Chapter 11

Semantic Interpretation

11.1 Introduction

There are many NLP applications where it would be useful to have some representation of the meaning
of a natural language sentence. For instance, as we pointed out in Chapter 1, current search engine
technology can only take us so far in giving concise and correct answers to many questions that we
might be interested in. Admittedly, Google does a good job in answering (1a), since its first hit is (1b).

(1a) What is the population of Saudi Arabia?
(1b) Saudi Arabia - Population: 26,417,599

By contrast, the result of sending (2) to Google is less helpful:
(2) Which countries border the Mediterranean?

This time, the topmost hit (and the only relevant one in the top ten) presents the relevant information as
a map of the Mediterranean basin. Since the map is an image file, it is not easy to extract the required
list of countries from the returned page.

Even if Google succeeds in finding documents which contain information relevant to our question,
there is no guarantee that it will be in a form which can be easily converted into an appropriate answer.
One reason for this is that the information may have to be inferred from more than one source. This is
likely to be the case when we seek an answer to more complex questions like (3):

(3) Which Asian countries border the Mediterranean?

Here, we would probably need to combine the results of two subqueries, namely (2) and Which
countries are in Asia?.

The example queries we have just given are based on a paper dating back to 1982 [Warren &
Pereira, 1982]; this describes a system, Chat-80, which converts natural language questions into a
semantic representation, and uses the latter to retrieve answers from a knowledge base. A knowledge
base is usually taken to be a set of sentences in some formal language; in the case of Chat-80, it is a
set of Prolog clauses. However, we can encode knowledge in a variety of formats, including relational
databases, various kinds of graph, and first-order models. In NLTK, we have used the third of these
options to re-implement a limited version of Chat-80:


file:bibliography.html#warren1982eea
file:bibliography.html#warren1982eea

11.1. Introduction

Sentence: which Asian countries border the_Mediterranean

\X. (((contain x asia) and (country x)) and (border mediterranean x))
set (["turkey’, ’syria’, ’"israel’, ’lebanon’])

As we will explain later in this chapter, a semantic representation of the form \x. (P x) denotes a
set of entities u that meet some condition (P x). We then ask our knowledge base to enumerate all
the entities in this set.

Let’s assume more generally that knowledge is available in some structured fashion, and that it
can be interrogated by a suitable query language. Then the challenge for NLP is to find a method
for converting natural language questions into the target query language. An alternative paradigm for
question answering is to take something like the pages returned by a Google query as our ’knowledge
base’ and then to carry out further analysis and processing of the textual information contained in the
returned pages to see whether it does in fact provide an answer to the question. In either case, it is
very useful to be able to build a semantic representation of questions. This NLP challenge intersects
in interesting ways with one of the key goals of linguistic theory, namely to provide a systematic
correspondence between form and meaning.

A widely adopted approach to representing meaning — or at least, some aspects of meaning —
involves translating expressions of natural language into first-order logic (FOL). From a computational
point of view, a strong argument in favour of FOL is that it strikes a reasonable balance between
expressiveness and logical tractability. On the one hand, it is flexible enough to represent many aspects
of the logical structure of natural language. On the other hand, automated theorem proving for FOL has
been well studied, and although inference in FOL is not decidable, in practice many reasoning problems
are efficiently solvable using modern theorem provers (cf. [Blackburn & Bos, 2005] for discussion).

While there are numerous subtle and difficult issues about how to translate natural language con-
structions into FOL, we will largely ignore these. The main focus of our discussion will be on a different
issue, namely building semantic representations which conform to some version of the Principle of
Compositionality. (See [Gleitman & Liberman, 1995] for this formulation.)

Principle of Compositionality: The meaning of a whole is a function of the meanings of the parts and
of the way they are syntactically combined.

There is an assumption here that the semantically relevant parts of a complex expression will be deter-
mined by a theory of syntax. Within this chapter, we will take it for granted that expressions are parsed
against a context-free grammar. However, this is not entailed by the Principle of Compositionality. To
summarize, we will be concerned with the task of systematically constructing a semantic representation
in a manner that can be smoothly integrated with the process of parsing.

The overall framework we are assuming is illustrated in Figure (4). Given a syntactic analysis of a
sentence, we can build one or more semantic representations for the sentence. Once we have a semantic
representation, we can also check whether it is true in a model.

May 16, 2007 2 Bird, Klein & Loper


file:bibliography.html#blackburn2005rin
file:bibliography.html#partee1995lsc

11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

Domain
S
NP VP
/ \ - chase(suzie, fido)
Suzie \ NP
chases Fido
4) syntactic analysis semantic representation truth in a model

A model for a logical language is a set-theoretic construction which provides a very simplified picture
of how the world is. For example, in this case, the model should contain individuals (indicated in the
diagram by small dots) corresponding to Suzie and Fido, and it should also specify that these individuals
belong to the chase relation.

The order of sections in this chapter is not what you might expect from looking at the diagram.
We will start off in the middle of (4) by presenting a logical language FSRL that will provide us
with semantic representations in NLTK. Next, we will show how formulas in the language can be
systematically evaluated in a model. At the end, we will bring everything together and describe a
simple method for constructing semantic representations as part of the parse process in NLTK.

11.2 The Lambda Calculus

In a functional programming language, computation can be carried out by reducing an expression E
according to specified rewrite rules. This reduction is carried out on subparts of E, and terminates when
no further subexpressions can be reduced. The resulting expression E is called the Normal Form of
E. Table 11.1 gives an example of reduction involving a simple Python expression (where >’ means
’reduces to’):

len(max (["cat’, ’"zebra’, ’"rabbit’] + [’gopher
1))

len(max ([’cat’, ’'zebra’, ’'rabbit’, ’"gopher’]))

len (' zebra’)
5

Table 11.1: Reduction of functions

Thus, working from the inside outwards, we first reduce list concatenation to the normal form shown
in the second row, we then take the max () element of the list (under alphabetic ordering), and then
compute the length of that string. The final expression, 5, is considered to be the output of the program.
This fundamental notion of computation is modeled in an abstract way by something called the A-
calculus (A is a Greek letter pronounced lambda’).

The first basic concept in the A-calculus is application, represented by an expression of the form
(F A), where F is considered to be a function, and A is considered to be an argument (or input) for

Bird, Klein & Loper 3 May 16, 2007



11.3. Propositional Logic

F. For example, (walk x) is an application. Moreover, application expressions can be applied to other
expressions. So in a functional framework, binary addition might represented as ((+ X) y) rather than
(x +y). Note that + is being treated as a function which is applied to its first argument X to yield a
function (+ X) that is then applied to the second argument y.

The second basic concept in the A-calculus is abstraction. If M[x] is an expression containing the
variable X, then AX.M[x] denotes the function X — M[X]. Abstraction and application are combined in
the expression (AX.((+ X) 3) 4), which denotes the function X — x + 3 applied to 4, giving 4 + 3, which
is 7. In general, we have

(5) (x.MIX]N) = M[N],

where M[N] is the result of replacing all occurences of X in M by N. This axiom of the lambda calculus
is known as B-conversion. [3-conversion is the primary form of reduction in the A-calculus.

The module n1tk_lite.semantics.logic can parse expressions of the A-calculus. The A
symbol is represented as ’ \ /. In order to avoid having to escape this with a second ” \’, we use raw
strings in parsable expressions.

>>> nltk lite.semantics logic
>>> 1lp = logic.Parser()

>>> lp.parse(r’ (walk x)')
ApplicationExpression(’walk’,
>>> lp.parse(r’\x. (walk x)')
LambdaExpression(’'x’, ' (walk x)')

le)

An ApplicationExpression has subparts consisting of the function and the argument; a
LambdaExpression has subparts consisting of the variable (e.g., x) that is bound by the A and the
body of the expression (e.g., walk).

The A-calculus is a calculus of functions; by itself, it says nothing about logical structure. Although
it is possible to define logical operators within the A-calculus, it is much more convenient to adopt a
hybrid approach which supplements the A-calculus with logical and non-logical constants as primitives.
In order to show how this is done, we turn first to the language of propositional logic.

