK, context free grammars are defined in the parse.cfg module. The easiest way to
construct a grammar object is from the standard string representation of grammars. In Listing 7.2 we
define a grammar and use it to parse a simple sentence. You will learn more about parsing in the next
section.

7.4.6 Exercises

1. £* In the recursive descent parser demo, experiment with changing the sentence to be
parsed by selecting Edit Text in the Edit menu.

2. £+ Can the grammar in (39) be used to describe sentences which are more than 20 words
in length?

3. (@ You can modify the grammar in the recursive descent parser demo by selecting Edit
Grammar in the Edit menu. Change the first expansion production, namely NP -> Det
N PP,toNP -> NP PP. Using the Step button, try to build a parse tree. What happens?

4. (P Extend the grammar in (42) with productions which expand prepositions as intransitive,
transitive and requiring a PP complement. Based on these productions, use the method of
the preceding exercise to draw a tree for the sentence Lee ran away home.
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Listing 30 Context Free Grammars in NLTK

nltk_lite parse
grammar = parse.cfg.parse_grammar ("""
S —> NP VP
VP —> V NP | V NP PP
V —> "saw" | "ate"
NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
Det -> "a" | "an" | "the" | "my"
N -> "dog" | "cat" | "cookie" | "park"
PP -> P NP
P —> "in" | "on" | "by" | "with"
")
>>> nltk lite tokenize

>>> sent = list (tokenize.whitespace("Mary saw Bob"))
>>> rd_parser = parse.RecursiveDescent (grammar)
>>> P rd_parser.get_parse_list (sent):

. P
(S: (NP: 'Mary’) (VP: (V: ’'saw’) (NP: 'Bob’)))

5. (P Pick some common verbs and complete the following tasks:

a) Write a program to find those verbs in the PP Attachment Corpus included with
NLTK. Find any cases where the same verb exhibits two different attachments,
but where the first noun, or second noun, or preposition, stay unchanged (as we
saw in the PP Attachment Corpus example data above).

b) Devise CFG grammar productions to cover some of these cases.

6. % Lexical Acquisition: As we saw in Chapter 5, it is possible to collapse chunks down to
their chunk label. When we do this for sentences involving the word gave, we find patterns
such as the following:

gave NP

gave up NP in NP
gave NP up

gave NP NP

gave NP to NP

a) Use this method to study the complementation patterns of a verb of interest,
and write suitable grammar productions.

b) Identify some English verbs that are near-synonyms, such as the dumped/filled/loaded
example from earlier in this chapter. Use the chunking method to study the
complementation patterns of these verbs. Create a grammar to cover these
cases. Can the verbs be freely substituted for each other, or are their constraints?
Discuss your findings.
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7.5 Parsing

A parser processes input sentences according to the productions of a grammar, and builds one or
more constituent structures which conform to the grammar. A grammar is a declarative specification of
well-formedness. In NLTK, it is just a multi-line string; it is not itself a program that can be used for
anything. A parser is a procedural interpretation of the grammar. It searches through the space of trees
licensed by a grammar to find one that has the required sentence along its fringe.

Parsing is important in both linguistics and natural language processing. A parser permits a
grammar to be evaluated against a potentially large collection of test sentences, helping linguists to
find any problems in their grammatical analysis. A parser can serve as a model of psycholinguistic
processing, helping to explain the difficulties that humans have with processing certain syntactic
constructions. Many natural language applications involve parsing at some point; for example, we
would expect the natural language questions submitted to a question-answering system to undergo
parsing as an initial step.

In this section we see two simple parsing algorithms, a top-down method called recursive descent
parsing, and a bottom-up method called shift-reduce parsing.

7.5.1 Recursive Descent Parsing

The simplest kind of parser interprets a grammar as a specification of how to break a high-level goal
into several lower-level subgoals. The top-level goal is to find an S. The S — NP VP production permits
the parser to replace this goal with two subgoals: find an NP, then find a VP. Each of these subgoals
can be replaced in turn by sub-sub-goals, using productions that have NP and VP on their left-hand side.
Eventually, this expansion process leads to subgoals such as: find the word telescope. Such subgoals
can be directly compared against the input string, and succeed if the next word is matched. If there is
no match the parser must back up and try a different alternative.

The recursive descent parser builds a parse tree during the above process. With the initial goal
(find an S), the S root node is created. As the above process recursively expands its goals using the
productions of the grammar, the parse tree is extended downwards (hence the name recursive descent).
We can see this in action using the parser demonstration nltk_lite.draw.rdparser.demo ().
Six stages of the execution of this parser are shown in Table 7.3.

8 S S
r‘h"‘"\.
NP VP NP [
Det N Det N
the
_____________________________________________________________________________________________________ T T PR
a. Initial stage b. 2nd production c. Matching the
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S S S
NP VP NP VP NP VP
~S— ~S—

Det N Det N v NP PP Det N v NP PP

man Det N P NP Det N P NP

Det N Det N
the the dog saw a man in the park the dog saw a man in the
" the dog caw a man in the park | the dog saw a man in the park | the dog saw a man in the park

d. Cannot match man e. Completed parse f. Backtracking

Table 7.3: Six Stages of a Recursive Descent Parser

During this process, the parser is often forced to choose between several possible productions. For
example, in going from step c to step d, it tries to find productions with N on the left-hand side. The
first of these is N — man. When this does not work it backtracks, and tries other N productions in order,
under it gets to N — dog, which matches the next word in the input sentence. Much later, as shown in
step e, it finds a complete parse. This is a tree which covers the entire sentence, without any dangling
edges. Once a parse has been found, we can get the parser to look for additional parses. Again it will
backtrack and explore other choices of production in case any of them result in a parse.

NLTK provides a recursive descent parser:

>>> nltk lite parse

>>> rd_parser = parse.RecursiveDescent (grammar)

>>> sent = list (tokenize.whitespace('Mary saw a dog’))

>>> rd_parser.get_parse_list (sent)

[("S’: ('NP’: 'Mary’) ('VP’': ('V': 'saw’) ('NP’: ('Det’: 'a’) ('N’: ’"dog’))))]

Note

parse.RecursiveDescent () takes an optional parameter trace. If trace is
greater than zero, then the parser will report the steps that it takes as it parses a
text.

Recursive descent parsing has three key shortcomings. First, left-recursive productions like NP —
NP PP send it into an infinite loop. Second, the parser wastes a lot of time considering words and
structures that do not correspond to the input sentence. Third, the backtracking process may discard
parsed constituents that will need to be rebuilt again later. For example, backtracking over VP — V NP
will discard the subtree created for the NP. If the parser then proceeds with VP — v NP PP, then the NP
subtree must be created all over again.

Recursive descent parsing is a kind of top-down parsing. Top-down parsers use a grammar to
predict what the input will be, before inspecting the input! However, since the input is available to the
parser all along, it would be more sensible to consider the input sentence from the very beginning. This
approach is called bottom-up parsing, and we will see an example in the next section.
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7.5.2 Shift-Reduce Parsing

A simple kind of bottom-up parser is the shift-reduce parser. In common with all bottom-up parsers,
a shift-reduce parser tries to find sequences of words and phrases that correspond to the right-hand side
of a grammar production, and replace them with the left-hand side, until the whole sentence is reduced
to an S.

The shift-reduce parser repeatedly pushes the next input word onto a stack (Section 6.2.4); this is
the shift operation. If the top » items on the stack match the n items on the right-hand side of some
production, then they are all popped off the stack, and the item on the left-hand side of the production
is pushed on the stack. This replacement of the top # items with a single item is the reduce operation.
(This reduce operation may only be applied to the top of the stack; reducing items lower in the stack
must be done before later items are pushed onto the stack.) The parser finishes when all the input is
consumed and there is only one item remaining on the stack, a parse tree with an S node as its root.

The shift-reduce parser builds a parse tree during the above process. If the top of stack holds
the word dog, and if the grammar has a production N — dog, then the reduce operation causes the
word to be replaced with the parse tree for this production. For convenience we will represent this
tree as N (dog) . At a later stage, if the top of the stack holds two items Det (the) N(dog) and
if the grammar has a production NP — DET N then the reduce operation causes these two items to be
replaced with NP (Det (the), N (dog)). This process continues until a parse tree for the entire
sentence has been constructed. We can see this in action using the parser demonstration n1tk_lite
.draw.srparser.demo (). Six stages of the execution of this parser are shown in Figure 7.4.

Stack Remaining Text Stack Remaining Text
.| the dog saw a man in the park e .| dogsawamaninthe park
a. Initial State b. After one shift
Stack Remaining Text Stack Remaining Text
Det N | sawa maninthe park NP v NP in the park
the dog Det N saw Det N
I ||
ths  dog a man
c. After reduce shift reduce d. After recognizing the second NP
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Stack Remaining Text il el U
/NE'\ v NP eeeeeereaes - Y A
AR T . N(”A‘\\\’
Di W saw mfj"\?p I\ -
tII IrL De{\N I;/f\ﬁp Det N mp
e aog
2 man in Det W the dog saw /N‘P\ PP
”L PJFK Det N P NP
[
a man in Del/\il
1
the  park
e. Complex NP f. Final Step

Table 7.4: Six Stages of a Shift-Reduce Parser

NLTK provides parse.ShiftReduce (), a simple implementation of a shift-reduce parser.
This parser does not implement any backtracking, so it is not guaranteed to find a parse for a text,
even if one exists. Furthermore, it will only find at most one parse, even if more parses exist. We can
provide an optional t race parameter, which controls how verbosely the parser reports the steps that it
takes as it parses a text:

>>> sr_parse = parse.ShiftReduce (grammar, trace=2)
>>> sent = list (tokenize.whitespace('Mary saw a dog’))
>>> sr_parse.parse (sent)

Parsing ’'Mary saw a dog’

[ * Mary saw a dog]

[ 'Mary’ * saw a dog]

[ <NP> x saw a dog]

[ <NP> ’"saw’ * a dog]

[ <NP> <V> % a dog]

[ <NP> <V> ’"a’ x dog]

[ <NP> <V> <Det> * dog]

[ <NP> <V> <Det> ’'dog’ =« ]

[ <NP> <V> <Det> <N> * ]

[ <NP> <V> <NP> * ]

[ <NP> <VP> x ]

[

]

<S> * ]

4 4

~AAFDDATNODNAD®

Shift-reduce parsers have a number of problems. A shift-reduce parser may fail to parse the
sentence, even though the sentence is well-formed according to the grammar. In such cases, there
are no remaining input words to shift, and there is no way to reduce the remaining items on the stack,
as exemplified in Table 7.5a. The parser entered this blind alley at an earlier stage shown in Table 7.5b,
when it reduced instead of shifted. This situation is called a shift-reduce conflict. At another possible
stage of processing shown in Table 7.5c, the parser must choose between two possible reductions,
both matching the top items on the stack: VP — VP NP PP or NP — NP PP. This situation is called a
reduce-reduce conflict.
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Stack Remaining Text

Det N NP in Det H
L AN |
the dog saw Det H the  park
I
a man
a. Dead end
Stack Remaining Text
L Lo v Y SN L Ll
Det N v NP
|| N

the dog saw Det N

|
a man

b. Shift-reduce conflict

Stack Remaining Text

man in  Det N

||
the  park

c. Reduce-reduce conflict

Table 7.5: Conflict in Shift-Reduce Parsing

Shift-reduce parsers may implement policies for resolving such conflicts. For example, they may
address shift-reduce conflicts by shifting only when no reductions are possible, and they may address
reduce-reduce conflicts by favouring the reduction operation that removes the most items from the
stack. No such policies are failsafe however.

The advantages of shift-reduce parsers over recursive descent parsers is that they only build struc-
ture that corresponds to the words in the input. Furthermore, they only build each sub-structure once,
e.g. NP (Det (the), N{(man)) is only built and pushed onto the stack a single time, regardless of
whether it will later be used by the VP — V NP PP reduction or the NP — NP PP reduction.

7.5.3 The Left-Corner Parser

One of the problems with the recursive descent parser is that it can get into an infinite loop. This is

because it applies the grammar productions blindly, without considering the actual input sentence. A

left-corner parser is a hybrid between the bottom-up and top-down approaches we have seen.
Grammar (42) allows us to produce the following parse of John saw Mary:
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(55) s
NP/\P
John V NP
saw Mary
Recall that the grammar in (42) has the following productions for expanding NP:

(56a) NP — DT NOM
(56b) NP — DT NOM PP
(56¢) NP — PROPN

Suppose we ask you to first look at tree (55), and then decide which of the NP productions you’d
want a recursive descent parser to apply first — obviously, (56¢) is the right choice! How do you know
that it would be pointless to apply (56a) or (56b) instead? Because neither of these productions will
derive a string whose first word is John. That is, we can easily tell that in a successful parse of John
saw Mary, the parser has to expand NP in such a way that NP derives the string John .. More generally,
we say that a category B is a left-corner of a tree rooted in A if A =* B a.

57
SN
é a
A left-corner parser is a top-down parser with bottom-up filtering. Unlike an ordinary recursive
descent parser, it does not get trapped in left recursive productions. Before starting its work, a left-
corner parser preprocesses the context-free grammar to build a table where each row contains two

cells, the first holding a non-terminal, and the second holding the collection of possible left corners of
that non-terminal. Table 7.6 illustrates this for the grammar from (42).

Category | Left-Corners (pre-terminals)
S NP
NP Det, PropN
VP A"
PP P

Table 7.6: Left-Corners in (42)

Each time a production is considered by the parser, it checks that the next input word is compatible
with at least one of the pre-terminal categories in the left-corner table.
[TODO: explain how this effects the action of the parser, and why this solves the problem.)

7.5.4 Exercises

1. £+ With pen and paper, manually trace the execution of a recursive descent parser and a
shift-reduce parser, for a CFG you have already seen, or one of your own devising.
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2. (p Compare the performance of the top-down, bottom-up, and left-corner parsers using the
same grammar and three grammatical test sentences. Use t imeit to log the amount of
time each parser takes on the same sentence (Section 6.5.4). Write a function which runs
all three parsers on all three sentences, and prints a 3-by-3 grid of times, as well as row
and column totals. Discuss your findings.

3. (D Read up on “garden path” sentences. How might the computational work of a parser
relate to the difficulty humans have with processing these sentences? http://en.
wikipedia.org/wiki/Garden_path_sentence

4. s Left-corner parser: Develop a left-corner parser based on the recursive descent parser,
and inheriting from ParseI. (Note, this exercise requires knowledge of Python classes,
covered in Chapter 10.)

5. % Extend NLTK’s shift-reduce parser to incorporate backtracking, so that it is guaranteed
to find all parses that exist (i.e. it is complete).

7.6 Conclusion

We began this chapter talking about confusing encounters with grammar at school. We just wrote what
we wanted to say, and our work was handed back with red marks showing all our grammar mistakes.
If this kind of “grammar” seems like secret knowledge, the linguistic approach we have taken in this
chapter is quite the opposite: grammatical structures are made explicit as we build trees on top of
sentences. We can write down the grammar productions, and parsers can build the trees automatically.
This thoroughly objective approach is widely referred to as generative grammar.

Note that we have only considered “toy grammars,” small grammars that illustrate the key aspects
of parsing. But there is an obvious question as to whether the general approach can be scaled up to
cover large corpora of natural languages. How hard would it be to construct such a set of productions
by hand? In general, the answer is: very hard. Even if we allow ourselves to use various formal
devices that give much more succinct representations of grammar productions (some of which will be
discussed in Chapter 8), it is still extremely difficult to keep control of the complex interactions between
the many productions required to cover the major constructions of a language. In other words, it is hard
to modularize grammars so that one portion can be developed independently of the other parts. This
in turn means that it is difficult to distribute the task of grammar writing across a team of linguists.
Another difficulty is that as the grammar expands to cover a wider and wider range of constructions,
there is a corresponding increase in the number of analyses which are admitted for any one sentence.
In other words, ambiguity increases with coverage.

Despite these problems, there are a number of large collaborative projects which have achieved in-
teresting and impressive results in developing rule-based grammars for several languages. Examples are
the Lexical Functional Grammar (LFG) Pargram project (http://www?2.parc.com/istl/groups/nltt/pargram/),
the Head-Driven Phrase Structure Grammar (HPSG) LinGO Matrix framework (http://www.delph-
in.net/matrix/), and the Lexicalized Tree Adjoining Grammar XTAG Project (http://www.cis.upenn.edu/~xtag/).