11.3 Propositional Logic

The language of propositional logic represents certain aspects of natural language, but at a high level
of abstraction. The only structure that is made explicit involves logical connectives; these correspond
to ’logically interesting’ expressions such as and and not. The basic expressions of the language are
propositional variables, usually written p, g, r, etc. Let A be a finite set of such variables. There is a
disjoint set of logical connectives which contains the unary operator — (not), and binary operators A
(and), \/ (or), = (implies) and = (iff).

The set of formulas of L, is described inductively:

1. Every element of A is a formula of L ,,,),.
2. If @ is a formula of L, , then so is = .

3. If @ and ¢ are formulas, then so are (¢ A ), (¢ V V), (¢ =) and (@ = ).

4. Nothing else is a formula of L ).

May 16, 2007 4 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

Within L,,,,, we can construct formulas such as p — ¢ V r, which might represent the logical
structure of an English sentence such as if it is raining, then Kim will take an umbrella or Lee will get
wet. p stands for it is raining, q for Kim will take an umbrella and q for Lee will get wet.

The Boolean connectives of propositional logic are supported by nltk_lite.semantics.
logic, and are parsed as objects of the class ApplicationExpression (i.e., function expres-
sions). However, infix notation is also allowed as an input format. The connectives themselves belong
to the Operator class of expressions.

>>> lp.parse(’ (and p q)’)
ApplicationExpression(’ (and p)’, 'q’)
>>> lp.parse(’ (p and q)’)

ApplicationExpression(’ (and p)’, 'q’)

>>> lp.parse(’and’)

Operator (’and’)

>>>

Since a negated proposition is syntactically an application, the unary operator and its argument

must be surrounded by parentheses.

>>> lp.parse(’ (not (p and q))’)
ApplicationExpression('not’, ’'(and p q)’)
>>>

To make the output easier to read, we can invoke the infixify () method, which places
binary Boolean operators in infix position.

>>> e = lp.parse(’ (and p (not a))’)

>>> e

ApplicationExpression(’ (and p)’, ' (not a)’)
>>> e

(and p (not a))

>>> e.infixify ()

(p and (not a))

As the name suggests, propositional logic only studies the logical structure of formulas made up
of atomic propositions. We saw, for example, that propositional variables stood for whole clauses
in English. In order to look at how predicates combine with arguments, we need to look at a more
complex language for semantic representation, namely first-order logic. In order to show how this
new language interacts with the A-calculus, it will be useful to introduce the notion of types into our
syntactic definition, in departure from the rather simple approach to defining the clauses of L ..

11.4 First-Order Logic

11.4.1 Predication

In first-order logic (FOL), propositions are analysed into predicates and arguments, which takes us a
step closer to the structure of natural languages. The standard construction rules for FOL recognize
terms such as individual variables and individual constants, and predicates which take differing
numbers of arguments. For example, Jane walks might be formalized as walk(jane) and Jane sees Mike
as see(jane, mike). We will call walk a unary predicate, and see a binary predicate. Semantically,
see is modeled as a relation, i.e., a set of pairs, and the proposition is true in a situation just in case the

Bird, Klein & Loper 5 May 16, 2007



11.4. First-Order Logic

pair j,m belongs to this set. In order to make it explicit that we are treating see as a relation, we’ll
use the symbol seey, as its semantic representation, and we’ll call seeg(jane, mike) an instance of the
’relational style’ of representing predication.

Within the framework of the A-calculus, there is an alternative approach in which predication is
treated as function application. In this functional style of representation, Jane sees Mike is formalized
as (( seey m) j) or — a shorthand with less brackets — as ( see; m j). Rather than being modeled
as a relation, seey denotes a function. Before going into detail about this function, let’s first look at a
simpler case, namely the different styles of interpreting a unary predicate such as walk.

In the relational approach, walkg denotes some set W of individuals. The formula walkg(j) is
true in a situation if and only if the individual denoted by j belongs to W. As we saw in Chapter 10,
corresponding to every set S is the characteristic function fg of that set. To be specific, suppose in
some situation our domain of discourse D is the set containing the individuals j (Jane), m (Mike) and
f (Fido); and the set of individuals that walk is W = {j, f}. So in this situation, the formulas walkg(j)
and walkg(f) are both true, while walkz(m) is false. Now we can use the characteristic function fy as
the interpretation of walk s in the functional style. The diagram (6) gives a graphical representation of
the mapping f.

E\_

True

False

(6)

Binary relations can be converted into functions in a very similar fashion. Suppose for example
that on the relational style of interpretation, Seeg denotes the following set of pairs:

DL jm . mf . fij}

That is, Jane sees Mike, Mike sees Fido, and Fido sees Jane. One option on the functional style would
be to treat seey as the expected characteristic function of this set, i.e., a function fg: D X D — {True,
False} (i.e., from pairs of individuals to truth values). This mapping is illustrated in (8).

May 16, 2007 6 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

<j, 3>
<j, m>
<j, > True
<m, j>

<m, m>

<m, f> False
<f, j>
<f, m>
<f, f>
®) -

However, recall that we are trying to build up our semantic analysis compositionally; i.e., the meaning
of a complex expression is a function of the meaning of its parts. In the case of a sentence, what are
its parts? Presumably they are the subject NP and the VP. So let’s consider what would be a suitable
value for the VP sees Fido. It cannot be seey denoting a function D X D — {True, False}, since this
is looking for a pair of arguments. A better meaning representation would be Ax.seeg(X, Fido), which
is a function of a single argument, and can thus be applied to semantic representation of the subject
np:gc. This invites the question: how should we represent the meaning of the transitive verb see? A
possible answer is shown in (9).

(9) see; = hy.Ax.seeg(X, y).

This defines see; to be a function expression which can be applied first to the argument coming from
the NP object and then to the argument comig from the NP subject. In (10), we show how the application
of (9) to f and then to m gets reduced.

(10) (Ay.Ax.seer(x,y)fm) (Ax.seegr(x,f)m) seer(m,f)

(9) adopts a technique known as ’currying’ (named after Haskell B. Curry), in which a binary function
is converted into a function of one argument. As you can see, when we apply se€ to an argument such
as f, the value is another function, namely the function denoted by Ax.seeg(X, f).

Diagram (11) shows the curryed counterpart of (8). It presents a function F such that given the
argument j, F*(*)) is a characteristic function that maps m to True and j and f to False. (While there
are 23 = 8 characteristic functions from our domain of three individuals into {True, False}, we have
only shown the functions which are in the range of the function denoted by seey.)

Bird, Klein & Loper 7 May 16, 2007



11.4. First-Order Logic

j————>|m

m——>

(11 = -

Now, rather than define see by abstracting over a formula containing S€€g, we can interpret it directly
as the function f: (Ind — (Ind — Bool)), as illustrated in (11). Table 11.2 summarizes the different
approaches to predication that we have just examined.

English Relational Functional
Jane walks walk(j) (walk j)
Mike sees Fido see(m, f) ((see fy m), (see f m)

Table 11.2: Representing Predication

In particular, one has to be careful to remember that in (see f m), the order of arguments is the reverse
of what is found in see(m, f).

In order to be slightly more formal about how we are treating the syntax of first-order logic, it is
helpful to look first at the typed lambda calculus. We will take as our basic types Ind and Bool,
corresponding to the domain of individuals and {7rue, False} respectively. We define the set of types
recursively. First, every basic type is a type. Second, If o and T are types, then (0 — 1) is also a
type; this corresponds to the set of functions from things of type o to things of type 1. We omit the
parentheses around ¢ — 7 if there is no ambiguity. For any type T, we have a set Var(t) of variables of
type T and Con(t) of constants of type T. We now define the set Term(t) of A-terms of type T.

1. Var(t) € Term(t).

2. Con(t) € Term(T).

3. If a € Term(oc — 7) and f§ & Term(o), then (o f) & Term(t) (function application).

4. Ifx € Var(o) and o & Term(p), then AX.a. & Term(t), where T = (0 — Q) (A-abstraction).

We replace our earlier definition of formulas containing Boolean connectives (that is, in L ,,,,) by
adding the following clause:

5. not & Con(Bool — Bool), and and, or, implies and iff = Con(Bool — (Bool — Bool)).

We also add a clause for equality between individual terms.

May 16, 2007 8 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

6. If a, p € Term(Ind), then o = & Term(Bool).

If we return now to NLTK, we can see that our previous implementation of function application
already does service for predication. We also note that A-abstraction can be combined with terms that
are conjoined by Boolean operators. For example, the following can be thought of as the property of
being an x who walks and talks:

>>> nltk_lite.semantics logic

>>> 1lp = logic.Parser()

>>> l1lp.parse(r’\x. ((walk x) and (talk x))’)
LambdaExpression(’'x’, ' (and (walk x) (talk x))’)

-conversion can be invoked with the simplify () method of ApplicationExpressions.
As we noted earlier, the“infixify()* method will place binary Boolean connectives in infix position.

>>> e = lp.parse(r’ (\x. ((walk x) and (talk x)) john)’)

>>> e

ApplicationExpression(’\x. (and (walk x) (talk x))’, ’john’)
>>> e.simplify ()

(and (walk john) (talk john))

>>> e.simplify () .infixify ()

((walk john) and (talk john))

Up to this point, we have restricted ourselves to looking at formulas where all the arguments are
individual constants (i.e., expressions in Term(Ind)), corresponding to proper names such as Jane,
Mike and Fido. Yet a crucial ingredient of first-order logic is the ability to make general statements
involving quantified expressions such as all dogs and some cats. We turn to this topic in the next
section.

11.4.2 Quantification and Scope

First-order logic standardly offers us two quantifiers, every (or all) and some. These are formally
written as vV and , respectively. The following two sets of examples show a simple English example, a
logical representation, and the encoding which is accepted by the NLTK 1o0gic module.

(12a) Every dog barks.

(12b) Vv x.((dog x) — (bark x))

(12¢) all x.((dog x) implies (bark x))
(13a) Some cat sleeps.

(13b) x.((cat x) A (sleep x))

(13c) some x. ((cat x) (sleep x))

The inclusion of first-order quantifiers motivates the final clause of the definition of our version of
first-order logic.

7. If x € Var(Ind) and ¢ & Term(Bool), then Vv X.¢, X.¢ & Term(Bool).

Bird, Klein & Loper 9 May 16, 2007



11.4. First-Order Logic

One important property of (12b) often trips people up. The logical rendering in effect says that
if something is a dog, then it barks, but makes no commitment to the existence of dogs. So in a
situation where nothing is a dog, (12b) will still come out true. (Remember that * (p implies q)
’ is true when " p’ is false.) Now you might argue that (12b) does presuppose the existence of dogs,
and that the logic formalization is wrong. But it is possible to find other examples which lack such
a presupposition. For instance, we might explain that the value of the Python expression re. sub ('
ate’, ’8’, astring) is the result of replacing all occurrences of  ate’ in astringby ’ 87,
even though there may in fact be no such occurrences.

What happens when we want to give a formal representation of a sentence with fwo quantifiers,
such as the following?

(14) Every girl chases a dog.
There are (at least) two ways of expressing (14) in FOL:
(15a) W x.((girl x) = y.((dog y) A (chase y x)))
(15b) y.((dog y) A V¥ x.((every x) — (chase y X)))

Can we use both of these? Then answer is Yes, but they have different meanings. (15b) is logically
stronger than (15a): it claims that there is a unique dog, say Fido, which is chased by every girl. (15a),
on the other hand, just requires that for every girl g, we can find some dog which d chases; but this
could be a different dog in each case. We distinguish between (15a) and (15b) in terms of the scope
of the quantifiers. In the first, v has wider scope than , while in (15b), the scope ordering is reversed.
So now we have two ways of representing the meaning of (14), and they are both quite legitimate. In
other words, we are claiming that (14) is ambiguous with respect to quantifier scope, and the formulas
in (15) give us a formal means of making the two readings explicit. However, we are not just interested
in associating two distinct representations with (14). We also want to show in detail how the two
representations lead to different conditions for truth in a formal model. This will be taken up in the
next section.

11.4.3 Alphabetic Variants

When carrying out 3-reduction, some care has to be taken with variables. Consider, for example, the A
terms (16a) and (16b), which differ only in the identity of a free variable.

(16a) Ay.(see xy)
(16b) Ay.(see zy)
Suppose now that we apply the A-term AP.X.(P X) to each of these terms:
(17a) (A\PX.(P x) Ay.(see x y))
(17b) (AP.X.(P x) Ay.(see z Y))

In principle, the results of the application should be semantically equivalent. But if we let the free
variable X in (16a) be ’captured’ by the existential quantifier in (17b), then after reduction, the results
will be different:

May 16, 2007 10 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

(18a) x.(see X Xx)
(18b) x.(see z x)

(18a) means there is some X that sees him/herself, whereas (18b) means that there is some X that
sees an unspecified individual y. What has gone wrong here? Clearly, we want to forbid the kind
of variable capture shown in (18a), and it seems that we have been too literal about the label of the
particular variable bound by the existential quantifier in the functor expression of (17a). In fact, given
any variable-binding expression (involving v/, or A), the particular name chosen for the bound variable
is completely arbitrary. For example, (19a) and (19b) are equivalent; they are called o equivalents (or
alphabetic variants).

(19a) x.(P x)
(19b) z(.(P zgp)

The process of relabeling bound variables (which takes us from (19a) to (19b)) is known as a-
conversion. When we test for equality of VariableBinderExpressions in the logic module
(i.e., using ==), we are in fact testing for a-equivalence:

>>> nltk lite.semantics *
>>> 1lp = Parser ()
>>> el = lp.parse(’'some x. (P x)’)

>>> el
some x. (P x)
>>> e2 = el.alpha_convert (Variable('z’))

>>> e2
some z. (P z)
>>> el == e2
True

When f-reduction is carried out on an application (M N), we check whether there are free variables
in N which also occur as bound variables in any subterms of M. Suppose, as in the example discussed
above, that X is free in N, and that M contains the subterm X.(P X). In this case, we produce an alphabetic
variant of X.(P X), say, z.(P z), and then carry on with the reduction. This relabeling is carried out
automatically by the B-reduction code in 1ogic, and the results can be seen in the following example.

>>> e3 = lp.parse(’ (\P.some x. (P x) \y. (see x y))’)

>>> e3
(\P.some x. (P x) \y. (see x y))
>>> e3.simplify ()

some z2. (see x z2)

11.4.4 Types and the Untyped Lambda Calculus

For convenience, let’s give a name to language for semantic representations that we are using in
nltk_lite.semantics.logic: FSRL (for Functional Semantic Representation Language). So
far, we have glossed over the fact that the FSRL is based on an implementation of the untyped
lambda calculus. That is, although we have introduced typing in order to aid exposition, FSRL is
not constrained to honour that typing. In particular, there is no formal distinction between predicate
expressions and individual expressions; anything can be applied to anything. Indeed, functions can be
applied to themselves:

Bird, Klein & Loper 11 May 16, 2007



11.5. Formal Semantics

>>> lp.parse(’ (walk walk)’)
ApplicationExpression(’walk’, ’'walk’)

By contrast, most standard approaches to natural language semantics forbid self-application (e.g.,
applications such as (walk walk)) by adopting a typed language of the kind presented above.

It is also standard to allow constants as basic expressions of the language, as indicated by our
use Con(t) is our earlier definitions. Correspondingly, we have used a mixture of convention and
supplementary stipulations to bring FSRL closer to this more standard framework for natural language
semantics. In particular, we use expressions like x, y, z or x0, x1, x2 to indicate individual variables.
In FSRL, we assign such strings to the class IndvVvariableExpression.

>>> lp.parse(’'x’)
IndVariableExpression(’'x’)
>>> lp.parse(’'x01")
IndVariableExpression (' x01’)

English-like expressions such as dog, walk and john will be non-logical constants (non-logical in
contrast to logical constants such as not and and). In order to force logic.Parser () to recognize
non-logical constants, we can initialize the parser with a list of identifiers.