7.7 Summary (notes)

m Sentences have internal organization, or constituent structure, which can be represented using a
tree; notable features of constituent structure are: recursion, heads, complements, modifiers
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B A grammar is a compact characterization of a potentially infinite set of sentences; we say that a
tree is well-formed according to a grammar, or that a grammar licenses a tree.

m Syntactic ambiguity arises when one sentence has more than one syntactic structure (e.g. prepo-
sitional phrase attachment ambiguity).

m A parser is a procedure for finding one or more trees corresponding to a grammatically well-
formed sentence.

m A simple top-down parser is the recursive descent parser (summary, problems)
m A simple bottom-up parser is the shift-reduce parser (summary, problems)

m It is difficult to develop a broad-coverage grammar...

7.8 Further Reading

There are many introductory books on syntax. [O’Gradyl989LI]_ is a general introduction to lin-
guistics, while [Radford, 1988] provides a gentle introduction to transformational grammar, and can be
recommended for its coverage of transformational approaches to unbounded dependency constructions.

[Burton-Roberts, 1997] is very practically oriented textbook on how to analyse constituency in
English, with extensive exemplification and exercises. [Huddleston and Pullum, 2002] provides an up-
to-date and comprehensive analysis of syntactic phenomena in English.

m LALR(1)
m Marcus parser
m Lexical Functional Grammar (LFG)

— Pargram project
— LFG Portal

m Head-Driven Phrase Structure Grammar (HPSG) LinGO Matrix framework

m Lexicalized Tree Adjoining Grammar XTAG Project

About this document...

This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It
is distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Ver-
sion 0.7.4 beta, under the terms of the Creative Commons Attribution-ShareAlike
License [http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4444 Fri Apr 27 07:10:42 EST 2007
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Chapter 8

Advanced Parsing

8.1 Introduction

Chapter 7 started with an introduction to constituent structure in English, showing how words in a
sentence group together in predictable ways. We showed how to describe this structure using syntactic
tree diagrams, and observed that it is sometimes desirable to assign more than one such tree to a given
string. In this case, we said that the string was structurally ambiguous; and example was old men and
women.

Treebanks are language resources in which the syntactic structure of a corpus of sentences has been
annotated, usually by hand. However, we would also like to be able to produce trees algorithmically. A
context-free phrase structure grammar (CFG) is a formal model for describing whether a given string
can be assigned a particular constituent structure. Given a set of syntactic categories, the CFG uses a
set of productions to say how a phrase of some category A can be analysed into a sequence of smaller
parts a; ... o,. But a grammar is a static description of a set of strings; it does not tell us what sequence
of steps we need to take to build a constituent structure for a string. For this, we need to use a parsing
algorithm. We presented two such algorithms: Top-Down Recursive Descent (7.5.1) and Bottom-Up
Shift-Reduce (7.5.2). As we pointed out, both parsing approaches suffer from important shortcomings.
The Recursive Descent parser cannot handle left-recursive productions (e.g., productions such as NP —
NP PP), and blindly expands categories top-down without checking whether they are compatible with
the input string. The Shift-Reduce parser is not guaranteed to find a valid parse for the input even if one
exists, and builds substructure without checking whether it is globally consistent with the grammar. As
we will describe further below, the Recursive Descent parser is also inefficient in its search for parses.

So, parsing builds trees over sentences, according to a phrase structure grammar. Now, all the
examples we gave in Chapter 7 only involved toy grammars containing a handful of productions. What
happens if we try to scale up this approach to deal with realistic corpora of language? Unfortunately,
as the coverage of the grammar increases and the length of the input sentences grows, the number of
parse trees grows rapidly. In fact, it grows at an astronomical rate.

Let’s explore this issue with the help of a simple example. The word fish is both a noun and a verb.
We can make up the sentence fish fish fish, meaning fish like to fish for other fish. (Try this with police
if you prefer something more sensible.) Here is a toy grammar for the “fish” sentences.

>>> nltk_lite.parse cfg, chart
>>> grammar = cfg.parse_grammar ("""
S —> NP V NP
. NP -> NP Sbar
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. Sbar => NP V
.. NP —> ’"fish’
.V —> "fish’

mn ll)

Now we can try parsing a longer sentence, fish fish fish fish fish, which amongst other things, means
“fish that other fish fish are in the habit of fishing fish themselves’. We use the NLTK chart parser,
which is presented later on in this chapter. This sentence has two readings.

>>> tokens = ["fish"] * 5

>>> cp = chart.ChartParse (grammar, chart.TD_STRATEGY)
>>> tree cp.get_parse_list (tokens):

C tree

(S:

(NP: ’fish’)

(V: "fish’)

(NP: (NP: 'fish’) (Sbar: (NP: ’'fish’) (V: ’"fish’))))
(s:

(NP: (NP: 'fish’) (Sbar: (NP: 'fish’) (V: ’'fish’)))

(V: "fish’)

(NP: "fish’))

As the length of this sentence goes up (3, 5, 7, ...) we get the following numbers of parse trees: 1; 2;
5;14; 42; 132; 429; 1,430; 4,862; 16,796, 58,786; 208,012; ... (These are the Catalan numbers, which
we saw in an exercise in Section 6.5). The last of these is for a sentence of length 23, the average length
of sentences in the WSJ section of Penn Treebank. For a sentence of length 50 there would be over
10'2 parses, and this is only half the length of the Piglet sentence (Section 7.2), which young children
process effortlessly. No practical NLP system could construct all millions of trees for a sentence and
choose the appropriate one in the context. It’s clear that humans don’t do this either!

Note that the problem is not with our choice of example. [Church and Patil, 1982] point out that
the syntactic ambiguity of PP attachment in sentences like (58) also grows in proportion to the Catalan
numbers.

(58) Put the block in the box on the table.

So much for structural ambiguity; what about lexical ambiguity? As soon as we try to construct
a broad-coverage grammar, we are forced to make lexical entries highly ambiguous for their part of
speech. In a toy grammar, a is only a determiner, dog is only a noun, and runs is only a verb.
However, in a broad-coverage grammar, a is also a noun (e.g. part a), dog is also a verb (meaning
to follow closely), and runs is also a noun (e.g. ski runs). In fact, all words can be referred to by name:
e.g. the verb ’ate’ is spelled with three letters; in speech we do not need to supply quotation marks.
Furthermore, it is possible to verb most nouns. Thus a parser for a broad-coverage grammar will be
overwhelmed with ambiguity. Even complete gibberish will often have a reading, e.g. the a are of I. As

[Abney, 1996b] has pointed out, this is not word salad but a grammatical noun phrase, in which are is
a noun meaning a hundredth of a hectare (or 100 sq m), and @ and I are nouns designating coordinates,
as shown in Figure 8.1.

Even though this phrase is unlikely, it is still grammatical and a a broad-coverage parser should be
able to construct a parse tree for it. Similarly, sentences which seem to be unambiguous, such as
John saw Mary, turn out to have other readings we would not have anticipated (as Abney explains).
This ambiguity is unavoidable, and leads to horrendous inefficiency in parsing seemingly inoccuous
sentences.
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Figure 8.1: The a are of |

Let’s look more closely at this issue of efficiency. The top-down recursive-descent parser presented
in Chapter 7 can be very inefficient, since it often builds and discards the same sub-structure many
times over. We see this in Figure 8.1, where a phrase the block is identified as a noun phrase several
times, and where this information is discarded each time we backtrack.

Note

You should try the recursive-descent parser demo if you haven’t already:
nltk_lite.draw.srparser.demo ()

a. Initial stage b. Backtracking
3
|
vP VP
[~
v HP v HP
[~ [~
Det H NP PP
find the block find
" find the block in the box on tne tabe | 7 find the block in the box on the table
c. Failing to match on d. Completed parse
3 3
| |
VP VP
[~ T T —
v HP v NP
r--‘h-"--. /_-q-\
HP PP HP PP
I P N P
Det H P HP NP PP P HP
[~ AN N AN
Det N Det H P NP Det N
Dllal N
find the block in the box find the hlock in the hox on the tahle
Ui Tt biock i e sox o we e T find the block n the bex on e table

Table 8.1: Backtracking and Repeated Parsing of Subtrees

In this chapter, we will present two independent methods for dealing with ambiguity. The first is
chart parsing, which uses the algorithmic technique of dynamic programming to derive the parses of
an ambiguous sentence more efficiently. The second is probabilistic parsing, which allows us to rank
the parses of an ambiguous sentence on the basis of evidence from corpora.
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In the introduction to this chapter, we pointed out that the simple parsers discussed in Chapter 7 suffered
from limitations in both completeness and efficiency. In order to remedy these, we will apply the
algorithm design technique of dynamic programming to the parsing problem. As we saw in Section
6.5.3, dynamic programming stores intermediate results and re-uses them when appropriate, achieving
significant efficiency gains. This technique can be applied to syntactic parsing, allowing us to store




8.2. Chart Parsing

partial solutions to the parsing task and then look them up as necessary in order to efficiently arrive at a
complete solution. This approach to parsing is known as chart parsing, and is the focus of this section.

8.2.1 Well-formed Substring Tables
Let’s start off by defining a simple grammar.

>>> nltk lite.parse cfg
>>> grammar = cfg.parse_grammar ("""
S —> NP VP
. PP => P NP
. NP —> Det N | NP PP
. VP -=> V NP | VP PP
Det -> ’the’
. N —-> "kids’ | "box’ | ’'floor’
. V —> ’opened’
P -> 'on’
")

As you can see, this grammar allows the VP opened the box on the floor to be analysed in two ways,
depending on where the PP is attached.

(59a) VP
V/\P
opened NP/\PP
o4 N b
thle b(l)x omP
Det N
the floor
(59b) vp

\ NP P
opened De{\N on/\NP
the box De{\N
the floor

Dynamic programming allows us to build the PP on the floor just once. The first time we build it we
save it in a table, then we look it up when we need to use it as a subconstituent of either the object NP
or the higher vP. This table is known as a well-formed substring table (or WFST for short). We will
show how to construct the WEST bottom-up so as to systematically record what syntactic constituents
have been found.
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‘ the ‘ kids ‘opened‘ the ‘ box ‘ on ‘ the ‘ floor ‘

0 1 2 3 4 5 6 7 8

Figure 8.2: Slice Points in the Input String

Let’s set our input to be the sentence the kids opened the box on the floor. It is helpful to think of
the input as being indexed like a Python list. We have illustrated this in Figure 8.2.
This allows us to say that, for instance, the word opened spans (2, 3) in the input. This is reminiscent
of the slice notation:

>>> tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
>>> tokens[2:3]
[ opened’ ]

In a WFST, we record the position of the words by filling in cells in a triangular matrix: the vertical
axis will denote the start position of a substring, while the horizontal axis will denote the end position
(thus opened will appear in the cell with coordinates (2, 3)). To simplify this presentation, we will
assume each word has a unique lexical category, and we will store this (not the word) in the matrix. So
cell (2, 3) will contain the entry V. More generally, if our input string is aja, a,, and our grammar
contains a production of the form A — a;, then we add A to the cell (i-1, 1).

So, for every word in tokens, we can look up in our grammar what category it belongs to.

>>> grammar.productions (rhs=tokens[2])
[V —> ’"opened’]

For our WFST, we create an (n — 1) X (n — 1) matrix as a list of lists in Python, and initialize it with
the lexical categories of each token, in the init_wfst () function in Listing 8.1. We also define a
utility function display () to pretty-print the WEST for us. As expected, there is a v in cell (2, 3).

Returning to our tabular representation, given that we have DET in cell (0, 1), and N in cell (1, 2),
what should we put into cell (0, 2)? In other words, what syntactic category derives the kids? We have
already established that DET derives the and N derives kids, so we need to find a production of the form
A — DET N, that is, a production whose right hand side matches the categories in the cells we have

already found. From the grammar, we know that we can enter NP in cell (0,2).

More generally, we can enter A in (i, j) if there is a production A — B C, and we find nonterminal
Bin (i,k) and C in (k, j). Listing 8.1 uses this inference step to complete the WEST.

Note

To help us easily retrieve productions by their right hand sides, we create an index
for the grammar. This is an example of a space-time trade-off: we do a reverse
lookup on the grammar, instead of having to check through entire list of productions
each time we want to look up via the right hand side.

We conclude that there is a parse for the whole input string once we have constructed an S node
that covers the whole input, from position 0 to position §; i.e., we can conclude that S =>* aja, a,.

Notice that we have not used any built-in parsing functions here. We’ve implemented a complete,
primitive chart parser from the ground up!

Bird, Klein & Loper 203 April 27, 2007



8.2. Chart Parsing

Listing 31 Acceptor Using Well-Formed Substring Table (based on CYK algorithm)

init_wfst (tokens, grammar) :

numtokens = len (tokens)

wEst = [[’.’ i range (numtokens+1) ] 3j range (numtokens+1) ]
i range (numtokens) :
productions = grammar.productions (rhs=tokens[i])
wfst[i] [i+1l] = productions[0].1lhs()

return wfst

complete wfst (wfst, tokens, trace=False):

index = {}
prod grammar .productions () :
index[prod.rhs ()] = prod.lhs()

numtokens = len (tokens)

span range (2, numtokens+1):
start range (numtokens+l-span) :
end = start + span
mid range (start+1l, end):
ntl, nt2 = wfst[start] [mid], wfst[mid] [end]
(ntl,nt2) index:
trace:
"[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \

(start, ntl, mid, nt2, end, start, index[(ntl,nt2)], end)
wfst [start] [end] = index[(ntl,nt2)]
return wfst
display (wfst, tokens):
"\nWEST ' + ' ' .join([("%-44" % i) i range (1, len(wfst))])
i range (len (wfst)-1) :

"sd "% i,

j range (1, len(wfst)):

"$—4s" % wfst[i][]],

>>> wfst0 = init_wfst (tokens, grammar)
>>> display (wfst0, tokens)

WEST 1 2 3 4 5 6 7 8
0 Det .

1 N .

2 v .

3 Det .

4 N .

5 P .

6 . . . . . . Det .
7 . . N

>>> wfstl = complete_wfst (wfst0, tokens)
>>> display (wfstl, tokens)

WEFST 1 2 3 4 5 6 7 8
0 Det NP . . S . . S
1 N . . . . . .
2 . . A% . VP . . VP
3 . . . Det NP . . NP
4 N .
5 P . PP
6 Det NP
7 N
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8.2.2 Charts
By setting t race to True when calling the function complete_wfst (), we get additional output.

>>> wfstl = complete_wfst (wfst0, tokens, trace=True)
[0] Det [1] N [2] ==> [0] [2]
[3] Det [4] N [5] ==> [3] [5]
[6] Det [7] N [8] ==> [6] [8]
[2] Vv [3] NP [5] ==> [2] [5]
[5] P [6] NP [8] ==> [5] [81]
[0] NP [2] VP [5] ==> [O0] [5]
[3] NP [5] PP [8] ==> [3] [8]
[2] vV [3] NP [8] ==> [2] [8]
[2] VP [5] PP [8] ==> [2] [8]
[0] NP [2] VP [8] ==> [0] [81]

LR L EEEE

For example, this says that since we found Det at wEst [0] [1] and N at wEst [1] [2], we can
add NP to wfst [0] [2]. The same information can be represented in a directed acyclic graph, as
shown in Figure 8.2(a). This graph is usually called a chart. Figure 8.2(b) is the corresponding graph
representation, where we add a new edge labeled NP to cover the input from 0 to 2.

a. Initialized WEFST

DET N \'4 DET N P DET N

0 the o kids opened e the 0 box 6 on e the o floor e

b. Adding an NP Edge

Table 8.2: A Graph Representation for the WFST

(Charts are more general than the WFSTs we have seen, since they can hold multiple hypotheses
for a given span.)

A WEST is a data structure that can be used by a variety of parsing algorithms. The particular
method for constructing a WFST that we have just seen and has some shortcomings. First, as you
can see, the WFEST is not itself a parse tree, so the technique is strictly speaking recognizing that a
sentence is admitted by a grammar, rather than parsing it. Second, it requires every non-lexical grammar
production to be binary (see Section 8.5.1). Although it is possible to convert an arbitrary CFG into this
form, we would prefer to use an approach without such a requirement. Third, as a bottom-up approach
it is potentially wasteful, being able to propose constituents in locations that would not be licensed by
the grammar. Finally, the WEST did not represent the structural ambiguity in the sentence (i.e. the two
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verb phrase readings). The VP in cell (2,8) was actually entered twice, once for a V NP reading, and
oce for a VP PP reading. In the next section we will address these issues.