>>> lp = Parser (constants=['dog’, ’'walk’, ’'see’])
>>> lp.parse(’'walk’)
ConstantExpression(’'walk’)

To sum up, while the untyped A-calculus only recognizes one kind of basic expression other than
A, namely the class of variables (the class VariableExpression in logic), FSRL adds three
further classes of basic expression: IndVariableExpression, ConstantExpression and
Operator (Boolean connectives plus the equality relation =).

This completes our discussion of using a first-order language as a basis for semantic representation
in NLTK. In the next section, we will study how FSRL is interpreted.

11.5 Formal Semantics

In the preceding sections, we presented some basic ideas about defining a semantic representation
FSRL. We also showed informally how expressions of FSRL are paired up with natural language
expressions. Later on, we will investigate a more systematic method for carrying out that pairing.
But let’s suppose for a moment that for any sentence S of English, we have a method of building a
corresponding expression of first-order logic that represents the meaning of S (still a fairly distant goal,
unfortunately). Would this be enough? Within the tradition of formal semantics, the answer would be
No. To be concrete, consider (20a) and (20b).

(20a) Melbourne is an Australian city.
(20b) (((in australia) melbourne) A (city melbourne))

(20a) makes a claim about the world. To know the meaning of (20a), we at least have to know the
conditions under which it is true. Translating (20a) into (20b) may clarify some aspects of the structure
of (20a), but we can still ask what the meaning of (20b) is. So we want to take the further step of

"When combined with logic, unrestricted self-application leads to Russell’s Paradox.

May 16, 2007 12 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

giving truth conditions for (20b). To know the conditions under which a sentence is true or false is
an essential component of knowing the meaning of that sentence. To be sure, truth conditions do not
exhaust meaning. But if we can find some situation in which sentence A is true while sentence B is
false, then we can be certain that A and B do not have the same meaning.

Now there are infinitely many sentences in Term(Bool) and consequently it is not possible to simply
list the truth conditions. Instead, we give a recursive definition of truth. For instance, one of the clauses
in the definition might look roughly like this:

(21) (p A W) is True iff @ is True and  is True.

(21) is applicable to (20b); it allows us to decompose it into its conjuncts, and then proceed further with
each of these, until we reach expressions — constants and variables — that cannot be broken down any
further.

As we have already seen, all of our non-logical constants are interpreted either as individuals or as
curried functions. What we are now going to do is make this notion of interpretation more precise by
defining a valuation for non-logical constants, building on a set of predefined individuals in a domain
of discourse. Together, the valuation and domain of discourse make up the main components of a model
for sentences in our semantic representation language. The framework of model-theoretic semantics
provides the tools for making the recursive definition of truth both formally and computationally
explicit.

Our models stand in for possible worlds — or ways that the world could actually be. Within
these models, we adopt the fiction that our knowledge is completely clearcut: sentences are either true
or false, rather than probably true or true to some degree. (The only exception is that there may be
expressions which do not receive any interpretation.)

More formally, a model for a first-order language L is a pair <D, V>, where D is a domain of
discourse and V is a valuation function for the non-logical constants of L. Non-logical constants are
interpreted by V as follows (recall that Ind is the type of entities and Bool is the type of truth values):

m if o is an individual constant, then V(o) & D.
m Ify is an expression of type (Ind — ... (Ind — Bool)...), then V(y) is a function f :
D — ... (D — {True, False})...).

As explained earlier, expressions of FSRL are not in fact explicitly typed. We leave it to you, the
grammar writer, to assign ’sensible’ values to expressions rather than enforcing any type-to-denotation
consistency.

11.5.1 Characteristic Functions

Within the semantics package, curryed characteristic functions are implemented as a subclass of
dictionaries, using the CharFun constructor.

>>> nltk lite.semantics *
>>> cf = CharFun({’'dl’: CharFun({'d2’: True}), 'd2’: CharFun({'dl’: Truel})})

Values of a CharFun are accessed by indexing in the usual way:

>>> cf[’'dl’]
{"d2’ : True}

>>> cf[’dl’]['d2’]
True

Bird, Klein & Loper 13 May 16, 2007



11.5. Formal Semantics

CharFuns are "abbreviated’ data structures in the sense that they omit key-value pairs of the form (e
False). Infact, they behave just like ordinary dictionaries on keys which are out of their domain,
rather than yielding the value False:

>>> cf[’'not in domain’]
Traceback (most recent call last):

KeyError: 'not in domain’

The assignment of False values is delegated to a wrapper method app () of the Model class. app*
() ¥ embodies the Closed World assumption; i.e., where ‘mis an instance of
Model:

>>> m.app (cf, 'not in domain’)
False

In practise, it is often more convenient to specify interpretations as n-ary relations (i.e., sets of
n-tuples) rather than as n-ary functions. A CharFun object has a read () method which will convert
such relations into curried characteristic functions, and a tuples () method which will perform the
inverse conversion.

>>> s = set([('dl’, 'd2’), ('d3’, ’'d4’)])
>>> cf = CharFun()

>>> cf.read(s)

>>> cf

{'d2’: {’dl’: True}, 'd4’: {’'d3’: True}}
>>> cf.tuples|()

set ([('dl’, 'd2’), ('d3’, ’'d4d’)])

The function flatten () returns a set of the entities used as keys in a CharFun instance. The
same information can be accessed via the domain attribute of CharFun.

>>> ¢f = CharFun({’'dl’ : {'d2’: True}, ’'d2’ : {’dl’: True}})
>>> flatten(cf)

set([’'d2’, "dl’])

>>> cf.domain

set (['d2’, "dl’])

11.5.2 Valuations

A Valuation is a mapping from non-logical constants to appropriate semantic values in the model.
Valuations are created using the Valuation constructor.

>>> val = Valuation({’'Fido’: 'dl’, ’'dog’: {’'dl’: True, ’'d2’: True}})
>>> val[’dog’]

{’d2’: True, ’'dl’: True}

>>> val[’dog’]['dl’]

True

As with CharFun, an instance of Valuation has a read () method that allows valuations to be
specified as relations rather than characteristic functions.

May 16, 2007 14 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

>>> setval = [('adam’, 'bl’), ('betty’, ’'gl’),
('girl’, set([’g2’, 'gl’l)), (‘boy’, set([’bl’, 'b2'])),
("see’, set([('bl", "gl”), ('b2’, 'g2"), ('gl’, 'bl’), ('g2’, 'bl’)1))]
>>> val = Valuation()
>>> val.read(setval)
>>> print val
{"adam’ : "bl’,
"betty’: ’'gl’,
"boy’: {’bl’: True, 'b2’': True},
"girl’: {’g2’: True, 'gl’: True},
"see’: {'bl’: {’g2’: True, ’'gl’: True},
"gl’: {’bl’: True},
g2’ : {’'b2’: Truel}}}

Valuations have a domain attribute, like CharFun, and also a symbo1ls attribute.

>>> val.domain

set(['gl’, "g2’, 'b2’, ’'bl’])

>>> val.symbols

["boy’, ’'girl’, ’'see, 'adam’, ’'betty’]

11.5.3 Assignments

A variable Assignment is a mapping from individual variables to entities in the domain. As indicated
earlier, individual variables are written with the letters " x’, " v’, “w’ and ' z’, optionally followed
by an integer (e.g., ' x0’, " y332’). Assignments are created using the Assignment constructor,
which also takes the model’s domain of discourse as a parameter.

>>> dom = set([’ul’, 'u2’, ‘u3’, ‘ud’])

>>> g = Assignment (dom, {'x’: ’‘ul’, 'y’: "u2’'})

>>> g

{Iy’: Iu21, Ix’: Iull}

In addition, there is a print () format for assignments which uses a notation closer to that in logic
textbooks:

>>> print g
glu2/y] [ul/x]

It is possible to update an assignment using the add () method; this checks that the variable really
is an individual variable, and also checks that the new value belongs to the domain of discourse.
>>> dom = set(['ul’, "u2’, "u3d’, 'ud’])
>>> g = Assignment (dom, {})
>>> g.add('ul’, ’"x’")
{ 4 x( . ’ ul 4 }
>>> g.add('ul’, ’"=xyz’)
Traceback (most recent call last):

4 4

AssertionError: Wrong format for an Individual Variable:
>>> g.add('u2’, ’"x’").add('u3’, ’‘y’).add('ud’, 'x0")
{IYI: Iu3I, le: Iu2I, IXOI: Iu4l}

>>> g.add('u5’, ’"x’")

Traceback (most recent call last):

Xyz

AssertionError: u5 is not in the domain set ([’u4’, 'ul’, 'u3’, ’"u2’])

Bird, Klein & Loper 15 May 16, 2007



11.5. Formal Semantics

11.5.4 evaluate() and satisfy ()

The Model constructor takes two parameters, of type set and Valuation respectively. Assuming
that we have already defined a Valuation val, it is convenient to use val’s domain as the domain
for the model constructor.

>>> dom = val.domain
>>>m Model (dom, wval)
>>> g = Assignment (dom, {})

The top-level method of a Model instance is evaluate (), which assigns a semantic value to
expressions of the 1ogic module, under an assignment g:

>>> m.evaluate(’all x. ((boy x) implies (not (girl x)))’, g)
True

The function evaluate () is essentially a convenience for handling expressions whose interpretation
yields the Undefined value. It then calls the recursive function satisfy (). Since most of the
interesting work is carried out by satisfy (), we shall concentrate on the latter.

The satisfy () function needs to deal with the following kinds of expression:

B non-logical constants and variables;
m Boolean connectives;

m function applications;

m quantified formulas;

m lambda-abstracts.

‘We shall look at each of these in turn.

11.5.5 Evaluating Non-Logical Constants and Variables

When it encounters expressions which cannot be analysed into smaller components, satisfy () calls
two subsdiary functions. The function i () is used to interpret non-logical constants and individual
variables, while the variable assignment g is used to assign values to individual variables, as seen
above.

Any atomic expression which cannot be assigned a value by i () or g raises an Undefined
exception; this is caught by evaluate (), which returns the string * Unde fined’ . In the following
examples, we have set tracing to 2 to give a verbose analysis of the processing steps.

>>> m.evaluate(’ (boy adam)’, g, trace=2)
i, g('boy’) = {'bl’: True, ’'b2’: True}
i, g(’adam’) = bl
" (boy adam)’: {’bl’: True, ’'b2’: True} applied to bl yields True
' (boy adam)’ evaluates to True under M, g

>>> m.evaluate(’ (girl adam)’, g, trace=2)
i, g(’'girl’) = {'g2’: True, ’'gl’: True}
i, g(’adam’) = bl
" (girl adam)’: {’g2’: True, ’'gl’: True} applied to bl yields False
" (girl adam)’ evaluates to False under M, g
False

May 16, 2007 16 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

>>> m.evaluate(’ (walk adam)’, g, trace=2)

checking whether ’'walk’ an individual variable
Expression ’'walk’ can’t be evaluated by i and g[bl/x].
"Undefined’

11.5.6 Evaluating Boolean Connectives

The satisfy () function assigns semantic values to complex expressions according to their syntactic
structure, as determined by the method decompose () ; this calls the parser from the 1ogic module
to return a 'normalized’ parse structure for the expression. In the case of a Boolean connectives,
decompose () produces a pair consisting of the connective and a list of arguments:

>>> m.decompose (’ ((boy adam) and (dog fido))')
(and’, [’ (boy adam)’, '’ (dog fido)'])

Following the functional style of interpretation, Boolean connectives are interpreted quite literally as
truth functions; for example, the connective can be interpreted as the function AND:

>>> AND = {True: ({True: True,
False: False},

False: {True: False,
False: Falsel}}

We define OPS as a mapping between the Boolean connectives and their associated truth functions.
Then the simplified clause for the satisfaction of Boolean formulas looks as follows:

>>> satisfy (expr, g):
parsed (expr) == (op, args):
args == (phi, psi):
vall self.satisfy(phi, g)
val2 = self.satisfy(psi, qg)
return OPS[op] [vall] [val2]

A formula such as ( p q) is interpreted by indexing the value of with the values of the two
propositional arguments, in the following manner:

>>> m.AND[m.evaluate('p’, g)][m.evaluate('q’, g)]l

We can use these definitions to generate truth tables for the Boolean connectives:

>>> nltk_lite.semantics Model
>>> ops = ['and’, 'or’, 'implies’, "iff’]
>>> pairs = [(p, 9) P [True,False] o} [True,False]]
>>> o ops:
"$8s %8s | p %s g" % ('p’', 'qgq’, o)
"—" % 30

(p, ) pairs:
value = Model.OPS|[o] [p] [qg]
"%$8s %8s | %8s" % (p, g, value)

The output is as follows:

Bird, Klein & Loper 17 May 16, 2007



11.5. Formal Semantics

p al pand g
True True | True
True False | False

False True | False
False False | False

IS g | por g
True True | True
True False | True

False True | True
False False | False

P a | p implies g
True True | True
True False | False

False True | True
False False | True

P al p iff g
True True | True
True False | False

False True | False
False False | True

Although these interpretations are close to the informal understanding of the connectives, there are
some differences. Thus, ' (p or qg) ' istrue even whenboth " p’ and ' g’ aretrue. ' (p implies
q) " is true even when ’ p’ is false; it only excludes the situation where ’p’‘ is true and ’ g’ is false.
"(p 1ff qg)’ istrueif "p’ and ' g’ have the same truth value, and false otherwise.

11.5.7 Evaluating Function Application

The satisfy () clause for function application is similar to that for the connectives. In order to
handle type errors, application is delegated to a wrapper function app () rather than by directly
indexing the curried characteristic function as described earlier. The definition of satisfy () started
above continues as follows:

elif parsed(expr) == (fun, arg):
funval = self.satisfy(fun, qg)

argval = self.satisfy(psi, g)
return app (funval, argval)

11.5.8 Evaluating Quantified Formulas

Let’s consider now how to interpret quantified formulas, such as (22).
(22) some x. (see x betty)

We decompose (22) into two parts, the quantifier prefix some x and the body of the formula, (23).

May 16, 2007 18 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

(23) (see x betty)

Although the variable x in (22) is bound by the quantifier some, x is not bound by any quantifiers
within (23); in other words, it is free. A formula containing at least one free variable is said to be
open. How should open formulas be interpreted? We can think of x as being similar to a variable in
Python, in the sense that we cannot evaluate an expression containing a variable unless it has already
been assigned a value. As mentioned earlier, the task of assigning values to individual variables is
undertaken by an Assignment object g. However, our variable assignments are partial: g may well
not give a value to x.

>>> dom = val.domain

>>> g = Assignment (dom)

>>> m.evaluate(’ (see x betty)’, g)
"Undefined’

We can use the add () method to explicitly add a binding to an assignment, and thereby ensure that g
gives x a value.

>>> g.add('bl’, 'x’)

{'x": 'bl’}

>>> m.evaluate(’ (see x betty)’, qg)

True

In a case like this, we say that the entity b1 satisfies the open formula (see x betty), or that (
see x betty) is satisfied under the assignment g[" b1’ /" x’].

When we interpret a quantified formula, we depend on the notion of an open subformula being
satisfied under a variable assignment. However, to capture the force of the quantifier, we need to
abstract away from arbitrary specific assignments. The first step is to define the set of satisfiers of a
formula that is open in some variable. Formally, given an open formula ¢[x] dependent on X and a
model with domain D, we define the set saf(¢p[x], g) of satisfiers of ¢[x] to be:

(24) {u € D satisfy(@[X], glu/x]) = True}

We use g[u/X] to mean that assignment which is just like g except that g(X) = u. Here is a Python
definition of satisfiers ():

>>> def satisfiers(expr, var, g):
candidates = []
if freevar(var, expr):
for u in domain:
g.add(u, var)
if satisfy(expr, g):
candidates.append (u)

return set (candidates)

The satisfiers of an arbitrary open formula can be inspected using the satisfiers () method.