8.2.3 Exercises

1. %* Consider the sequence of words: Buffalo buffalo Buffalo buffalo buffalo buffalo Buf-
falo buffalo. This is a grammatically correct sentence, as explained at http://en.
wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffe
Consider the tree diagram presented on this Wikipedia page, and write down a
suitable grammar. Normalise case to lowercase, to simulate the problem that a lis-
tener has when hearing this sentence. Can you find other parses for this sentence?
How does the number of parse trees grow as the sentence gets longer? (More ex-
amples of these sentences can be found at http://en.wikipedia.org/wiki/
List_of_homophonous_phrases).

2. (B Consider the algorithm in Listing 8.1. Can you explain why parsing context-free
grammar is proportional to n>?

3. (O Modify the functions init_wfst () and complete_wfst () so that the contents
of each cell in the WFST is a set of non-terminal symbols rather than a single non-terminal.

4. % Modify the functions init_wfst () and complete_wfst () so that when a non-
terminal symbol is added to a cell in the WFST, it includes a record of the cells from which
it was derived. Implement a function which will convert a WFST in this form to a parse
tree.

8.3 Active Charts

One important aspect of the tabular approach to parsing can be seen more clearly if we look at the graph
representation: given our grammar, there are two different ways to derive a top-level VP for the input,
as shown in Table 8.3(a,b). In our graph representation, we simply combine the two sets of edges to
yield Table 8.3(c).

a. VP > V NP

e opened 9
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b. VP — VP PP

Table 8.3: Combining Multiple Parses in a Single Chart

However, given a WFST we cannot necessarily read off the justification for adding a particular edge.
For example, in 8.3(b), [Edge: VP, 2:8] mightowe its existence to a production VP —> V NP PP.
Unlike phrase structure trees, a WEST does not encode a relation of immediate dominance. In order
to make such information available, we can label edges not just with a non-terminal category, but with
the whole production which justified the addition of the edge. This is illustrated in Figure 8.3.

S = NPVP

NP = DET N

Figure 8.3: Chart Annotated with Productions

In general, a chart parser hypothesizes constituents (i.e. adds edges) based on the grammar,
the tokens, and the constituents already found. Any constituent that is compatible with the current
knowledge can be hypothesized; even though many of these hypothetical constituents will never be
used in the final result. A WFST just records these hypotheses.
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All of the edges that we’ve seen so far represent complete constituents. However, as we will see, it
is helpful to hypothesize incomplete constituents. For example, the work done by a parser in processing
the production VP — V NP PP can be reused when processing VP — V NP. Thus, we will record the
hypothesis that “the Vv constituent /ikes is the beginning of a VvP.”

We can record such hypotheses by adding a dot to the edge’s right hand side. Material to the left of
the dot specifies what the constituent starts with; and material to the right of the dot specifies what still
needs to be found in order to complete the constituent. For example, the edge in the Figure 8.4 records
the hypothesis that “a VP starts with the Vv likes, but still needs an NP to become complete’:

V- VP. NP
@ Lee likes coffee @

Figure 8.4: Chart Containing Incomplete VP Edge

These dotted edges are used to record all of the hypotheses that a chart parser makes about constituents

in a sentence. Formally a dotted edge [A — ¢ ... ¢4 ® C4+41 --- Cn, (i, j)] records the hypothesis that
a constituent of type A with span (i, j) starts with children c; ... cg4, but still needs children cg41 ...
¢, to be complete (c; ... ¢g and c441 ... ¢, may be empty). If d = n, then c44; ... ¢, is empty and the
edge represents a complete constituent and is called a complete edge. Otherwise, the edge represents
an incomplete constituent, and is called an incomplete edge. In Figure 8.4(a), [VP — V NP *, (1, 3)] is
a complete edge, and [VP — V * NP, (1, 2)] is an incomplete edge.

Ifd =0, then c; ... ¢, is empty and the edge is called a self-loop edge. This is illustrated in Table
8.4(b). If a complete edge spans the entire sentence, and has the grammar’s start symbol as its left-hand
side, then the edge is called a parse edge, and it encodes one or more parse trees for the sentence. In
Table 8.4(c), [S —= NP VP ¢, (0, 3)] is a parse edge.

a. Incomplete  Edge | b. Self Loop Edge | c. Parse Edge

V= VPNP. VP = . VNP S—= NPVP.

@ Lee likes @ coffee @

0 Lee @ likes @ coffee

Table 8.4: Chart Terminology

8.3.1 The Chart Parser

To parse a sentence, a chart parser first creates an empty chart spanning the sentence. It then finds
edges that are licensed by its knowledge about the sentence, and adds them to the chart one at a time
until one or more parse edges are found. The edges that it adds can be licensed in one of three ways:

1. The input can license an edge. In particular, each word w; in the input licenses the
complete edge [w; — *, (i, i+1)].

2. The grammar can license an edge. In particular, each grammar production A — « licenses
the self-loop edge [A — * «, (i, )] forevery i,0 < i<n.

3. The current chart contents can license an edge.
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However, it is not wise to add all licensed edges to the chart, since many of them will not be used
in any complete parse. For example, even though the edge in the following chart is licensed (by the
grammar), it will never be used in a complete parse:

VP = . VNP

Lee @ likes @ coffee @

Figure 8.5: Chart Containing Redundant Edge

Chart parsers therefore use a set of rules to heuristically decide when an edge should be added to a
chart. This set of rules, along with a specification of when they should be applied, forms a strategy.

8.3.2 The Fundamental Rule

One rule is particularly important, since it is used by every chart parser: the Fundamental Rule. This
rule is used to combine an incomplete edge that’s expecting a nonterminal B with a following, complete
edge whose left hand side is B.

(60) Fundamental Rule

If the chart contains the edges
[A—=a¢°*Bf, (i, ]
B—=vy -, (3, k)]
then add the new edge
[A—=>0a B*p, (i, k)]
where o, f, and y are (possibly empty) sequences

of terminals or non-terminals

Note that the dot has moved one place to the right, and the span of this new edige is the combined
span of the other two. Note also that in adding this new edge we do not remove the other two, because
they might be used again.

A somewhat more intuitive version of the operation of the Fundamental Rule can be given using
chart diagrams. Thus, if we have a chart of the form shown in Table 8.5(a), then we can add a new
complete edge as shown in Table 8.5(b).

a. Input | b. Output
A-a.BB B — A—->axB. B

Table 8.5: Fundamental Rule

2The Fundamental Rule corresponds to the Completer function in the Earley algorithm; cf. [Jurafsky and Martin, 2000].
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8.3.3 Bottom-Up Parsing

As we saw in Chapter 7, bottom-up parsing starts from the input string, and tries to find sequences
of words and phrases that correspond to the right hand side of a grammar production. The parser
then replaces these with the left-hand side of the production, until the whole sentence is reduced to
an S. Bottom-up chart parsing is an extension of this approach in which hypotheses about structure
are recorded as edges on a chart. In terms of our earlier terminology, bottom-up chart parsing can be
seen as a parsing strategy; in other words, bottom-up is a particular choice of heuristics for adding new
edges to a chart.

The general procedure for chart parsing is inductive: we start with a base case, and then show how
we can move from a given state of the chart to a new state. Since we are working bottom-up, the base
case for our induction will be determined by the words in the input string, so we add new edges for
each word. Now, for the induction step, suppose the chart contains an edge labeled with constituent
A. Since we are working bottom-up, we want to build constituents which can have an A as a daughter.
In other words, we are going to look for productions of the form B — A f§ and use these to label new
edges.

Let’s look at the procedure a bit more formally. To create a bottom-up chart parser, we add to the
Fundamental Rule two new rules: the Bottom-Up Initialization Rule; and the Bottom-Up Predict
Rule. The Bottom-Up Initialization Rule says to add all edges licensed by the input.

(61) Bottom-Up Initialization Rule

For every word w; add the edge

(w, = % , (i, i+1)]

Table 8.6(a) illustrates this rule using the chart notation, while Table 8.6(b) shows the bottom-up
initialization for the input Lee likes coffee.

a. Generic | b. Example
w7 Lee — . likes = . coffee = -«
0 W, @ 0 Lee o likes coffee

Table 8.6: Bottom-Up Initialization Rule

Notice that the dot on the right hand side of these productions is telling us that we have complete
edges for the lexical items. By including this information, we can give a uniform statement of how the
Fundamental Rule operates in Bottom-Up parsing, as we will shortly see.

Next, suppose the chart contains a complete edge e whose left hand category is A. Then the Bottom-
Up Predict Rule requires the parser to add a self-loop edge at the left boundary of e for each grammar
production whose right hand side begins with category A.

(62) Bottom-Up Predict Rule

If the chart contains the complete edge
(A = a -, (i, 7]

and the grammar contains the production
B—= Ap

then add the self-loop edge
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(B—=> <*AB, (i, 1)]

Graphically, if the chart looks as in Figure 8.7(a), then the Bottom-Up Predict Rule tells the parser
to augment the chart as shown in Figure 8.7(b).

a. Input | b. Output

A= .

Table 8.7: Bottom-Up Prediction Rule

To continue our earlier example, let’s suppose that our grammar contains the lexical productions
shown in (63a). This allows us to add three self-loop edges to the chart, as shown in (63b).

(63a) NP — Lee | coffee

v — likes

(63b)

V — . likes NP — . coffee

NP — . Lee

Once our chart contains an instance of the pattern shown in Figure 8.7(b), we can use the Fun-
damental Rule to add an edge where we have “moved the dot” one position to the right, as shown in
Figure 8.8 (we have omitted the self-loop edges for simplicity.)

a. Generic b. Example

B—A.B

Table 8.8: Fundamental Rule used in Bottom-Up Parsing

We will now be able to add new self-loop edges such as [S — ¢ NP VP, (0, 0)] and [VP — * VP NP, (1,
1)], and use these to build more complete edges.
Using these three productions, we can parse a sentence as shown in (64).

(64) Bottom-Up Strategy

Create an empty chart spanning the sentence.
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Apply the Bottom-Up Initialization Rule to each word.
Until no more edges are added:
Apply the Bottom-Up Predict Rule everywhere it applies.
Apply the Fundamental Rule everywhere it applies.

Return all of the parse trees corresponding to the parse edges in the chart

NLTK provides a useful interactive tool for visualizing the way in which charts are built, n1tk_lite
.draw.chart.demo (). The tool comes with a pre-defined input string and grammar, but both of
these can be readily modified with options inside the Edit menu. Figure 8.6 illustrates a window after
the grammar has been updated:

‘9086 \ CFG Editor ;
Productions: Start Symbol: |5

S = NP VP

VP =V NP

MNP =HN

NP = 'Lee’ | 'coffee’

v = 'likes'

Figure 8.6: Modifing the demo() grammar

Note

To get the symbol = illustrated in Figure 8.6. you just have to type the keyboard
characters ->".

Figure 8.7 illustrates the tool interface. In order to invoke a rule, you simply click one of the green
buttons at the bottom of the window. We show the state of the chart on the input Lee likes coffee
after three applications of the Bottom-Up Initialiation Rule, followed by successive applications of the
Bottom-Up Predict Rule and the Fundamental Rule.

Notice that in the topmost pane of the window, there is a partial tree showing that we have
constructed an S with an NP subject in the expectation that we will be able to find a VP.

8.3.4 Top-Down Parsing

Top-down chart parsing works in a similar way to the recursive descent parser discussed in Chapter 7,
in that it starts off with the top-level goal of finding an S. This goal is then broken into the subgoals of
trying to find constituents such as NP and VP which can be immediatedly dominated by S. To create a
top-down chart parser, we use the Fundamental Rule as before plus three other rules: the Top-Down
Initialization Rule, the Top-Down Expand Rule, and the Top-Down Match Rule. The Top-Down
Initialization Rule in (65) captures the fact that the root of any parse must be the start symbol S. It is
illustrated graphically in Table 8.9.

(65) Top-Down Initialization Rule

For every grammar production of the form:
s = o

add the self-loop edge:
[s = <o, (0, 0)]
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Figure 8.7: Incomplete chart for Lee likes coffee
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a. Generic b. Example

$>.« S— .NPVP

Lee @ likes @ coffee @

Table 8.9: Top-Down Initialization Rule

As we mentioned before, the dot on the right hand side of a production records how far our goals
have been satisfied. So in Figure 8.9(b), we are predicting that we will be able to find an NP and a
VP, but have not yet satisfied these subgoals. So how do we pursue them? In order to find an NP, for
instance, we need to invoke a production which has NP on its left hand side. The step of adding the
required edge to the chart is accomplished with the Top-Down Expand Rule (66). This tells us that if
our chart contains an incomplete edge whose dot is followed by a nonterminal B, then the parser should
add any self-loop edges licensed by the grammar whose left-hand side is B.

(66) Top-Down Expand Rule

If the chart contains the incomplete edge
[A—=a¢* BB, (i, 7]

then for each grammar production
B —= v

add the edge
(B = v, (J, 3]

Thus, given a chart that looks like the one in Table 8.10(a), the Top-Down Expand Rule augments it
with the edge shown in Table 8.10(b). In terms of our running example, we now have the chart shown
in Table 8.10(c).

a. Input | b. Output | c. Example
A-a-.B B— .y NP — . Lee

0 Lee @ likes @ coffee @

Table 8.10: Top-Down Expand Rule

The Top-Down Match rule allows the predictions of the grammar to be matched against the input
string. Thus, if the chart contains an incomplete edge whose dot is followed by a terminal w, then the
parser should add an edge if the terminal corresponds to the current input symbol.

(67) Top-Down Match Rule
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If the chart contains the incomplete edge
(A= a°*w B, (i, HI,

where w; is the j th word of the input,

then add a new complete edge

[Wj - * (jl j+l)]

Graphically, the Top-Down Match rule takes us from Table 8.11(a), to Table 8.11(b).

a. Input | b. Output

A—'O(-ij W

Table 8.11: Top-Down Match Rule

Figure 8.12(a) illustrates how our example chart after applying the Top-Down Match rule. What
rule is relevant now? The Fundamental Rule. If we remove the self-loop edges from Figure 8.12(a) for
simplicity, the Fundamental Rule gives us Figure 8.12(b).

a. Apply Top-Down Match Rule | b. Apply  Fundamental = Rule
NP = . Lee S— NP.VP

Lee = . ﬁ

0 Lee o likes @ coffee @ Q Lee o likes @ coffee @

Table 8.12: Top-Down Example (cont)

Using these four rules, we can parse a sentence top-down as shown in (68).

(68) Top-Down Strategy

Create an empty chart spanning the sentence.
Apply the Top-Down Initialization Rule.
Until no more edges are added:
Apply the Top-Down Expand Rule everywhere it applies.
Apply the Top-Down Match Rule everywhere it applies.
Apply the Fundamental Rule everywhere it applies.
Return all of the parse trees corresponding to the parse edges in

the chart.

We encourage you to experiment with the NLTK chart parser demo, as before, in order to test out
the top-down strategy yourself.
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8.3.5 The Earley Algorithm

The Earley algorithm [Earley, 1970] is a parsing strategy that resembles the Top-Down Strategy, but
deals more efficiently with matching against the input string. Table 8.13 shows the correspondence
between the parsing rules introduced above and the rules used by the Earley algorithm.

Top-Down/Bottom-Up Earley
Top-Down Initialization Rule Top- | Predictor Rule
Down Expand Rule
Top-Down/Bottom-Up Match Rule Scanner Rule
Fundamental Rule Completer Rule

Table 8.13: Terminology for rules in the Earley algorithm

Let’s look in more detail at the Scanner Rule. Suppose the chart contains an incomplete edge with a
lexical category P immediately after the dot, the next word in the input is w, P is a part-of-speech label
for w. Then the Scanner Rule admits a new complete edge in which P dominates w. More precisely:

(69) Scanner Rule

If the chart contains the incomplete edge
[A = a PP, (i, 7]
and w; is the j™ word of the input,
and P is a valid part of speech for wj,
then add the new complete edges
[P — wj ® (JI j+1)]
[wj = *, (3, J+1)]

To illustrate, suppose the input is of the form / saw ..., and the chart already contains the edge [VP — *
V ..., (1, 1)]. Then the Scanner Rule will add to the chart the edges [V -> ’saw’, (1, 2)] and ['saw’— e,
(1, 2)]. So in effect the Scanner Rule packages up a sequence of three rule applications: the Bottom-Up
Initialization Rule for [w — ¢, (j, j+1)], the Top-Down Expand Rule for [P — ¢ w}, (j, j)], and the
Fundamental Rule for [P — w; ¢, (j, j+1))]. This is considerably more efficient than the Top-Down
Strategy, which adds a new edge of the form [P — ¢ w, (j, j)] for every lexical rule P — w, regardless
of whether w can be found in the input. By contrast with Bottom-Up Initialization, however, the Earley
algorithm proceeds strictly left-to-right through the input, applying all applicable rules at that point in
the chart, and never backtracking. The NLTK chart parser demo, described above, allows the option of
parsing according to the Earley algorithm.

8.3.6 Chart Parsing in NLTK

nltk_lite.parse.chart defines a simple yet flexible chart parser, ChartParse. A new chart
parser is constructed from a grammar and a list of chart rules (also known as a strategy). These rules
will be applied, in order, until no new edges are added to the chart. In particular, ChartParse uses
the algorithm shown in (70).

(70) Until no new edges are added:
For each chart rule R:
Apply R to any applicable edges in the chart.

Return any complete parses in the chart.
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nltk_lite.parse.chart defines two ready-made strategies: TD_STRATEGY, a basic top-
down strategy; and BU_STRATEGY, a basic bottom-up strategy. When constructing a chart parser, you
can use either of these strategies, or create your own.

The following example illustrates the use of the chart parser. We start by defining a simple grammar,
and tokenizing a sentence. We make sure it is a list (not an iterator), since we wish to use the same
tokenized sentence several times.

Listing 32
nltk_lite.parse cfg, ChartParse, BU_STRATEGY
nltk_lite tokenize

grammar = cfg.parse_grammar ('’’’
NP —> NNS | JJ NNS | NP CC NP
NNS -> "men" | "women" | "children" | NNS CC NNS
JJ S lloldH | Hyoungll
cc -> Handﬂ | "orH

rrr )
parser = ChartParse (grammar, BU_STRATEGY)

>>> sent = list (tokenize.whitespace(’'old men and women’))

>>> tree parser.get_parse_list (sent):

. tree

(NP: (JJ: 'old’) (NNS: (NNS: 'men’) (CC: "and’) (NNS: ’'women’)))

(NP: (NP: (JJ: 'old’) (NNS: 'men’)) (CC: "and’) (NP: (NNS: ’'women’)))

The t race parameter can be specified when creating a parser, to turn on tracing (higher trace levels
produce more verbose output). Example 8.3 shows the trace output for parsing a sentence with the
bottom-up strategy. Notice that in this output, ’ [ ————— ] 7 indicates a complete edge, ’ >’ indicates
a self-loop edge, and ' [————— >’ indicates an incomplete edge.

8.3.7 Exercises

1. % Use the graphical chart-parser interface to experiment with different rule invocation
strategies. Come up with your own strategy which you can execute manually using the
graphical interface. Describe the steps, and report any efficiency improvements it has (e.g.
in terms of the size of the resulting chart). Do these improvements depend on the structure
of the grammar? What do you think of the prospects for significant performance boosts
from cleverer rule invocation strategies?

2. &t We have seen that a chart parser adds but never removes edges from a chart. Why?

3. (P Write a program to compare the efficiency of a top-down chart parser compared with
a recursive descent parser (Section 7.5.1). Use the same grammar and input sentences for
both. Compare their performance using the t imeit module (Section 6.5.4).
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Listing 33 Trace of Bottom-Up Parser

>>> parser = ChartParse (grammar, BU_STRATEGY, trace=2)
>>> trees = parser.get_parse_list (sent)

|. old . men . and . women .|

Bottom Up Init Rule:

| [-m=——————— ] .| [0:1] ’"old’

I ——— ] .1 [1:2] ’"men’

I | —— ] .| [2:3] "and’
I

| . . .
Bottom Up Predict Rule:
| >

I >

[3:4] ’'women’

[0:0] JJ —> » 'old’
[1:1] NNS -> *x 'men’
[2:2] CC => *x "and’
|. . . > [3:3] NNS -> *x ’'women’
Fundamental Rule:
| [0:1] JJ —> ’'o0ld’ =«

. . .| [1:2] NNS -> 'men’ =*
|. . [-————————- 1 .l [2:3] CC => "and’ =*

|. . . | [3:4] NNS -> ’'women’ =*
Bottom Up Predict Rule:
| >

| . >

| . >

[0:0] NP —> x JJ NNS
[1:1] NP -> * NNS
[1:1] NNS -> x NNS CC NNS

[3:3] NP —> * NNS
|. . . > [3:3] NNS —> * NNS CC NNS
Fundamental Rule:
| [-———————— > .] [0:1] NP —> JJ * NNS
| . [-=———————- ] .l [1:2] NP —-> NNS «*
| . [-———————- > .l [1:2] NNS -> NNS * CC NNS
| [ ] . .l [0:2] NP —> JJ NNS =«
|. [ > .l [1:3] NNS -> NNS CC * NNS
| . [-=——————- 11 [3:4] NP -> NNS «*
|. . [==——————— >| [3:4] NNS —-> NNS * CC NNS
|. [ 11 [1:4] NNS —> NNS CC NNS =*
|. [ 11 [1:4] NP —-> NNS =«
|. [ >| [1:4] NNS -> NNS * CC NNS
| [ 11 [0:4] NP -> JJ NNS «*
Bottom Up Predict Rule:
|. > . . .| [1:1] NP —> * NP CC NP
| > . . . .| [0:0] NP -> *» NP CC NP
|. . . > .l [3:3] NP —> x NP CC NP
Fundamental Rule:
. [-———————— > . .] [1:2] NP -> NP * CC NP
[ > . .| [0:2] NP —> NP * CC NP
. . . [-———————— >| [3:4] NP —-> NP % CC NP
. [ >| [1:4] NP -> NP % CC NP
I >| [0:4] NP -> NP % CC NP
|. [ > .| [1:3] NP -> NP CC * NP
'L > .] [0:3] NP —> NP CC * NP
. [ 11 [1:4] NP —> NP CC NP *
| [ 11 [0:4] NP -> NP CC NP =
. [ >| [1:4] NP -> NP % CC NP
[ >| [0:4] NP —> NP x CC NP
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8.4 Probabilistic Parsing

As we pointed out in the introduction to this chapter, dealing with ambiguity is a key challenge to broad
coverage parsers. We have shown how chart parsing can help improve the efficiency of computing
multiple parses of the same sentences. But the sheer number of parses can be just overwhelming. We
will show how probabilistic parsing helps to manage a large space of parses. However, before we deal
with these parsing issues, we must first back up and introduce weighted grammars.

8.4.1 Weighted Grammars

We begin by considering the verb give. This verb requires both a direct object (the thing being given)
and an indirect object (the recipient). These complements can be given in either order, as illustrated
in example (71). In the “prepositional dative” form, the indirect object appears last, and inside a
prepositional phrase, while in the “double object” form, the indirect object comes first:

(71a) Kim gave a bone to the dog
(71b) Kim gave the dog a bone

Using the Penn Treebank sample, we can examine all instances of prepositional dative and double
object constructions involving give, as shown in Listing 8.4.

We can observe a strong tendency for the shortest complement to appear first. However, this does
not account for a form like give NP: federal Jjudges / NP: a raise, where animacy
may be playing a role. In fact there turn out to be a large number of contributing factors, as surveyed
by [Bresnan and Hay, 2006].

How can such tendencies be expressed in a conventional context free grammar? It turns out that they
cannot. However, we can address the problem by adding weights, or probabilities, to the productions
of a grammar.

A probabilistic context free grammar (or PCFG) is a context free grammar that associates
a probability with each of its productions. It generates the same set of parses for a text that the
corresponding context free grammar does, and assigns a probability to each parse. The probability
of a parse generated by a PCFG is simply the product of the probabilities of the productions used to
generate it.

The simplest way to define a PCFG is to load it from a specially formatted string consisting of a
sequence of weighted productions, where weights appear in brackets, as shown in Listing 8.5.

It is sometimes convenient to combine multiple productions into a single line, e.g. VP -> ’ saw
" NP [0.4] | ’"ate’” [0.3] | 'gave’ NP NP [0.3]. In order to ensure that the trees
generated by the grammar form a probability distribution, PCFG grammars impose the constraint that
all productions with a given left-hand side must have probabilities that sum to one. The grammar in
Listing 8.5 obeys this constraint: for S, there is only one production, with a probability of 1.0; for
VP, 0.4+0.34+0.3=1.0; and for NP, 0.8+0.2=1.0. The parse tree returned by get_parse () includes
probabilities:

>>> nltk_lite.parse ViterbiParse
>>> viterbi_parser = ViterbiParse (grammar)
>>> viterbi_parser.get_parse([’'Jack’, ’'saw’, ’'the’, 'telescope’])

(S: (NP: "Jack’) (VP: ’'saw’ (NP: ’'the’ ’'telescope’))) (p=0.064)
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Listing 34

>>>

gave
give
give
gave
give
give
give
give
gave
give
give
give
give
gave
give
give
give
give
gave
give

nltk_lite.corpora treebank
string join
give(t):
return t.node == 'VP’ len(t) > 2 t[1l] .node == 'NP’\
(t[2] .node == 'PP-DTV’ t[2] .node == 'NP’)\
('give’ t[0].leaves() "gave’ t[0].leaves())
sent (t) :
return join (token token t.leaves() token[0] "%=0")
print_node(t, width):
output = "%s %s: %s / %s: %s" %\
(sent (t[0]), t[l].node, sent(t[1l]), t[2] .node, sent(t[2]))

NP :
NP:
NP:
NP:
NP :
NP :
NP:
NP:
NP :
NP :
NP :
NP:
NP:
NP:
NP :
NP:
NP:
NP:
NP :
NP :

len (output) > width:
output = output[:width] + "..."
output
tree treebank.parsed() :
t tree.subtrees (give) :
print_node(t, 72)
the chefs / NP: a standing ovation

advertisers / NP: discounts for maintaining or increasing ad sp...

it / PP-DTV: to the politicians
them / NP: similar help
them / NP:

only French history questions / PP-DTV: to students in a Europe...

federal judges / NP: a raise

consumers / NP: the straight scoop on the U.S. waste crisis
Mitsui / NP: access to a high-tech medical product

Mitsubishi / NP: a window on the U.S. glass industry

much thought / PP-DTV: to the rates she was receiving , nor to

your Foster Savings Institution / NP: the gift of hope and free...
market operators / NP: the authority to suspend trading in futu...
quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
the Transportation Department / NP: up to 50 days to review any...

the president / NP: such power
me / NP: the heebie-jeebies

holders / NP: the right , but not the obligation , to buy a cal...
rather than ‘...

Mr. Thomas / NP: only a ‘' qualified '’
the president / NP: line-item veto power

rating ,
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Listing 35 Defining a Probabilistic Context Free Grammar (PCFG)

nltk_lite.parse pcfg
grammar = pcfg.parse_grammar ("""
S -> NP VP [1.0]
VP -> ’'saw’ NP [0.4]
VP -> ’ate’ [0.3]
VP —> ’‘gave’ NP NP [0.3]
NP —-> ’'the’ ’'telescope’ [0.8]
NP -> ’'Jack’ [0.2]
")
>>> grammar

Grammar with 6 productions (start state = S)
S -> NP VP [1.0]
VP -> 'saw’ NP [0.4]
VP -> "ate’ [0.3]
VP -> ’'gave’ NP NP [0.3]
NP —> ’'the’ ’'telescope’ [0.8]
NP -> ’'Jack’ [0.2]

The next two sections introduce two probabilistic parsing algorithms for PCFGs. The first is an
A* parser that uses Viterbi-style dynamic programming to find the single most likely parse for a given
text. Whenever it finds multiple possible parses for a subtree, it discards all but the most likely parse.
The second is a bottom-up chart parser that maintains a queue of edges, and adds them to the chart
one at a time. The ordering of this queue is based on the probabilities associated with the edges,
allowing the parser to expand more likely edges before less likely ones. Different queue orderings are
used to implement a variety of different search strategies. These algorithms are implemented in the
nltk_lite.parse.viterbiandnltk_lite.parse.pchart modules.

8.4.2 A* Parser

An A* Parser is a bottom-up PCFG parser that uses dynamic programming to find the single most
likely parse for a text [Klein and Manning, 2003]. It parses texts by iteratively filling in a most likely
constituents table. This table records the most likely tree for each span and node value. For example,
after parsing the sentence “I saw the man with the telescope” with the grammar pcfg.toy1, the most
likely constituents table contains the following entries (amongst others):

Span Tree Prob
Node
[0:1] | NP (NP: D 0.15
[6:7] NP (NN: telescope) 0.5
[5:71 | NP (NP: the telescope) 0.2
[4:71 | PP (PP: with (NP: the telescope)) 0.122
[0:4] | S (S: (NP: I) (VP: saw (NP: the man))) 0.01365
[0:7] S (S: (NP: I) (VP: saw (NP: (NP: the man) (PP: with (NP: the telescope))))) | 0.0004163250
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Span Tree Prob
Node

Table 8.14: Fragment of Most Likely Constituents Table

Once the table has been completed, the parser returns the entry for the most likely constituent that
spans the entire text, and whose node value is the start symbol. For this example, it would return the
entry with a span of [0:6] and a node value of “S”.

Note that we only record the most likely constituent for any given span and node value. For example,
in the table above, there are actually two possible constituents that cover the span [1:6] and have “VP”
node values.

1. “saw the man, who has the telescope”:

(VP: saw (NP: (NP: John) (PP: with (NP: the telescope))))
2. “used the telescope to see the man™:

(VP: saw (NP: John) (PP: with (NP: the telescope)))

Since the grammar we are using to parse the text indicates that the first of these tree structures has a
higher probability, the parser discards the second one.

Filling in the Most Likely Constituents Table: Because the grammar used by ViterbiParse
is a PCFG, the probability of each constituent can be calculated from the probabilities of its children.
Since a constituent’s children can never cover a larger span than the constituent itself, each entry of
the most likely constituents table depends only on entries for constituents with shorter spans (or equal
spans, in the case of unary and epsilon productions).

ViterbiParse takes advantage of this fact, and fills in the most likely constituent table incre-
mentally. It starts by filling in the entries for all constituents that span a single element of text. After it
has filled in all the table entries for constituents that span one element of text, it fills in the entries for
constituents that span two elements of text. It continues filling in the entries for constituents spanning
larger and larger portions of the text, until the entire table has been filled.

To find the most likely constituent with a given span and node value, ViterbiParse considers
all productions that could produce that node value. For each production, it checks the most likely
constituents table for sequences of children that collectively cover the span and that have the node
values specified by the production’s right hand side. If the tree formed by applying the production
to the children has a higher probability than the current table entry, then it updates the most likely
constituents table with the new tree.

Handling Unary Productions and Epsilon Productions: A minor difficulty is introduced by
unary productions and epsilon productions: an entry of the most likely constituents table might depend
on another entry with the same span. For example, if the grammar contains the production Vv — VP,
then the table entries for VP depend on the entries for V with the same span. This can be a problem if
the constituents are checked in the wrong order. For example, if the parser tries to find the most likely
constituent for a VP spanning [1:3] before it finds the most likely constituents for V spanning [1:3],
then it can’t apply the Vv — VP production.

To solve this problem, ViterbiParse repeatedly checks each span until it finds no new table
entries. Note that cyclic grammar productions (e.g. V — V) will not cause this procedure to enter an
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infinite loop. Since all production probabilities are less than or equal to 1, any constituent generated by
a cycle in the grammar will have a probability that is less than or equal to the original constituent; so
ViterbiParse will discard it.

In NLTK, we create Viterbi parsers using ViterbiParse (). Note that since ViterbiParse
only finds the single most likely parse, that get _parse_11 st will never return more than one parse.

Listing 36
nltk _lite.parse pcfg, ViterbiParse
nltk _lite tokenize

grammar = pcfg.parse_grammar (' '’
NP -> NNS [0.5] | JJ NNS [0.3] | NP CC NP [0.2]

NNS -> "men" [0.1] | "women" [0.2] | "children" [0.3] | NNS CC NNS [0.4]
JJ -> "old" [0.4] | "young" [0.6]
CC =-=> "and" [0.9] | "or" [0.1]

IIV)

viterbi_parser = ViterbiParse (grammar)

>>> sent = list (tokenize.whitespace(’'old men and women’))

>>> viterbi_parser.parse(sent)
(NP:
(JJ: 'o0ld’)

(NNS: (NNS: 'men’) (CC: ’'and’) (NNS: 'women’))) (p=0.000864)

The t race method can be used to set the level of tracing output that is generated when parsing a
text. Trace output displays the constituents that are considered, and indicates which ones are added to
the most likely constituent table. It also indicates the likelihood for each constituent.

>>> viterbi_parser.trace (3)
>>> tree = viterbi_parser.parse(sent)
Inserting tokens into the most likely constituents table...

Insert: |— .| old
Insert: |. .| men
Insert: |. .| and
Insert: |...=| women

Finding the most likely constituents spanning 1 text elements...