>>> m.satisfiers('some y. ((girl y) and (see x y))’, 'x', qg)
set(['bl’])

>>> m.satisfiers(’'some y. ((girl y) and (see y x))’,
set(['bl’, 'b2'1])

4 4

x', qg)

>>> m.satisfiers(’ (((girl x) and (boy x)) or (dog x))’, 'x', g)
set(['dl’])
>>> m.satisfiers(’ ((girl x) and ((boy x) or (dog x)))’, 'x', g)

set ([1])

Bird, Klein & Loper 19 May 16, 2007



11.5. Formal Semantics

Now that we have put the notion of satisfiers in place, we can use this to determine a truth value
for quantified expressions. An existentially quantified formula X.¢[X] is held to be true if and only if
sat(¢p[x], g) is nonempty. We use the length function 1en () to return the cardinality of a set.

elif parsed(expr) == (binder, body):
if binder = ('some’, wvar):
sat = self.satisfiers(body, var, qg)

return len(sat) > 0

In other words, a formula X.¢[X] has the same value in model M as the statement that the number of
satisfiers in M of @[X] is greater than 0.

A universally quantified formula ¥ X.[X] is held to be true if and only if every u in the model’s
domain D belongs to sar(¢[x], g); equivalently, if D C sar(¢[x], g). The satisfy () clause above for
existentials can therefore be extended with the clause:

elif binder == (’all’, wvar):
sat = self.satisfiers (body, var, g)
return domain.issubset (sat)

Although our approach to interpreting quantified formulas has the advantage of being transparent
and conformant to classical logic, it is not computationally efficient. To verify an existentially quan-
tified formula, it suffices to find just one satisfying individual and then return True. But the method
just presented requires us to test satisfaction for every individual in the domain of discourse for each
quantifier. This requires m” evaluations, where m is the cardinality of the domain and n is the number
of nested quantifiers.

11.5.9 Evaluating lambda abstracts

Finally, we can also evaluate A-abstracts; not surprisingly, these are interpreted as CharFuns. To
illustrate, we can construct the binary relation of individuals who see each other, or the ternary relation
of distinct individuals a and b such for some ¢, a sees ¢ and c sees b.

>>> m.evaluate(r’'\x y. ((see x y) and (see y x))’', Qg)
{'bl’: {’gl’: True}, 'gl’: {’'bl’: True}}

>>> r = m.evaluate(r"""\x z y. (((see x z) and (see z y))
e and (not (x =y)))""", g)
>>> r.tuples|()
set([('g2’, 'bl’, 'gl’), ('b2’, "g2’, 'bl’)])

Note that A-abstracts can only be explicitly evaluated when the bound variable is an individual variable.

Variables which range over functions, such as the "P” in " \x. (P suzie)’, are called higher-
order variables, and quantification over higher-order variables lies outside first-order logic.

If you attempt to evaluate an expression suchas " \x. (P suzie)’, the semantics package
will raise an error. Since we only allow ourselves to quantify over individuals in FSRL, a variable
assignment only give values to individual variables, and variable assignment is crucial for interpreting
A-abstraction. So though we do allow abstracts with higher-order variables in the language, they are
not ’first-class citizens’: they are only used as a stepping stone on the way to building up semantic
representations in a compositional manner, and are eliminated prior to evaluation by p3-reduction.

May 16, 2007 20 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

11.5.10 Exercises

1. 3% Define a denotation for exclusive or (i.e., ' (p xor q)’ isequivalentto ’ ( (p or

q) and (not (p and q)))’.)

2. #x Evaluate the expressions ’ \x. (boy adam)’ and’ \x. (boy fido)’ inthe model

given above. Explain your results.

3. (D Usethe satisfiers () method for determing the set of satisfiers of the open formula
" ((dog x) implies (x = fido))’ in the model given above. Explain why the

result is the way that it is.

4. (D Develop a set of around 10 sentences, using FSRL. Build a model for the sentences

which makes then all true, and verify the results.

5. (D Build a model for a relation rel which is transitively closed and reflexive. That is, it

satisfies the following two sentences:

a)all xy z.(((rel y x) and (rel z y)) implies (rel z x))

b.) all x. (rel x x)

11.6 Quantifier Scope Revisited

You may recall that we discussed earlier an example of quantifier scope ambiguity, repeated here as

(25).
(25) Every girl chases a dog.

The two readings are represented as follows.

>>> srl = "all x.((girl x) implies some z.((dog z) and (chase z x)))’
>>> sr2 = 'some z.((dog z) and all x.((girl x) implies (chase z x)))’

In order to examine the ambiguity more closely, let’s fix our valuation as follows:

>>> val = Valuation()

>>> v = [('john’, 'bl"),
(‘mary’, 'gl’),
('’ suzie’, 'g2’),
(' fido’, ’d1l’),
("tess’, ’'d2’),
('noosa’, 'n’),
("girl’, set(['gl’, 'g2'])),
("boy’, set([’'bl’, 'b2'1])),
('dog’, set([’dl’, 'd2'])),
("bark’, set([’'dl’, 'd2']1)),
('walk’, set([’'bl’, 'g2’, ’dl’1)),

("chase’, set([('bl", "gl"), ('b2", ’'gl”), ('gl’, ’'dl"), ("g2’,

('see’, set([('bl’, 'gl’), ('b2’, 'd2"), ('gl’, 'bl’),

('daz’, 'bl"), ('g2’, 'n")1)),

("in’, set([('b1", 'n"), ('b2", 'n"), ('d2’, 'n")])),
... (with’, set([('b1’, 'gl’), ('gl’, 'b1’), ('dl’, 'bl’), ('bl’,
>>> val.read(v)

'dz7)1)),

"d17)1))1

Bird, Klein & Loper 21 May 16, 2007



11.7. Evaluating English Sentences

Using a slightly different graph from before, we can also visualise the chase relation as in (26).

bl
>
b2

gl —— d1

In (26), an arrow between two individuals x and y indicates that x chases y. So b1 and b2 both chase
gl, while g1 chases d1 and g2 chases d2. In this model, formula sr1 above is true but sr2 is false.
One way of exploring these results is by using the satisfiers () method of Model objects.

= val.domain

Model (dom, wval)

>>> g = Assignment (dom)

>>> fmlal = ’ ((girl x) implies some y.((dog y) and (chase y x)))’
>>> m.satisfiers(fmlal, 'x’, q)

set(['g2’, 'gl’, 'n’, 'bl’, ’'b2’, ’'d2’, 'dl’])

>>>

>>> dom
>>> m =

This gives us the set of individuals that can be assigned as the value of x in fmlal. In particular,
every girl is included in this set. By contrast, consider the formula fm1a2 below; this has no satisfiers
for the variable y.

>>> fmla2 = ’ ((dog y) and all x.((girl x) implies (chase y x)))’
>>> m.satisfiers(fmla2, 'y’, qg)

set ([1)

>>>

That is, there is no dog that is chased by both g1 and g2. Taking a slightly different open formula,
fmla3, we can verify that there is a girl, namely g1, who is chased by every boy.

>>> fmla3 = ’ ((girl y) and all x.((boy x) implies (chase y x)))’
>>> m.satisfiers(fmla3, 'y’, g)

set (['gl’'])

>>>

11.7 Evaluating English Sentences

11.7.1 Using the sem feature

Until now, we have taken for granted that we have some appropriate logical formulas to interpret.
However, ideally we would like to derive these formulas from natural language input. One relatively
easy way of achieving this goal is to build on the grammar framework developed in Chapter 9. Our first
step is to introduce a new feature, sem. Because values of sem generally need to be treated differently
from other feature values, we use the convention of enclosing them in angle brackets. (27) illustrates a
first approximation to the kind of analyses we would like to build.

May 16, 2007 22 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

27) :
S[sem=<(walk john)>]

NP[sem=<(john)>] VP[sem=<walk>]
Jane V[sem=<walk>]

walks

Thus, the sem value at the root node shows a semantic representation for the whole sentence, while
the sem values at lower nodes show semantic representations for constituents of the sentence. So
far, so good, but how do we write grammar rules which will give us this kind of result? To be more
specific, suppose we have a NP and VP constituents with appropriate values for their sem nodes? If
you reflect on the machinery that was introduced in discussing the A calculus, you might guess that
function application will be central to composing semantic values. You will also remember that our
feature-based grammar framework gives us the means to refer to variable values. Putting this together,
we can postulate a rule like (28) for building the sem value of an S. (Observe that in the case where
the value of sem is a variable, we omit the angle brackets.)