Insert: |=...| JJ => 'old’ [0.4] 0.4000000000
Insert: |.=..| NNS -> 'men’ [0.1] 0.1000000000
Insert: |.=..| NP -=> NNS [0.5] 0.0500000000
Insert: |..=.|] CC => "and’ [0.9] 0.9000000000
Insert: |...=| NNS -> ’'women’ [0.2] 0.2000000000
Insert: |...=| NP —> NNS [0.5] 0.1000000000

Finding the most likely constituents spanning 2 text elements...
Insert: |==..| NP -> JJ NNS [0.3] 0.0120000000
Finding the most likely constituents spanning 3 text elements...

Insert: |.===| NP -> NP CC NP [0.2] 0.0009000000
Insert: |.===| NNS -> NNS CC NNS [0.4] 0.0072000000
Insert: |.===| NP -> NNS [0.5] 0.0036000000
Discard: |.===| NP -> NP CC NP [0.2] 0.0009000000
Discard: |.===| NP -> NP CC NP [0.2] 0.0009000000

Finding the most likely constituents spanning 4 text elements...
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Insert: |====| NP -> JJ NNS [0.3] 0.0008640000
Discard: |====| NP -> NP CC NP [0.2] 0.0002160000
Discard: |====| NP -> NP CC NP [0.2] 0.0002160000

(NP :

(JJ: ’"o0ld’)
(NNS: (NNS: 'men’) (CC: ’"and’) (NNS: ‘women’))) (p=0.000864)

8.4.3 A Bottom-Up PCFG Chart Parser

The A* parser described in the previous section finds the single most likely parse for a given text.
However, when parsers are used in the context of a larger NLP system, it is often necessary to produce
several alternative parses. In the context of an overall system, a parse that is assigned low probability
by the parser might still have the best overall probability.

For example, a probabilistic parser might decide that the most likely parse for “I saw John with
the cookie” is is the structure with the interpretation “I used my cookie to see John”; but that parse
would be assigned a low probability by a semantic system. Combining the probability estimates from
the parser and the semantic system, the parse with the interpretation “I saw John, who had my cookie”
would be given a higher overall probability.

This section describes a probabilistic bottom-up chart parser. It maintains an edge queue, and adds
these edges to the chart one at a time. The ordering of this queue is based on the probabilities associated
with the edges, and this allows the parser to insert the most probable edges first. Each time an edge
is added to the chart, it may become possible to insert new edges, so these are added to the queue.
The bottom-up chart parser continues adding the edges in the queue to the chart until enough complete
parses have been found, or until the edge queue is empty.

Like an edge in a regular chart, a probabilistic edge consists of a dotted production, a span, and a
(partial) parse tree. However, unlike ordinary charts, this time the tree is weighted with a probability.
Its probability is the product of the probability of the production that generated it and the probabilities
of its children. For example, the probability of the edge [Edge: S — NP ® VP, 0:2] is the
probability of the PCFG production S — NP VP multiplied by the probability of its NP child. (Note
that an edge’s tree only includes children for elements to the left of the edge’s dot. Thus, the edge’s
probability does not include probabilities for the constituents to the right of the edge’s dot.)

8.4.4 Bottom-Up PCFG Strategies

The edge queue is a sorted list of edges that can be added to the chart. It is initialized with a single edge
for each token in the text, with the form [Edge: token |rarr| |dot]|]. Aseach edge from
the queue is added to the chart, it may become possible to add further edges, according to two rules:
(i) the Bottom-Up Initialization Rule can be used to add a self-loop edge whenever an edge whose dot
is in position 0 is added to the chart; or (ii) the Fundamental Rule can be used to combine a new edge
with edges already present in the chart. These additional edges are queued for addition to the chart.

By changing the sort order used by the queue, we can control the strategy that the parser
uses to explore the search space. Since there are a wide variety of reasonable search strategies,
BottomUpChartParse () does not define any sort order. Instead, different strategies are imple-
mented in subclasses of BottomUpChartParse ().

Lowest Cost First: The simplest way to order the edge queue is to sort edges by the probabilities
of their associated trees (nltk_lite.parse.InsideParse ()). This ordering concentrates the
efforts of the parser on those edges that are more likely to be correct analyses of their underlying tokens.
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The probability of an edge’s tree provides an upper bound on the probability of any parse produced
using that edge. The probabilistic “cost” of using an edge to form a parse is one minus its tree’s
probability. Thus, inserting the edges with the most likely trees first results in a lowest-cost-first
search strategy. Lowest-cost-first search is optimal: the first solution it finds is guaranteed to be the
best solution.

However, lowest-cost-first search can be rather inefficient. Recall that a tree’s probability is the
product of the probabilities of all the productions used to generate it. Consequently, smaller trees tend
to have higher probabilities than larger ones. Thus, lowest-cost-first search tends to work with edges
having small trees before considering edges with larger trees. Yet any complete parse of the text will
necessarily have a large tree, and so this strategy will tend to produce complete parses only once most
other edges are processed.

Let’s consider this problem from another angle. The basic shortcoming with lowest-cost-first search
is that it ignores the probability that an edge’s tree will be part of a complete parse. The parser will try
parses that are locally coherent even if they are unlikely to form part of a complete parse. Unfortunately,
it can be quite difficult to calculate the probability that a tree is part of a complete parse. However, we
can use a variety of techniques to approximate that probability.

Best-First Search: This method sorts the edge queue in descending order of the edges’ span, no
the assumption that edges having a larger span are more likely to form part of a complete parse. Thus,
LongestParse employs a best-first search strategy, where it inserts the edges that are closest to
producing complete parses before trying any other edges. Best-first search is not an optimal search
strategy: the first solution it finds is not guaranteed to be the best solution. However, it will usually find
a complete parse much more quickly than lowest-cost-first search.

Beam Search: When large grammars are used to parse a text, the edge queue can grow quite long.
The edges at the end of a large well-sorted queue are unlikely to be used. Therefore, it is reasonable
to remove (or prune) these edges from the queue. This strategy is known as beam search; it only
keeps the best partial results. The bottom-up chart parsers take an optional parameter beam_size;
whenever the edge queue grows longer than this, it is pruned. This parameter is best used in conjunction
with InsideParse (). Beam search reduces the space requirements for lowest-cost-first search, by
discarding edges that are not likely to be used. But beam search also loses many of lowest-cost-first
search’s more useful properties. Beam search is not optimal: it is not guaranteed to find the best
parse first. In fact, since it might prune a necessary edge, beam search is not even complete: it is not
guaranteed to return a parse if one exists.

In NLTK we can construct these parsers using InsideParse, LongestParse, RandomParse.

The trace method can be used to set the level of tracing output that is generated when parsing
a text. Trace output displays edges as they are added to the chart, and shows the probability for each
edges’ tree.

>>> inside_parser.trace (3)
>>> trees = inside_parser.get_parse_list (sent)

l. . [-1] [3:4] ’'women’ [1.0]
. . [-1 .| [2:3] ’and’ [1.0]
. [-] .1 [1:2] ’'men’ [1.0]
I [-] .l [0:1] "old’ [1.0]
I . [-1 .] [2:3] €C => 'and’ =* [0.9]
l. . > | [2:2] CC => x "and’ [0.9]
I [-1 | [0:1] JJ -> 'old’ =« [0.4]
| > | [0:0] JJ —> % ’old’ [0.4]
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Listing 37

nltk_lite.parse pchart
inside_parser = pchart.InsideParse (grammar)
longest_parser = pchart.LongestParse (grammar)
beam_parser = pchart.InsideParse (grammar, beam_ size=20)

>>> inside_parser.parse (sent)
(NP :

(JJ: ’"old’)

(NNS: (NNS: 'men’) (CC: ’"and’) (NNS: ‘'women’))) (p=0.000864)
>>> tree inside_parser.get_parse_list (sent):
ce tree
(NP :

(JJ: ’"o0ld’)

(NNS: (NNS: 'men’) (CC: "and’) (NNS: ‘'women’))) (p=0.000864)
(NP :

(NP: (JJ: "o0ld’) (NNS: 'men’))

(CC: "and’)

(NP: (NNS: 'women’))) (p=0.000216)

|> . .] [0:0] NP —> % JJ NNS [0.3]

| . [-1] [3:4] NNS -> ’'women’ =* [0.2]

|. > .| [3:3] NP -> % NNS [0.5]

|. > .| [3:3] NNS -> x NNS CC NNS [0.4]

. . > .| [3:3] NNS —> *x 'women’ [0.2]

| [—> . .| [0:1] NP -> JJ * NNS [0.12]

| . [-1| [3:4] NP -> NNS =* [0.1]

|. . . > .| [3:3] NP => x* NP CC NP [0.2]

. [-1] | [1:2] NNS -> 'men’ * [0.1]

. > | [1:1] NP —> * NNS [0.5]

. > | [1:1] NNS -> % NNS CC NNS [0.4]

. > .| [1:1] NNS -> * ’'men’ [0.1]

|. . . [->] [3:4] NNS -> NNS * CC NNS [0.08]

. [-1] .| [1:2] NP —-> NNS =* [0.05]

. > . .l [1:1] NP —> % NP CC NP [0.2]

. [—> | [1:2] NNS -> NNS * CC NNS [0.04]

|. [=——> .| [1:3] NNS -> NNS CC * NNS [0.036]
. . [->| [3:4] NP -> NP * CC NP [0.02]

| [-—-1 | [0:2] NP —> JJ NNS * [0.012]
|> . | [0:0] NP —> * NP CC NP [0.2]

|. [-> | [1:2] NP —> NP % CC NP [0.01]

|. [=——> .| [1:3] NP -> NP CC * NP [0.009]
|. [-=———- 11 [1:4] NNS —> NNS CC NNS =* [0.0072]
|. [-———- 11 [1:4] NP -> NNS =* [0.0036]
|. [-———-= >| [1:4] NNS —> NNS x CC NNS [0.00288]
|[-—=> . .| [0:2] NP —=> NP % CC NP [0.0024]
| [-———- > .| [0:3] NP -> NP CC * NP [0.00216]
|. [-———- ]| [1:4] NP -> NP CC NP «* [0.0009]
| [======]| [0:4] NP -> JJ NNS «* [0.000864]
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|. [-———- >| [1:4] NP -> NP % CC NP [0.00072]

| [E=======]| [0:4] NP —-> NP CC NP * [0.000216]
|. [-———- >| [1:4] NP -> NP * CC NP [0.00018]
] —— >| [0:4] NP -> NP % CC NP [0.0001728]
| [-—————- >| [0:4] NP -> NP * CC NP [4.32e-05]

8.5 Grammar Induction

As we have seen, PCFG productions are just like CFG productions, adorned with probabilities. So far,
we have simply specified these probabilities in the grammar. However, it is more usual to estimate
these probabilities from training data, namely a collection of parse trees or treebank.

The simplest method uses Maximum Likelihood Estimation, so called because probabilities are
chosen in order to maximize the likelihood of the training data. The probability of a production VP —
V NP PP isp(V,NPPP | VP). We calculate this as follows:

count (VP -> V NP PP)
P(V,NP,PP | VP) = ————————————————————

count (VP —> ...)

Here is a simple program that induces a grammar from the first three parse trees in the Penn
Treebank corpus:

>>> nltk_lite.corpora treebank
>>> itertools islice

>>> productions = []

>>> S = cfg.Nonterminal ('S’)

>>> tree islice (treebank.parsed(), 3):

productions += tree.productions|()
>>> grammar = pcfg.induce (S, productions)
>>> production grammar .productions () [:10]:
R production
PP —> IN NP [1.0]
NNP -> ’'Nov.’ [0.0714285714286]
NNP -> ’'Agnew’ [0.0714285714286]
JJ —> ’‘industrial’ [0.142857142857]
NP -> CD NNS [0.133333333333]
, —> ',’ [1.0]
CC -> "and’ [1.0]
NNP -> 'Pierre’ [0.0714285714286]
NP —> NNP NNP NNP NNP [0.0666666666667]
NNP -> ’'Rudolph’ [0.0714285714286]

8.5.1 Normal Forms

Grammar induction usually involves normalizing the grammar in various ways. The nltk_lite.
parse.treetransforms module supports binarization (Chomsky Normal Form), parent annota-
tion, Markov order-N smoothing, and unary collapsing. This information can be accessed by importing
treetransforms fromnltk_lite.parse,then calling help (treetransforms).

>>> nltk lite.parse bracket_parse
>>> nltk_lite.parse treetransforms
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>>> treebank string = """ (S (NP-SBJ (NP (QP (IN at) (JJS least) (CD nine) (NNS tent
(PP (IN of) (NP (DT the) (NNS students) ))) (VP (VBD passed)))"""
>>> t = bracket_parse (treebank_string)
>>> print t
(S:
(NP-SBJ:
(NP: (QP: (IN: 'at’) (JJS: ’"least’) (CD: ’'nine’) (NNS: ’'tenths’)))
(PP: (IN: 'of’) (NP: (DT: 'the’) (NNS: ’'students’))))
(VP: (VBD: ’'passed’)))
>>> treetransforms.collapseUnary(t, collapsePOS=True)
>>> print t
(S:
(NP-SBJ:
(NP+QP: (IN: ’'at’) (JJS: ’'least’) (CD: ’'nine’) (NNS: ’'tenths’))
(PP: (IN: "of’) (NP: (DT: 'the’) (NNS: ’'students’))))
(VP+VBD: ’'passed’))
>>> treetransforms.chomskyNormalForm(t)
>>> print t
(S:
(NP-SBJ:
(NP+QP :
(IN: "at’)
(NP+QP | <JJS—CD-NNS> :
(JJS: ’'least’)
(NP+QP | <CD-NNS>: (CD: ’'nine’) (NNS: 'tenths’))))
(PP: (IN: ’'of’) (NP: (DT: 'the’) (NNS: ’'students’))))
(VP+VBD: ’'passed’))

These trees are shown in (72).

(72a) s
NP—SBJ/-\P
N PP VéD
Q|P IN NP passed
n\ms o|f D(\NNS
a|1t Iestt niLe tenlths thle studlents
(72b) s
NP-SBJ/\VR«VBD
NP+QP PP passed

| JJS CD NNS IN NP
a!t Iea|13t niLe tenlths olf D|(\NT8

the students
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(72¢) s
NP-MBD
NP+QP PP passed
IN  NP+QP|<JJS-CD-NNS> IN/\NP
a!t Jm}PRCD-NNS> o|f D(\NNS
least CD NNS thle stud|ents

nine tenths

8.6 Conclusion

8.7 Further Reading
® [Manning and Schutze, 1999] (esp chapter 12).

m [Klein and Manning, 2003]
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Chapter 9

Feature Based Grammar

9.1 Introduction

The framework of context-free grammars that we presented in Chapter 7 describes syntactic con-
stituents with the help of a limited set of category labels. These atomic labels are adequate for talking
about the gross structure of sentences. But when we start to make finer grammatical distinctions it
becomes awkward to enrich the set of categories in a systematic manner. In this chapter we will address
this challenge by decomposing categories using features (somewhat similar to the key-value pairs of
Python dictionaries).

We will start off by looking at the phenomenon of syntactic agreement; we will show how agree-
ment constraints can be expressed elegantly using features, and illustrate how their use in a simple
grammar. Feature structures are a general data structure for representing information of any kind; we
will briefly look at them from a more formal point of view, and explain how they are made available
in NLTK. In the final part of the chapter, we demonstrate that the additional expressiveness of features
opens out a wide spectrum of possibilities for describing sophisticated aspects of linguistic structure.

9.2 Decomposing Lingustic Categories

9.2.1 Syntactic Agreement

Consider the following contrasts:

(73a) this dog
(73b) *these dog
(74a) these dogs
(74b) *this dog

In English, nouns are usually morphologically marked as being singular or plural. The form of
the demonstrative also varies in a similar way; there is a singular form this and a plural form these.
Examples (73) and (74) show that there are constraints on the realization of demonstratives and nouns
within a noun phrase: either both are singular or both are plural. A similar kind of constraint is observed
with subjects and predicates:
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9.2. Decomposing Lingustic Categories

(75a) the dog runs
(75b) *the dog run
(76a) the dogs run
(76b) *the dogs runs

Here again, we can see that morphological properties of the verb co-vary with morphological properties

of the subject noun phrase; this co-variance is usually termed agreement The element which determines
the agreement, here the subject noun phrase, is called the agreement controller, while the element
whose form is determined by agreement, here the verb, is called the target. If we look further at verb
agreement in English, we will see that present tense verbs typically have two inflected forms: one for
third person singular, and another for every other combination of person and number:

singular plural
1st per I run we run
2nd per you run you run
3rd per he/she/it runs they run

Table 9.1: Agreement Paradigm for English Regular Verbs

We can make the role of morphological properties a bit more explicit as illustrated in (77) and (78).
These representations indicate that the verb agrees with its subject in person and number. (We use ’3’
as an abbreviation for 3rd person, ’SG’ for singular and PL’ for plural.)

the  dog run-s
(77a) dog.3.SG run-
3.SG

the dog-s run
(78a) dog.3.PL run-
3.PL

Despite the undoubted interest of agreement as a topic in its own right, we have introduced it here
for another reason: we want to look at what happens when we try encode agreement constraints in a
context-free grammar. Suppose we take as our starting point the very simple CFG in (79).

(79) S —> NP VP
NP — DET N
VP — Vv

DET — ’'this’
N — ’"dog’

v — ’'runs’

(79) allows us to generate the sentence this dog runs; however, what we really want to do is also
generate these dogs run while blocking unwanted strings such as *this dogs run and *these dog runs.
The most straightforward approach is to add new non-terminals and productions to the grammar which
reflect our number distinctions and agreement constraints (we ignore person for the time being):
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9. Feature Based Grammar Introduction to Natural Language Processing (DRAFT)

(80) S_SG — NP_SG VP_SG
S_PL — NP_PL VP_PL

NP_SG — DET_SG N_SG
NP_PL — DET_PL N_PL
VP_SG — V_SG
VP_PL — V_PL

DET_SG — ’'this’
DET_PL — ’these’
N_SG — ’dog’

N_PL — ’dogs’
V_SG — ’runs’
V_PL — ’run’

It should be clear that this grammar will do the required task, but only at the cost of duplicating our
previous set of rules. Rule multiplication is of course more severe if we add in person agreement
constraints.

9.2.2 Using Attributes and Constraints

We spoke informally of linguistic categories having properties; for example, that a verb has the property
of being plural. Let’s try to make this more explicit:

(81) N[NUM pl]

In (81), we have introduced some new notation which says that the category N has a feature called
NUM (short for 'number’) and that the value of this feature is p/ (short for *plural’). We can add similar
annotations to other categories, and use them in lexical entries:

(82) DET [NUM sg] — ’'this’
DET [NUM pl] — ’'these’
N[nuM sg] — ’'dog’
N[nuM pl] — ’"dogs’

V[NuM sg] — ’"runs’

VI ]

NUM pl] — 'run’

Does this help at all? So far, it looks just like a slightly more verbose alternative to what was specified
in (80). Things become more interesting when we allow variables over feature values, and use these to
state constraints. This is illustrated in (83).

(83a) S — NP[NUM ?n] VP[nUM 7n]
(83b) NP [NUM 1] — DET[NUM ?m] N[NnUM n]
(83¢) VP [NnuM ] — V[nuM 7n]

We are using *?n’ as a variable over values of NUM; it can be instantiated either to sg or pl. Its scope
is limited to individual rules. That is, within (83a), for example, ?n must be instantiated to the same
constant value; we can read the rule as saying that whatever value NP takes for the feature NUM, VP
must take the same value.

In order to understand how these feature constraints work, it’s helpful to think about how one would
go about building a tree. Lexical rules will admit the following local trees (trees of depth one):
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(84a

(84b

(85a

(85b

) Det[NUM sg]

this

) Det[NUM pl]

these

) N[NUM sg]

dog

) N[NUM pl]

dogs

Now (83b) says that whatever the NUM values of N and DET are, they have to be the same. Conse-
quently, (83b) will permit (84a) and (85a) to be combined into an NP as shown in (86a) and it will also
allow (84b) and (85b) to be combined, as in (86b). By contrast, (8§7a) and (87b) are prohibited because
the roots of their constituent local trees differ in their values for the NUM feature.

(86a)

NP[NUM pI]

Det[Nm sg]

this

(86b)

NP[NUM pl]

Det[Nmm pl]

l l

these

(87a)

NP[NUM ...]

Det[N@M pl]

this

(87b)

NP[NUM ...]

Det[NUM/PL]m sG]

these

Rule (83c) can be thought of as saying that the NUM value of the head verb has to be the same as
the NUM value of the VP mother. Combined with (83a), we derive the consequence that if the NUM
value of the subject head noun is p/, then so is the NUM value of the VP’s head verb.
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(88)

NP[NUM pl] VP[NUM pl]
Det[NUM pl] N[N lM pl] V[NUlM pl]
these dogs run

Grammar (89) illustrates most of the ideas we have introduced so far in this chapter, plus a couple
of new ones. As you will see, the format of feature specifications in these productions inserts a ’
=’ between the feature and its value. In our exposition, we will stick to our earlier convention of
just leaving space between the feature and value, except when we are directly referring to the NLTK
grammar formalism.

(89)

% start S
FHAH S 4
# Grammar Rules

A

# S expansion rules
S —> NP[NUM=2?n] VP [NUM=2?n]

# NP expansion rules

NP [NUM=?n] -> N[NUM=?n]

NP [NUM=?n] -> PropN[NUM=?n]

NP [NUM=?n] -> Det [NUM=7?n] N[NUM=?n]
NP [NUM=pl] -> N[NUM=pl]

# VP expansion rules
VP [TENSE=?t, NUM=?n] —-> IV[TENSE=?t, NUM=?n]
VP [TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP

FHEHHAH A AR AR A
# Lexical Rules

FHEFHH AR E AR F AR A A A SRS
Det [NUM=sg] -> ’'this’ | ’'every’
Det [NUM=pl] -> ’'these’ | ’'all’
Det -> ’"the’ | ’some’

PropN[NUM=sg]-> 'Kim’ | ’'Jody’

N[NUM=sg] -> ’'dog’ | ’'girl’” | ’'car’ | ’'child’
N[NUM=pl] -> ’"dogs’ | ’'girls’ | ’'cars’ | ’children’

IV[TENSE=pres, NUM=sg] -> ’disappears’ | ’'walks’
TV[TENSE=pres, NUM=sg] -> ’'sees’ | ’'likes’

IV[TENSE=pres, NUM=pl] -> ’'disappear’ | "'walk’
TV[TENSE=pres, NUM=pl] -> ’'see’ | ’'like’
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IV[TENSE=past, NUM=?n] -> ’disappeared’ | "walked’
TV[TENSE=past, NUM=?n] -> ’'saw’ | ’liked’

You will notice that a feature annotation on a syntactic category can contain more than one specifi-
cation; for example, V[TENSE pres, NUM pl]. In general, there is no upper bound on the number of
features we specify as part of our syntactic categories.

A second point is that we have used feature variables in lexical entries as well as grammatical rules.
For example, the has been assigned the category DET[NUM ?n]. Why is this? Well, you know that
the definite article the can combine with both singular and plural nouns. One way of describing this
would be to add two lexical entries to the grammar, one each for the singular and plural versions of
the. However, a more elegant solution is to leave the NUM value underspecified and letting it agree in
number with whatever noun it combines with.

A final detail about (89) is the statment $start S. This a ’directive’ which tells the parser to take
S as the start symbol for the grammar.

In general, when we are trying to develop even a very small grammar, it is convenient to put the
rules in a file where they can be edited, tested and revised. Assuming we have saved (89) as a file
named ' feat0.cfqg’, the function GrammarFile.read_file () allows usto read the grammar
into NLTK, ready for use in parsing.

>>> nltk lite.parse GrammarFile
>>> pprint pprint
>>> g = GrammarFile.read file(’feat0O.cfg’)

We can inspect the rules and the lexicon using the commands g.earley_grammar () and
pprint (g.earley_lexicon()).

Next, we can tokenize a sentence and use the get_parse_list () function to invoke the Earley
chart parser.

It is important to observe that the parser works directly with the underspecified productions given
by the grammar. That is, the Predictor rule does not attempt to compile out all admissible feature
combinations before trying to expand the non-terminals on the lefthand side of a production. However,
when the Scanner matches an input word against a lexical rule that has been predicted, the new edge
will typically contain fully specified features; e.g., the edge [PropN[NUM = sg] — ’Kim’, (0, 1)].
Recall from Chapter 7 that the Fundamental (or Completer) Rule in standard CFGs is used to combine
an incomplete edge that’s expecting a nonterminal B with a following, complete edge whose left hand
side matches B. In our current setting, rather than checking for a complete match, we test whether the
expected category B will unify with the lefthand side B’ of a following complete edge. We will explain
in more detail in Section 9.3 how unification works; for the moment, it is enough to know that as a
result of unification, any variable values of features in B will be instantiated by constant values in the
corresponding feature structure in B’, and these instantiated values will be used in the new edge added
by the Completer. This instantiation can be seen, for example, in the edge [NP[NUM sg] — PropN[NUM
sg] *, (0, 1)] in 9.1, where the feature NUM has been assigned the value sg.

Finally, we can inspect the resulting parse trees (in this case, a single one).

>>> tree trees: tree

([INIT]:
(Start:
(S:
(NP [NUM=sg] : (PropN[NUM=sg]: 'Kim’))
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Listing 38 Trace of Feature-Based Chart Parser
>>> nltk lite tokenize
>>> sent = 'Kim likes children’
>>> tokens = list (tokenize.whitespace(sent))
>>> tokens
["Kim’, ’likes’, ’'children’]
>>> cp = g.earley parser (trace=10)
>>> trees = cp.get_parse_list (tokens)
| . K.1.c.|

Predictor |>
Predictor |>
Predictor |>
Predictor |>
Predictor |>

S -> x NP[NUM=?n] VP [NUM=?n]

NP [NUM=?n] -> * N[NUM=?n]

NP [NUM=?n] —> PropN[NUM=?n]

NP [NUM=?n] -> Det [NUM=?n] N[NUM=?n]
NP [NUM=pl] -> N[NUM=pl]

* * F

I

I

I

I

. I

Scanner | [-1 | [0:1] 'Kim’
Completer |[-] | NP[NUM=sg] —> PropN[NUM=sg] =*
Completer |[-> | S —> NP[NUM=sg] * VP [NUM=sg]
Predictor |. > | VP[NUM=?n, TENSE=?t] -> * IV[NUM=?n, TENSE=?t]
Predictor |. > . .| VP[NUM=?n, TENSE=?t] —-> % TV[NUM=?n, TENSE=?t] NP
Scanner |. [-1 .| [1:2] ’1likes’
Completer |. [-> .| VP[NUM=sg, TENSE=pres] —> TV[NUM=sg, TENSE=pres] * NP
Predictor |. > .| NP[NUM=?n] -> * N[NUM=?n]
Predictor |. > .| NP[NUM=?n] -> % PropN[NUM=?n]
Predictor |. > .| NP[NUM=?n] -> * Det[NUM=?n] N[NUM=?n]
Predictor |. > .| NP[NUM=pl] -> * N[NUM=pl]
Scanner | . [-1] [2:3] ’"children’
Completer |. . [-]| NP[NUM=pl] -> N[NUM=pl] =*
Completer |. [-—-]| VP[NUM=sg, TENSE=pres] -> TV[NUM=sg, TENSE=pres] NP x
Completer |[=====]| S -> NP[NUM=sg] VP[NUM=sg] =*
Completer |[=====]| [INIT] -> S *
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(VP [NUM=sg, TENSE=pres]:
(TV[NUM=sg, TENSE=pres]: ’'likes’)
(NP [NUM=pl]: (N[NUM=pl]: ’'children’))))))

9.2.3 Terminology

So far, we have only seen feature values like sg and pl. These simple values are usually called atomic
— that is, they can’t be decomposed into subparts. A special case of atomic values are boolean values,
that is, values which just specify whether a property is true or false of a category. For example, we
might want to distinguish auxiliary verbs such as can, may, will and do with the boolean feature AUX.
Then our lexicon for verbs could include entries such as the following:

(90) V[TENSE pres, AUX +] — ’can’
V[TENSE pres, AUX +] — ’'may’
V[TENSE pres, AUx —] — ’'walks’
V[TENSE pres, AUx —] — ’likes’

A frequently used abbreviation for boolean features allows the value to be prepended to the feature:

91 V[TENSE pres, +aux] — ’can’
V[TENSE pres, —-AUX] — "walks’

We have spoken informally of attaching ’feature annotations’ to syntactic categories. A more
general approach is to treat the whole category — that is, the non-terminal symbol plus the annotation
— as a bundle of features. Consider, for example, the object we have written as (92).

(92) N[NUM sg]

The syntactic category N, as we have seen before, provides part of speech information. This informa-
tion can itself be captured as a feature value pair, using POS to represent ’part of speech’:

(93) [POS N, NUM sqg]

In fact, we regard (93) as our ’official’ representation of a feature-based linguistic category, and
(92) as a convenient abbreviation. A bundle of feature-value pairs is called a feature structure or
an attribute value matrix (AVM). A feature structure which contains a specification for the feature
POS is a linguistic category.

In addition to atomic-valued features, we allow features whose values are themselves feature
structures. For example, we might want to group together agreement features (e.g., person, number
and gender) as a distinguished part of a category, as shown in (94).

(94) |pOos N
PER 3
AGR |[NUM pl
GND fem

In this case, we say that the feature AGR has a complex value.
There is no particular significance to the order of features in a feature structure. So (94) is
equivalent to (94).
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95) NUM pl
AGR [PER 3
GND fem
POS N

Once we have the possibility of using features like AGR, we can refactor a grammar like (89) so
that agreement features are bundled together. A tiny grammar illustrating this point is shown in (96).
(96) S — NP[AGR ?n] VP[AGR ?n]
NP [AGR ?n] — PROPN[AGR ?n]
VP [TENSE ?t, AGR ?n] — COP[TENSE ?t, AGR ?n] AdJ
COP[TENSE pres, AGR [NUM sg, PER 3]] — ’is’
PrROPN[AGR [NUM sg, PER 3]] — ’'Kim’

ApJg — ’"happy’

9.2.4 Exercises

1. £ What constraints are required to correctly parse strings like  am happy and she is happy
but not *you is happy or *they am happy? Implement two solutions for the present tense
paradigm of the verb be in English, first taking Grammar (80) as your starting point, and
then taking Grammar (96) as the starting point.

2. £t Develop a variant of grammar (89) which uses a COUNT to make the distinctions shown

below:
(97a) The boy sings.
(97b) *Boy sings.
(98a) The boys sing.
(98b) Boys sing.
(99a) The boys sing.
(99b) Boys sing.
(100a) The water is precious.

(100b) Water is precious.

3. (D Develop a feature-based grammar that will correctly describe the following Spanish
noun phrases:

un cuadro hermos-o
(101a) INDEE.SG.MASC picture beautiful-
a SG.MASC

’a beautiful picture’
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un-os cuadro-s  hermos-os
(101b) INDEF-PL.MASC picture-  beautiful-
PL PL.MASC
“beautiful pictures’
un-a cortina hermos-a
(101¢) INDEF.SG.FEM curtain beautiful-
¢ SG.FEM
’a beautiful curtain’
un-as cortina- hermos-as
S
(101d) INDEF.PL.FEM curtain  beautiful-
PL.FEM

’beautiful curtains’

4. (D Develop a wrapper for the earley_parser so that a trace is only printed if the input
string fails to parse.

9.3 Computing with Feature Structures

In this section, we will show how feature structures can be constructed and manipulated in NLTK. We
will also discuss the fundamental operation of unification, which allows us to combine the information
contained in two different feature structures.

9.3.1 Feature Structures in NLTK

Feature structures in NLTK are declared with the FeatureStructure () constructor. Atomic
feature values can be strings or integers.

>>> nltk lite.featurestructure *

>>> fsl = FeatureStructure (TENSE='past’, NUM='sg’)
>>> fsl

[ NUM = ’'sg’ 1

[ TENSE = 'past’ ]

We can think of a feature structure as being like a Python dictionary, and access its values by indexing
in the usual way.

>>> fsl = FeatureStructure (PER=3, NUM='pl’, GND=’'fem’)
>>> fs1[/GND’ ]
fem

However, we cannot use this syntax to assign values to features:

>>> fsl['CASE’] = "acc’
Traceback (most recent call last):

KeyError: ’'CASE’

We can also define feature structures which have complex values, as discussed earlier.
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>>> fs2 = FeatureStructure (POS='N’, AGR=fsl)

>>> fs2

[ [ GND = "fem’ ] ]
[ AGR = [ NUM = ’'pl’ 1 ]
[ [ PER = 3 11
[ 1
[ POS = 'N’ ]
>>> fs2['AGR’ ]

[ GND = ’"fem’ ]

[ NUM = 'pl’ ]

[ PER = 3 1

>>> fs2['AGR’] [’ PER’ ]
3

An alternative method of specifying feature structures in NLTK is to use the parse method of
FeatureStructure. This gives us the facility to use square bracket notation for embedding one
feature structure within another.