(28) S[sem = <app (?vp, ?subj)>] -> NP[sem=?subj] VP [sem=?vp]

(28) tells us that given some sem value ? sub j for the subject NP and some sem value ?vp for the
VP, the sem value of the S mother is constructed by applying ?vp as a functor to ?np. From this, we
can conclude that ?vp has to denote a function which has the denotation of ?np in its domain; in fact,
we are going to assume that ?vp denotes a curryed characteristic function on individuals. (28) is a nice
example of building semantics using the principle of compositionality: that is, the principle that the
semantics of a complex expression is a function of the semantics of its parts.

To complete the grammar is very straightford; all we require are the rules shown in (29).

29) VP [sem=?v] -> IV[sem=2?v]
NP [sem=<john>] -> ’Jane’
IV[sem=<walk>] -> ’'walks’

The VP rule says that the mother’s semantics is the same as the head daughter’s. The two lexical rules
just introduce non-logical constants to serve as the semantic values of Jane and walks respectively.
This grammar can be parsed using the chart parser in n1ltk_lite.parse.featurechart, and
the trace in (30) shows how semantic values are derived by feature unification in the process of building
a parse tree.

(30)
Predictor |> . .| S[sem=’ (?vp ?subj)’] —-> x NP[sem=?subj] VP[sem=?vp]
Scanner | [-] .1 [0:1] ’"Jane’
Completer |[-> .| S[sem=' (?vp john)’] —-> NP[sem='john’] x VP[sem=?vp]
Predictor |. > .| VP[sem=?v] —-> * IV[sem=?V]
Scanner | [-1] [1:2] ’'walks’
Completer |. [-]] VP[sem="walk’] —-> IV[sem="walk’] =«
Completer |[===]]| S[sem=’ (walk john)’] -> NP[sem=’john’] VP [sem='walk’]
Completer |[===]]| [INIT] -> S =

11.7.2 Quantified NPs

You might be thinking this is all too easy — surely there is a bit more to building compositional
semantics. What about quantifiers, for instance? Right, this is a crucial issue. For example, we want
(31a) to be given a semantic representation like (31b). How can this be accomplished?

Bird, Klein & Loper 23 May 16, 2007

*



11.7. Evaluating English Sentences

(31a) A dog barks.
(31b) "some x. ((dog x) and (bark x))’

Let’s make the assumption that our only operation for building complex semantic representations is ’
app () " (corresponding to function application). Then our problem is this: how do we give a semantic
representation to quantified NPs such as a dog so that they can be combined with something like ’
walk’ to give a result like (31b)? As a first step, let’s make the subject’s sem value act as the functor
rather than the argument in “ app () ’ . Now we are looking for way of instantiating ?np so that (32a)
is equivalent to (32b).

(32a) [sem=<app(’np, bark)>]
(32b) [sem=<some x.((dog x) and (bark x))>]

This is where A abstraction comes to the rescue; doesn’t (32) look a bit reminiscent of carrying out
[-reduction in the A-calculus? In other words, we want a A term M to replace ’ ?np’ so that applying
Mto ' bark’ yields (31b). To do this, we replace the occurence of “ bark’ in (31b) by a variable ’ P
7, and bind the variable with A, as shown in (33).

(33) "\P.some x.((dog x) and (P x))’

As a point of interest, we have used a different style of variable in (33), thatis P’ rather than ’ x’ or
"y’ . This is to signal that we are abstracting over a different kind of thing — not an individual, but a
function from Ind to Bool. So the type of (33) as a whole is ((Ind — Bool) — Bool). We will take this
to be the type of NPs in general. To illustrate further, a universally quantified NP will look like (34).

(34) "\P.all x.((dog x) implies (P x))’

We are pretty much done now, except that we also want to carry out a further abstraction plus
application for the process of combining the semantics of the determiner a with the semantics of dog.
Applying (33) as a functor to " bark’ givesus ’ (\P.some x. ((dog x) and (P x)) bark
) 7, and carrying out B-reduction yields just what we wanted, namely (31b).

NLTK provides some utilities to make it easier to derive and inspect semantic interpretations.
text_interpret () is intended for batch interpretation of a list of input sentences. It builds a
dictionary d where for each sentence sent in the input, d [sent ] is a list of paired trees and semantic
representations for sent. The value is a list, since sent may be syntactically ambiguous; in the
following example, we just look at the first member of the list.

>>> from nltk_lite.semantics import =*
>>> grammar = GrammarFile.read file(’'seml.cfg’)

>>> result = text_interpret([’'a dog barks’], grammar, beta_reduce=0)
>>> (syntree, semrep) = result[’a dog barks’][0]

>>> print syntree

([INIT][]:

(S[ sem = ApplicationExpression(’ (\Q P.some x.(and (Q x) (P x)) dog)’, ’'bark’) 1]:
(NP[ sem = ApplicationExpression(’'\Q P.some x.(and (Q x) (P x))’, ’‘dog’) 1:
(Det [ sem = LambdaExpression(’'Q’, ’'\P.some x.(and (Q x) (P x))’) ]: ’"a’)

(N[ sem = VariableExpression(‘dog’) ]: ‘dog’))
(VP[ sem = VariableExpression(’'bark’) ]:
(IV[ sem = VariableExpression(’'bark’) ]: ’'barks’))))
>>> print semrep
some x. (and (dog x) (bark x))
>>>

May 16, 2007 24 Bird, Klein & Loper



11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

By default, the semantic representation that is produced by text__interpret () has already under-
gone P-reduction, but in the above example, we have overriden this. Subsequent reduction is possible
using the simplify () method, and Boolean connectives can be placed in infix position with the
infixify () method.

>>> semrep.simplify ()
some x. (and (dog x) (bark x))
>>> semrep.simplify () .infixify ()

some x. ((dog x) and (bark x))

11.7.3 Transitive Verbs

Our next challenge is to deal with sentences containing transitive verbs, such as (35).
(35) Suzie chases a dog.

The output semantics that we want to build is shown in (36).

(36) "some x. ((dog x) and (chase x suzie))’

Let’s look at how we can use A-abstraction to get this result. A significant constraint on possible
solutions is to require that the semantic representation of a dog be independent of whether the NP acts
as subject or object of the sentence. In other words, we want to get (36) as our output while sticking to
(33) as the NP semantics. A second constraint is that VPs should have a uniform type of interpretation
regardless of whether they consist of just an intransitive verb or a transitive verb plus object. More
specifically, we stipulate that VPs always denote characteristic functions on individuals. Given these
constraints, here’s a semantic representation for chases a dog which does the trick.

(37) "\y.some x.((dog x) and (chase x y))’

Think of (37) as the property of being a y such that for some dog x, y chases x; or more colloquially,
being a y who chases a dog. Our task now resolves to designing a semantic representation for chases
which can combine via app with (33) so as to allow (37) to be derived.

Let’s carry out a kind of inverse $-reduction on (37), giving rise to (38).

Let Then we are part way to the solution if we can derive (38), where ’ X’ is applied to " \z . (
chase z y)’.

(38) " (\P.some x.((dog x) and (P x)) \z. (chase z y))’

(38) may be slightly hard to read at first; you need to see that it involves applying the quantified NP
representation from (33) to ’ \z. (chase z vy))’. (38)is of course equivalent to (37).

Now let’s replace the functor in (38) by a variable ” X’ of the same type as an NP; that is, of type
((Ind — Bool) — Bool).

(39) ' (X \z. (chase z y))’

The representation of a transitive verb will have to apply to an argument of the type of ’ X’ to yield a
functor of the type of VPs, that is, of type (Ind — Bool). We can ensure this by abstracting over both
the ” X’ variable in (39) and also the subject variable ’ v’ . So the full solution is reached by giving
chases the semantic representation shown in (40).