>>> FeatureStructure.parse (" [POS='N’, AGR=[PER=3, NUM='pl’, GND='fem’]]")
[AGR=[GND=’ fem’, NUM='pl’, PER=3], POS='N’]

9.3.2 Feature Structures as Graphs

Feature structures are not inherently tied to linguistic objects; they are general purpose structures
for representing knowledge. For example, we could encode information about a person in a feature
structure:

>>> person0l = FeatureStructure (name='ILee’, telno=’'01 27 86 42 96’ , age=33)

(102) INAME  ‘Lee’
TELNO 01 27 86 42 96
AGE 33

It is sometimes helpful to view feature structures as graphs; more specifically, directed acyclic
graphs (DAGs). (103) is equivalent to the AVM (102).

e
name

/ ter&w
(103) '01 27 86 42 96'
The feature names appear as labels on the directed arcs, and feature values appear as labels on the

nodes which are pointed to by the arcs.
Just as before, feature values can be complex:
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age
name

address
°
33
'Lee’
number street
L)
° 'rue Pascal'
(104) 74

When we look at such graphs, it is natural to think in terms of paths through the graph. A feature
path is a sequence of arcs that can be followed from the root node. We will represent paths in NLTK

as tuples. Thus, (" address’, ’street’) isafeature path whose value in (104) is the string 'rue
Pascal’.

Now let’s consider a situation where Lee has a spouse named *Kim’, and Kim’s address is the same
as Lee’s. We might represent this as (105).

spouse
age
name

address
° name
33
address
‘Lee' 'Kim'
number street street
number
°
°
74 'Rue Pascal'
'Rue Pascal'
(105) 74

However, rather than repeating the address information in the feature structure, we can ’share’ the
same sub-graph between different arcs:

spouse
age
name

address
° name

33
address o
Lee' Kim

number street

®
" 'Rue Pascal'
(106) 74

In other words, the value of the path (" ADDRESS’ ) in (106) is identical to the value of the path ('
SPOUSE’, ’ADDRESS’).DAGs such as (106) are said to involve structure sharing or reentrancy.
When two paths have the same value, they are said to be equivalent.
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There are a number of notations for representing reentrancy in matrix-style representations of
feature structures. In NLTK, we adopt the following convention: the first occurrence of a shared feature
structure is prefixed with an integer in parentheses, such as (1), and any subsequent reference to that
structure uses the notation —> (1), as shown below.

>>> fs=FeatureStructure.parse (""" [NAME='Lee’, ADDRESS=(1l) [NUMBER=74, STREET='rue Pascal’],
. SPOUSE=[NAME='Kim’, ADDRESS->(1)]1""")
>>> fs

[ ADDRESS = (1) [ NUMBER = 74 11
[ [ STREET = 'rue Pascal’ ] ]
[ 1
[ NAME = 'Lee’ 1
[ ]
[ SPOUSE = [ ADDRESS -> (1) ] 1
[ 1

[ NAME = ’'Kim’ ]

This is similar to more conventional displays of AVMs, as shown in (107).

(107) NUMBER 74
ADDRESS ) )
STREET rue Pascal
NAME Lee’

SPOUSE

ADDRESS
NAME Kim’

The bracketed integer is sometimes called a tag or a coindex. The choice of integer is not significant.
There can be any number of tags within a single feature structure.

>>> fsl = FeatureStructure.parse("[A="a’, B=(1l) [C='c’], D->(1), E->(1)1")

(108) (A &’
B [C ’c’]
D
E

9.3.3 Subsumption and Unification

It is standard to think of feature structures as providing partial information about some object, in the
sense that we can order feature structures according to how general they are. For example, (109a) is
more general (less specific) than (109b), which in turn is more general than (109c).

(109a) [NUMBER 74]

(109b) [NUMBER 74
| STREET rue Pascal ’7

(109¢) [NUMBER 74
STREET ‘rue Pascal’
CITY "Paris’
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This ordering is called subsumption; a more general feature structure subsumes a less general one.
If FS( subsumes F'S| (formally, we write F'S FS1), then FS| must have all the paths and path
equivalences of F'S, and may have additional paths and equivalences as well. Thus, (105) subsumes
(106), since the latter has additional path equivalences.. It should be obvious that subsumption only
provides a partial ordering on feature structures, since some feature structures are incommensurable.
For example, (110) neither subsumes nor is subsumed by (109a).

(110) [TELNO 01 27 86 42 96]

So we have seen that some feature structures are more specific than others. How do we go about
specialising a given feature structure? For example, we might decide that addresses should consist of

not just a street number and a street name, but also a city. That is, we might want to merge graph (111b)
with (111a) to yield (111c).

number street

(1 1 1a) 74 ‘rue Pascal'

(1 1 lb) 'Paris’

number/T\Stre(x

city

74 ‘rue Pascal'

(1 1 1C) 'Paris'
Merging information from two feature structures is called unification and in NLTK is supported by
the unify () method defined in the FeatureStructure class.

>>> fsl = FeatureStructure (NUMBER=74, STREET='rue Pascal’)
>>> fs2 = FeatureStructure (CITY='Paris’)

>>> fsl.unify (£fs2)
[ CITY = 'Paris’ ]
[ NUMBER = 74 1
[ STREET = ’'rue Pascal’ ]

Unification is formally defined as a binary operation: FS¢y  FS . Unification is symmetric, so
(112) FSo FS1=FS1 FSo.

The same is true in NLTK:
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>>> fs2 .unify (£fsl)
[ CITY = ’'Paris’ 1
[ NUMBER = 74 ]
[ STREET = 'rue Pascal’ ]

If we unify two feature structures which stand in the subsumption relationship, then the result of
unification is the most specific of the two:

(113) If FSo  FSi,then FSy FS1=FS,

For example, the result of unifying (109b) with (109c¢) is (109c¢).

Unification between F'S ¢ and F'S | will fail if the two feature structures share a path r, but the value
of win FSy is a distinct atom from the value of m in FS ;. In NLTK, this is implemented by setting the
result of unification to be None.

>>> fs0 = FeatureStructure(A='2a’)
>>> fsl = FeatureStructure (A='b’)
>>> fs2 = f£s0.unify(£fsl)

>>> fs2

None

Now, if we look at how unification interacts with structure-sharing, things become really interesting.
First, let’s define the NLTK version of (105).

>>> fsO0=FeatureStructure.parse (""" [NAME=Lee,
ADDRESS=[NUMBER=74,
STREET='rue Pascal’],
SPOUSE= [NAME=Kim,
ADDRESS=[NUMBER=74,

STREET='rue Pascal’]]]1""")

(114) [NUMBER 74

ADDRESS . ,
STREET rue Pascal

NAME ‘Lee’

NUMBER 74

ADDRESS . ,

SPOUSE STREET rue Pascal
NAME ‘Kim’

What happens when we augment Kim’s address with a specification for CITY? (Notice that £s1
includes the whole path from the root of the feature structure down to CITY.)

>>> fsl=FeatureStructure.parse (" [SPOUSE = [ADDRESS = [CITY = Paris]]]")
(115) shows the result of unifying £s0 with £s1:
(115) [NUMBER 74
ADDRESS . ,
| STREET rue Pascal
NAME ‘Lee’
CITY ‘Paris’

ADDRESS |NUMBER 74

SPOUSE ] )
STREET rue Pascal

NAME ‘Kim’
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By contrast, the result is very different if £s1 is unified with the structure-sharing version £s2 (also

shown as (106)):

>>> fs2=FeatureStructure.parse (""" [NAME=Lee, ADDRESS=(1l) [NUMBER=74,
SPOUSE=[NAME=Kim, ADDRESS->(1)]]1""")

‘Paris’

‘rue Pascal’

(116) CITY
ADDRESS [1J{[NUMBER 74
STREET
NAME ‘Lee’
ADDRESS
SPOUSE
NAME

‘Kim’

Rather than just updating what was in effect Kim’s *copy’ of Lee’s address, we have now updated both
their addresses at the same time. More generally, if a unification involves specialising the value of some
path 7T, then that unification simultaneously specialises the value of any path that is equivalent to m.

As we have already seen, structure sharing can also be stated in NLTK using variables such as ?x.

>>> fsl=FeatureStructure.parse (" [ADDRESS1=[NUMBER=74,

>>> fs2=FeatureStructure.parse (" [ADDRESS1=?x, ADDRESS2=?7x]")

>>> fs2
[ ADDRESS1 = ?x ]
[ ADDRESS2 = ?x ]

>>> fs2.unify (£fsl)
[ ADDRESS1 = (1) [ NUMBER = 74
[ [ STREET = ’'rue Pascal’

[
[ ADDRESS2 -> (1)

9.3.4 Exercises

—_ e e

1. #* Write a function subsumes() which holds of two feature structures £s1 and £s2 justin
case fs1 subsumes fs2.

2. (P Consider the feature structures shown in Listing 9.2.

Listing 39

fsl = FeatureStructure
fs2 = FeatureStructure
fs3 = FeatureStructure

fs4 = FeatureStructure
fs5 = FeatureStructure
fs6 = FeatureStructure
fs7 = FeatureStructure
fs8 = FeatureStructure

fs9 = FeatureStructure

.parse("[A =
.parse (" [B
.parse (" [B

.parse("[A =
.parse("[A =
.parse("[A =
.parse("[A =
.parse("[A =
.parse("[A =

[C —>(1)I1")

C->(1)1")
c [E > (1) 1™
c [B —> (1)1 1")

F= (2011, C=[B-> (1), E~-> (2)]
= [E = [G=elll")

c-—> (11"

Work out on paper what the result is of the following unifications. (Hint: you might find it
useful to draw the graph structures.)
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fsland fs2
fsland £s3
fs4 and £s5
fs5and £s6
fs7and £s8
fs7and £s9

Check your answers on the computer.
3. (D List two feature structures which subsume [A=?x, B=7x].

4. (P Ignoring structure sharing, give an informal algorithm for unifying two feature struc-
tures.

9.4 Extending a Feature-Based Grammar

9.4.1 Subcategorization

In Chapter 7, we proposed to augment our category labels in order to represent different subcategories
of verb. More specifically, we introduced labels such as 1V and TV for intransitive and transitive verbs
respectively. This allowed us to write rules like the following:

117

vep — IV

vP — TV NP

Although it is tempting to think of IV and TV as two kinds of V, this is unjustified: from a formal point
of view, 1V has no closer relationship with TV than it does, say, with NP. As it stands, IV and TV are
unanalyzable nonterminal symbols from a CFG. One unwelcome consequence is that we do not seem
able to say anything about the class of verbs in general. For example, we cannot say something like
“All lexical items of category V can be marked for tense”, since bark, say, is an item of category IV, not
V.

Using features gives us some useful room for manoeuvre but there is no obvious consensus on
how to model subcategorization information. One approach which has the merit of simplicity is due
to Generalized Phrase Structure Grammar (GPSG). GPSG stipulates that lexical categories may bear a
SUBCAT whose values are integers. This is illustrated in a modified portion of (89), shown in (118).

(118) VP [TENSE=?t, NUM=?n] -> V[SUBCAT=0, TENSE=?t, NUM=?n]
VP [TENSE=?t, NUM=?n] —-> V[SUBCAT=1, TENSE=?t, NUM=?n] NP
VP [TENSE=?t, NUM=?n] -> V[SUBCAT=2, TENSE=?t, NUM=?n] Sbar
V[SUBCAT=0, TENSE=pres, NUM=sg] -> ’disappears’ | 'walks’
V[SUBCAT=1, TENSE=pres, NUM=sg] -> ’sees’ | ’likes’
V[SUBCAT=2, TENSE=pres, NUM=sg] -> ’'says’ | ’claims’
V[SUBCAT=0, TENSE=pres, NUM=pl] -> ’disappear’ | ’'walk’
V[SUBCAT=1, TENSE=pres, NUM=pl] -> ’see’ | ’"like’
V[SUBCAT=2, TENSE=pres, NUM=pl] -> ’'say’ | ’'claim’
V[SUBCAT=0, TENSE=past, NUM=?n] -> ’disappeared’ | ’"walked’
V[SUBCAT=1, TENSE=past, NUM=?n] -> ’'saw’ | ’liked’
V[SUBCAT=2, TENSE=past, NUM=?n] -> ’'said’ | ’claimed’
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When we see a lexical category like V[SUBCAT /], we can interpret the SUBCAT specification as a
pointer to the rule in which V[SUBCAT /] is introduced as the head daughter in a VP expansion rule. By
convention, there is a one-to-one correspondence between SUBCAT values and rules which introduce
lexical heads. It’s worth noting that the choice of integer which acts as a value for SUBCAT is completely
arbitrary — we could equally well have chosen 3999, 113 and 57 as our two values in (118). On this
approach, SUBCAT can only appear on lexical categories; it makes no sense, for example, to specify a
SUBCAT value on VP.

In our third class of verbs above, we have specified a category S-BAR. This is a label for subordinate
clauses such as the complement of claim in the example You claim that you like children. We require
two further rules to analyse such sentences:

(119) S-BAR —-> Comp S
Comp —-> ’"that’

The resulting structure is the following.

(120) s

you V[-AUX, SUBCAT 2] S-BAR

claim Comp

th|at N/\P
yc|)u V[-AUX, s|mp

like children

An alternative treatment of subcategorization, due originally to a framework known as categorial
grammar, is represented in feature-based frameworks such as PATR and Head-driven Phrase Structure
Grammar. Rather than using SUBCAT values as a way of indexing rules, the SUBCAT value directly
encodes the valency of a head (the list of arguments that it can combine with). For example, a verb like
put which takes NP and PP complements (put the book on the table) might be represented as (121):

(121) V[SUBCAT NP, NP,PP |

This says that the verb can combine with three arguments. The leftmost element in the list is the subject
NP, while everything else — an NP followed by a PP in this case — comprises the subcategorized-for
complements. When a verb like put is combined with appropriate complements, the requirements
which are specified in the SUBCAT are discharged, and only a subject NP is needed. This category,
which corresponds to what is traditionally thought of as VP, might be represented as follows.

(122) V[SUBCAT NP ]

Finally, a sentence is a kind of verbal category which has no requirements for further arguments,
and hence has a SUBCAT whose value is the empty list. The tree (123) shows how these category
assigments combine in a parse of Kim put the book on the table.
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(123) V[SUBCAT <>]
N V[SUBCAT <NP>]
Kim V[SUBCAT <NP, NP, VP>] NP PP
put the book on the table

9.4.2 Heads Revisited

We noted in the previous section that by factoring subcategorization information out of the main
category label, we could express more generalizations about properties of verbs. Another property of
this kind is the following: expressions of category V are heads of phrases of category VP. Similarly (and
more informally) Ns are heads of NPs, As (i.e., adjectives) are heads of APs, and Ps (i.e., adjectives)
are heads of PPs. Not all phrases have heads — for example, it is standard to say that coordinate
phrases (e.g., the book and the bell) lack heads — nevertheless, we would like our grammar formalism
to express the mother / head-daughter relation where it holds. Now, although it looks as though there
is something in common between, say, V and VP, this is more of a handy convention than a real claim,
since V and VP formally have no more in common than v and DET.

X-bar syntax (cf. [Chomsky, 1970], [Jackendoff, 1977]) addresses this issue by abstracting out
the notion of phrasal level. It is usual to recognise three such levels. If N represents the lexical
level, then N’ represents the next level up, corresponding to the more traditional category NOM,
while N represents the phrasal level, corresponding to the category NP. (The primes here replace the
typographically more demanding horizontal bars of [Chomsky, 1970]). (124) illustrates a representative
structure.

(124) N
/\‘
Det N
al1 N P"

student of French

The head of the structure (124) is N while N’ and N are called (phrasal) projections of N. N” is
the maximal projection, and N is sometimes called the zero projection. One of the central claims
of X-bar syntax is that all constituents share a structural similarity. Using X as a variable over N, V,
A and P, we say that directly subcategorized complements of the head are always placed as sisters of
the lexical head, whereas adjuncts are placed as sisters of the intermediate category, X’. Thus, the
configuration of the P” adjunct in (125) contrasts with that of the complement P” in (124).

(125)

N from france
student

The productions in (126) illustrate how bar levels can be encoded using feature structures.
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(126) S — N[BAR 2] VI[BAR 2]
N[BAR 2] — DET N[BAR 1]
N[BAR 1] — N[BAR 1] P[BAR 2]
N[BAR 1] — N[BAR 0] P[BAR 2]

9.4.3 Auxiliary verbs and Inversion

Inverted clauses — where the order of subject and verb is switched — occur in English interrogatives
and also after 'negative’ adverbs:

(127a) Do you like children?
(127b) Can Jody walk?

(128a) Rarely do you see Kim.
(128b) Never have I seen this dog.

However, we cannot place just any verb in pre-subject position:

(129a) *Like you children?
(129b) *Walks Jody?

(130a) *Rarely see you Kim.
(130b) *Never saw I this dog.

Verbs which can be positioned inititally in inverted clauses belong to the class known as auxiliaries,
and as well as do, can and have include be, will and shall. One way of capturing such structures is with
the following rule:

(131) S[+inv] -> V[+AUX] NP VP

That is, a clause marked as [+INV] consists of an auxiliary verb followed by a VP. (In a more detailed
grammar, we would need to place some constraints on the form of the VP, depending on the choice of
auxiliary.) (132) illustrates the structure of an inverted clause.

132
(132) S[+INV]
V[+AUX, SUBCAT 3] NP P
do you V[-AUX, sI BCAT 1] P

like children
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9.4.4 Unbounded Dependency Constructions

Consider the following contrasts:
(133a) You like Jody.
(133b) *You like.
(134a) You put the card into the slot.
(134b) *You put into the slot.
(134c) *You put the card.
(134d) *You put.

The verb like requires an NP complement, while put requires both a following NP and PP. Examples

(133) and (134) show that these complements are obligatory: omitting them leads to ungrammaticality.
Yet there are contexts in which obligatory complements can be omitted, as (135) and (136) illustrate.

(135a) Kim knows who you like.

(135b) This music, you really like.

(136a) Which card do you put into the slot?
(136b) Which slot do you put the card into?

That is, an obligatory complement can be omitted if there is an appropriate filler in the sentence,
such as the question word who in (135a), the preposed topic this music in (135b), or the wh phrases
which card/slot in (136). It is common to say that sentences like (135) — (136) contain gaps where
the obligatory complements have been omitted, and these gaps are sometimes made explicit using an
underscore:

(137a) Which card do you put __ into the slot?
(137b) Which slot do you put the card into __?

So, a gap can occur if it is licensed by a filler. Conversely, fillers can only occur if there is an
appropriate gap elsewhere in the sentence, as shown by the following examples.

(138a) *Kim knows who you like Jody.
(138b) *This music, you really like hip-hop.
(139a) *Which card do you put this into the slot?

(139b) *Which slot do you put the card into this one?
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The mutual co-occurence between filler and gap leads to (135) — (136) is sometimes termed a
"dependency’. One issue of considerable importance in theoretical linguistics has been the nature
of the material that can intervene between a filler and the gap that it licenses; in particular, can we
simply list a finite set of strings that separate the two? The answer is No: there is no upper bound
on the distance between filler and gap. This fact can be easily illustrated with constructions involving
sentential complements, as shown in (140).

(140a) Who do you like __?
(140b) Who do you claim that you like __?
(140c) Who do you claim that Jody says that you like __?

Since we can have indefinitely deep recursion of sentential complements, the gap can be embedded
indefinitely far inside the whole sentence. This constellation of properties leads to the notion of an
unbounded dependency construction; that is, a filler-gap dependency where there is no upper bound
on the distance between filler and gap.

A variety of mechanisms have been suggested for handling unbounded dependencies in formal
grammars; we shall adopt an approach due to Generalized Phrase Structure Grammar that involves
something called slash categories. A slash category is something of the form Y/XP; we interpret this
as a phrase of category Y which is somewhere missing a sub-constituent of category XP. For example,
S/NP is an S which is missing an NP. The use of slash categories is illustrated in (141).

(141) .
NP[+M]/NP
who  V[+AUX, SUBCAT 3] NP[-WH] VPINP
do you  V[-AUX, SUBCAT 1] NPINP

like e

The top part of the tree introduces the filler who (treated as an expression of category NP[+WH]) to-
gether with a corresponding gap-containing constituent S/NP. The gap information is then ’percolated’
down the tree via the VP/NP category, until it reaches the category NP/NP. At this point, the dependency
is discharged by realizing the gap information as the empty string e immediately dominated by NP/NP.

Do we need to think of slash categories as a completely new kind of object in our grammars?
Fortunately, no, we don’t — in fact, we can accommodate them within our existing feature-based
framework. We do this by treating slash as a feature, and the category to its right as a value. In
other words, our ’official’ notation for S/NP will be S[SLASH = NP]. Once we have taken this step, it is
straightforward to write a small grammar in NLTK for analyzing unbounded dependency constructions.
(142) illustrates the main principles of slash categories, and also includes rules for inverted clauses. To
simplify presentation, we have omitted any specification of tense on the verbs.

(142)

% start S

iFas s E SRR R R Rk
# Grammar Rules
FHAHHAHE AR H AR A AR A AR HH
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S[-INV] -> NP S/NP

S[-INV]/?x —> NP VP/?x

S[+INV]/?x —> V[+AUX]
S-BAR/?x —> Comp S[-INV]/?x

NP/NP —>

VP/?x —> V[SUBCAT=1,
VP/?x —> V[SUBCAT=2,
VP/?x —> V[SUBCAT=3,

iz TS L L EEEEEE
# Lexical Rules
#HAHHH AR
-AUX] —-> ’"see’ |
—-AUX] -> ’'say’ |
+AUX] -> 'do’ | '

V[SUBCAT=1,
V[SUBCAT=2,
V[SUBCAT=3,

NP [-WH] -> ’'you’ | ’children’
NP [+WH] -> ’"who’

Comp -> ’'that’

NP VP/?x

—AUX] NP/?x
-AUX] S—-BAR/?x
+AUX] VP/?x

"like’
"claim’
can’

"girls’

(142) contains one gap-introduction rule, namely

(143) s[-INnV]

In order to percolate the slash feature correctly, we need to add slashes with variable values to both

— NP S/NP

sides of the arrow in rules which expand S, VP and NP. For example,

(144) VP/?Xx —> V S—BAR/?X

says that a slash value can be specified on the VP mother of a constituent if the same value is also

specified on the S-BAR daughter. Finally, (145) allows the slash information on NP to be discharged as

the empty string.
(145) NP /NP —>

Using (142), we can parse the string who do you claim that you like into the tree shown in (146).

VP[SLASH NP]

you  V[-AUX,SOBCAT 1] NP[SLASH M

146
(146) S[-INV]
NP[+WH] S[SLASH NP,+INV]
who  V[+AUX,SUBCAT 3] NP[-WH] VP[SLASH NP]
do you  V[-AUX,SOBCAT 2] S-BAR[SLASH NP]
claim Comp S[SLASH NP,-INV]
that NP[-WH]

like
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9.4.5 Case and Gender in German

Compared with English, German has a relatively rich morphology for agreement. For example, the
definite article in German varies with case, gender and number, as shown in Table 9.2.

Case Masc Fem Neut Plural
Nom der die das die
Acc dem die das die
Dat den der dem den
Gen des der des der

Table 9.2: Morphological Paradigm for the German definite Arti-

Subjects in German take the nominative case, and most verbs govern their objects in the accusative

case. However, there are exceptions like helfen which govern the dative case.

(147a)

(147b)

(148a)

(148b)

Die

katze

the. NOM.FEM.SG cat.3.FEM.SG
’the cat sees the dog’

*Die

katze

the. NOM.FEM.SG cat.3.FEM.SG

Die

katze

the NOM.FEM.SG cat.3.FEM.SG
’the cat helps the dog’

*Die

katze

the. NOM.FEM.SG cat.3.FEM.SG

sieht
see.3.SG

sieht
see.3.SG
hilft

help.3.SG

hilft
help.3.SG

dem

hund

the. ACC.MASC.SG dog.3.MASC.SG

den

the. DAT.MASC.SG

den

the. DAT.MASC.SG

dem

hund
dog.3.MASC.SG

hund
dog.3. MASC.SG

hund

the. ACC.MASC.SG dog.3.MASC.SG

The grammar (149) illustrates the interaction of agreement (comprising person, number and gender)
with case.

(149)

% start S

HHeHH S ha At A
# Grammar Rules
FHAHH a4

S —-> NP [CASE=nom,

NP [CASE="?c,
NP [CASE="?cC,

AGR=7a]
AGR=7a]

AGR="?a]

-> PRO[CASE="?c,
-> Det [CASE="?c,

VP [AGR="?a]

AGR=7a]
AGR=7a]

N[CASE="?c,

NP [CASE="?c]

AGR=7a]

VP [AGR=?a] —-> IV[AGR=?a]
VP [AGR=7?a] —-> TV[OBJCASE=?c, AGR=7a]
SRR L LRk
# Lexical Rules
xR E R
254
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Det [CASE=nom, AGR=[GND=masc,PER=3,NUM=sg]] -> ’der’
Det [CASE=acc, AGR=[GND=masc,PER=3,NUM=sg]] -> ’den’
Det [CASE=dat, AGR=[GND=masc,PER=3,NUM=sg]] -> ’dem’
Det [AGR=[PER=3,NUM=pl]] -> ’die’

Det [CASE=nom, AGR=[GND=fem,PER=3]] -> ’die’

Det [CASE=acc, AGR=[GND=fem,PER=3]] -> ’die’

Det [CASE=dat, AGR=[GND=fem,PER=3]] -> ’der’
N[AGR=[GND=masc, PER=3,NUM=sg]] —> ’hund’
N[AGR=[GND=masc, PER=3,NUM=pl]] -> ’hunde’
N[AGR=[PER=3,NUM=pl]] -> ’hunde’

N[AGR=[GND=fem, PER=3,NUM=sg]] —-> ’'katze’

N [AGR=[GND=fem, PER=3,NUM=pl]] -> ’katzen’
PRO[CASE=nom, AGR=[PER=1,NUM=sg]] -> ’ich’
PRO[CASE=acc, AGR=[PER=1,NUM=sg]] -> ’‘mich’
TV[OBJCASE=acc, AGR=[NUM=sg,PER=1]] -> ’sehe’
TV[OBJCASE=acc, AGR=[NUM=sg,PER=3]] -> ’sieht’ | ’'mag’
TV[OBJCASE=acc, AGR=[NUM=pl]] -> ’'siehen’ | ’'moegen’
TV[OBJCASE=dat, AGR=[NUM=sg,PER=1]] -> ’folge’ | "helfe’
TV[OBJCASE=dat, AGR=[NUM=sg,PER=3]] -> ’folgt’ | "hilft’
TV[OBJCASE=dat, AGR=[NUM=pl]] -> ’"folgen’ | ’'helfen’
IV[AGR=[NUM=sg,PER=3]] -> ’kommt’
IV[AGR=[NUM=sg,PER=1]] -> ’'komme’

IV[AGR=[NUM=pl]] -> ’'kommen’

As you will see, the feature OBJCASE is used to specify the case which the verb governs on its object.

9.4.6 Exercises

1. & Modify the grammar illustrated in (118) to incorporate a BAR feature for dealing with

phrasal projections.

2. & Modify the German grammar in (149) to incorporate the treatment of subcategorization

presented in 9.4.1.

3. (D Extend the German grammar in (149) so that it can handle so-called verb-second
structures like the following:

(150) Heute sieht der hund die katze.

4. % Morphological paradigms are rarely completely regular, in the sense of every cell in
the matrix having a different realisation. For example, the present tense conjugation of the
lexeme WALK only has two distinct forms: walks for the 3rd person singular, and walk
for all other combinations of person and number. A successful analysis should not require
redundantly specifying that 5 out of the 6 possible morphological combinations have the

same realization. Propose and implement a method for dealing with this.

5. % So-called head features are shared between the mother and head daughter. For ex-
ample, TENSE is a head feature that is shared between a VP and its head v daughter. See
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[Gazdar et al., 1985] for more details. Most of the features we have looked at are head
features — exceptions are SUBCAT and SLASH. Since the sharing of head features is
predictable, it should not need to be stated explicitly in the grammar rules. Develop an
approach which automatically accounts for this regular behaviour of head features.

9.5 Summary

m The traditional categories of context-free grammar are atomic symbols. An important motiva-
tion feature structures is to capture fine-grained distinctions which would otherwise require a
masssive multiplication of atomic categories.

m By using variables over feature values, we can express constraints in grammar rules which allow
the realization of different feature specifications to be inter-dependent.

m Typically we specify fixed values of features at the lexical level and constrain the values of
features in phrases to unify with the corresponding values in their daughters.

m Feature values are either atomic or complex. A particular subcase of atomic value is the Boolean
value, represented by convention as [+/- F].

m Two features can share a value (either atomic or complex). Structures with shared values are said
to be re-entrant. Shared values are represented by numerical indices (or tags) in AVMs.

m A path in a feature structure is a tuple of features corresponding to the labels on a sequence of
arcs from the root of the graph representation.

m Two paths are equivalent if they share a value.

m Feature structures are partially ordered by subsumption. F'So subsumes F'S | when F'S is more
general (less informative) than F'S .

m The unification of two structures F'S¢ and FS 1, if successful, is the feature structure F'S, which
contains the combined information of both F'So and FS;.

m If unification specialises a path  in F'S, then it also specialises every path 7t equivalent to .

m We can use feature structures to build succinct analyses of a wide variety of linguistic phenomena,
including verb subcategorization, inversion constructions, unbounded dependency constructions
and case government.

9.6 Further Reading

The earliest use of features in theoretical linguistics was designed to capture phonological properties of
phonemes. For example, a sound like /b/ might be decomposed into the structure [+LABIAL, +VOICE].
An important motivation was to capture generalizations across classes of segments; for example, that /n/
gets realized as /m/ preceding any +LABIAL consonant. Within Chomskyan grammar, it was standard to
use atomic features for phenomena like agreement, and also to capture generalizations across syntactic
categories, by analogy with phonology. A radical expansion of the use of features in theortical syntax
was advocated by Generalized Phrase Structure Grammar (GPSG; [Gazdar et al., 1985]), particularly
in the use of features with complex values.
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Coming more from the perspective of computational linguistics, [Kay, 1985] proposed that func-
tional aspects of language could be captured by unification of attribute-value structures, and a sim-
ilar approach was elaborated by [Shieber et al., 1983] within the PATR-II formalism. Early work
in Lexical-Functional grammar (LFG; [Kaplan and Bresnan, 1982]) introduced the notion of an f-
structure which was primarily intended to represent the grammatical relations and predicate-argument
structure associated with a constituent structure parse. [Shieber, 1986] provides an excellent introduc-
tion to this phase of research into feature-based grammars.

One conceptual difficulty with algebraic approaches to feature structures arose when researchers
attempted to model negation. An alternative perspective, pioneered by [Kasper and Rounds, 1986]
and [Johnson, 1988], argues that grammars involve descriptions of feature structures rather than the
structures themselves. These descriptions are combined using logical operations such as conjunction,
and negation is just the usual logical operation over feature descriptions. This description-oriented
perspective was integral to LFG from the outset (cf. [Kaplan, 1989], and was also adopted by later
versions of Head-Driven Phrase Structure Grammar (HPSG; [Sag and Wasow, 1999]).

Feature structures, as presented in this chapter, are unable to capture important constraints on
linguistic information. For example, there is no way of saying that the only permissible values for NUM
are sg and pl, while a specifcation such as [NUM masc] is anomalous. Similarly, we cannot say that
the complex value of AGR must contain specifications for the features PER, NUM and GND, but cannot
contain a specification such as [SUBCAT 3]. Typed feature structures were developed to remedy this
deficiency. To begin with, we stipulate that feature values are always typed. In the case of atomic
values, the values just are types. For example, we would say that the value of NUM is the type num.
Moreover, num is the most general type of value for NUM. Since types are organized hierarchically, we
can be more informative by specifying the value of NUM is a subtype of num, namely either sg or pl.

In the case of complex values, we say that feature structures are themselves typed. So for example
the value of AGR will be a feature structure of type agr. We also stipulate that all and only PER,
NUM and GND are appropriate features for a structure of type agr. A good early review of work on
typed feature structures is [Emele and Zajac, 1990]. A more comprehensive examination of the formal
foundations can be found in [Carpenter, 1992], while [Copestake, 2002] focusses on implementing an
HPSGe-oriented approach to typed feature structures.

There is a copious literature on the analysis of German within feature-based grammar frame-
works. [Nerbonne et al., 1994] is a good starting point for the HPSG literature on this topic, while
[Miiller, 1999] gives a very extensive and detailed analysis of German syntax in HPSG.
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