40) "\X y. (X \x.(chase x y))’

Bird, Klein & Loper 25 May 16, 2007



11.7. Evaluating English Sentences

If (40) is applied to (33), the result after f-reduction is equivalent to (37), which is what we wanted all
along:

41) " (\X y. (X \x.(chase x y)) \P.some x.((dog x) and (P x))’
"(\y. (\P.some x.((dog x) and (P x)) \x.(chase x vy))’

"\y. (some x.((dog x) and (chase x y)))’

In order to build a semantic representation for a sentence, we also need to combine in the semantics
of the subject NP. If the latter is a quantified expression like every girl, everything proceeds in the same
way as we showed for a dog barks earlier on; the subject is translated as a functor which is applied
to the semantic representation of the VP. However, we now seem to have created another problem for
ourselves with proper names. So far, these have been treated semanntically as individual constants, and
these cannot be applied as functors to expressions like (37). Consequently, we need to come up with a
different semantic representation for them. What we do in this case is re-interpret proper names so that
they too are functors, like quantified Nps. (42) shows the required A expression for Suzie.

(42) "\P. (P suzie)’

(42) denotes the characteristic function corresponding to the set of all properties which are true of
Suzie. Converting from an individual constant to an expression like (40) is known as type raising, and
allows us to flip functors with arguments. That is, type raising means that we can replace a Boolean-
valued application such as (f a) with an equivalent application (AP.(P a) f).

One important limitation of the approach we have presented here is that it does not attempt to deal
with scope ambiguity. Instead, quantifier scope ordering directly reflects scope in the parse tree. As a
result, a sentence like (14), repeated here, will always be translated as (44a), not (44b).

(43) Every girl chases a dog.
(44a) "all x.((girl x) implies some y. ((dog y) and (chase y x)))’
(44b) " some vy. (dog y) and all x. ((girl x) implies (chase y x)))’

This limitation can be overcome, for example using the hole semantics described in [Blackburn & Bos,
2005], but discussing the details would take us outside the scope of the current chapter.

Now that we have looked at some slightly more complex constructions, we can evaluate them in
a model. In the following example, we derive two parses for the sentence every boy chases a girl in
Noosa, and evaluate each of the corresponding semantic representations in the model model0.py
which we have imported.

>>> from nltk_lite.semantics import =*
>>> from model0O.py import =*
>>> grammar = GrammarFile.read file(’'sem2.cfg’)
>>> sent = ’'every boy chases a girl in Noosa’
>>> result = text_evaluate([sent], grammar, m, g)
>>> for (syntree, semrep, value) in result[sent]:
print "’%s’ is %s in Model m\n" % (semrep.infixify(), wvalue)

"all x. ((boy x) implies (some z4.((girl z4) and (chase z4 x)) and

May 16, 2007 26 Bird, Klein & Loper


file:bibliography.html#blackburn2005rin
file:bibliography.html#blackburn2005rin

11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

(in noosa x)))’ is True in Model m

"all x. ((boy x) implies some z5.(((girl z5) and (in noosa z5)) and
(chase z5 x)))’ is False in Model m

11.8 Case Study: Extracting Valuations from Chat-80

Building Valuation objects by hand becomes rather tedious once we consider larger examples.
This raises the question of whether the relation data in a Valuation could be extracted from some
pre-existing source. The chat 80 module in nt1k_1lite.corpora provides an example of extract-
ing data from the Chat-80 Prolog knowledge base (which included as part of the NLTK corpora
distribution).

Chat-80 data is organized into collections of clauses, where each collection functions as a table in a
relational database. The predicate of the clause provides the name of the table; the first element of the
tuple acts as the "key’; and subsequent elements are further columns in the table.

In general, the name of the table provides a label for a unary relation whose extension is all the
keys. For example, the table in cities.pl contains triples such as (45).

(45) "city (athens, greece, 1368) .’

Here, " athens’ is the key, and will be mapped to a member of the unary relation City.

The other two columns in the table are mapped to binary relations, where the first argument of the
relation is filled by the table key, and the second argument is filled by the data in the relevant column.
Thus, in the city table illustrated by the tuple in (45), the data from the third column is extracted into
a binary predicate population_of, whose extension is a set of pairs such as ’ (athens, 1368)’.

In order to encapsulate the results of the extraction, a class of Concepts is introduced. A
Concept object has a number of attributes, in particular a prefLabel and extension, which
make it easier to inspect the output of the extraction. The extension of a Concept object is
incorporated into a Valuation object.

As well as deriving unary and binary relations from the Chat-80 data, we also create a set of
individual constants, one for each entity in the domain. The individual constants are string-identical
to the entities. For example, given a data item such as ' z1oty’, we add to the valuation a pair (’
zloty’, ’zloty’). In order to parse English sentences that refer to these entities, we also create
a lexical item such as the following for each individual constant:

(46) PropN[num=sg, sem=<\P. (P zloty)>] —-> ’Zloty’

The chat80 module can be found in the corpora package. The attribute chat80.items
gives us a list of Chat-80 relations:

>>> nltk_lite.corpora chat80

>>> chat80.items

['borders’, ’'contains’, ’'city’, ’'country’, ’‘circle_of_ lat’,
"circle_of long’, ’'continent’, ’'region’, ’‘ocean’, ’'sea’]

The concepts () method shows the list of Concepts that can be extracted from a chat80
relation, and we can then inspect their extensions.

>>> concepts = chat80.concepts(’'city’)
>>> concepts

Bird, Klein & Loper 27 May 16, 2007



11.9. Summary

[Concept (' city’), Concept (’'country of’), Concept ('population of’)]
>>> rel = concepts[l].extension
>>> list (rel) [:5]

[ (! chungking’, 'china’), (’karachi’, ’'pakistan’),
(' singapore_city’, ’'singapore’), (’'athens’, ’'greece’),
("birmingham’, ‘united_kingdom’) ]

In order to convert such an extension into a valuation, we use the make_valuation () method;
setting read=True creates and returns a new Valuat ion object which contains the results.

>>> val = chat80.make_valuation (concepts, read=True)
>>> val[’city’]['calcutta’]

True

>>> val[’country of’][’india’]

{"hyderabad’: True, 'delhi’: True, ’'bombay’: True,
"madras’ : True, ’'calcutta’: True}

>>> nltk_lite.semantics *

>>> g Assignment (dom)

>>> m = Model (dom, wval)

>>> m.evaluate (r’'\x . (population of x jakarta)’, g)
{533’ : True}

Note

Population figures are given in thousands. Bear in mind that the geographical
data used in these examples dates back at least to the 1980s, and was already
somewhat out of date at the point when [Warren & Pereira, 1982] was published.

11.9 Summary

m Semantic Representations (SRs) for English are constructed using a language based on the A-
calculus, together with Boolean connectives, equality, and first-order quantifiers.

m (-reduction in the A-calculus corresponds semantically to application of a function to an argu-
ment. Syntactically, it involves replacing a variable bound by A in the functor with the expression
that provides the argument in the function application.

m If two A-abstracts differ only in the label of the variable bound by A, they are said to be o
equivalents. Relabeling a variable bound by a A is called a-conversion.

m Currying of a binary function turns it into a unary function whose value is again a unary function.

m FSRL has both a syntax and a semantics. The semantics is determined by recursively evaluating
expressions in a model.

m A key part of constructing a model lies in building a valuation which assigns interpretations
to non-logical constants. These are interpreted as either curried characteristic functions or as
individual constants.

m The interpretation of Boolean connectives is handled by the model; these are interpreted as
characteristic functions.

May 16, 2007 28 Bird, Klein & Loper


file:bibliography.html#warren1982eea

11. Semantic Interpretation Introduction to Natural Language Processing (DRAFT)

® An open expression is an expression containing one or more free variables. Open expressions
only receive an interpretation when their free variables receive values from a variable assignment.

m Quantifiers are interpreted by constructing, for a formula ¢[x] open in variable X, the set of
individuals which make ¢[X] true when an assignment g assigns them as the value of X. The
quantifier then places constraints on that set.

m A closed expression is one that has no free variables; that is, the variables are all bound. A closed
sentence is true or false with respect to all variable assignments.

m Given a formula with two nested quantifiers Q; and Q,, the outermost quantifier Q; is said to
have wide scope (or scope over (0»). English sentences are frequently ambiguous with respect to
the scope of the quantifiers they contain.

m English sentences can be associated with an SR by treating sem as a feature. The sem value
of a complex expressions typically involves functional application of the sem values of the
component expressions.

m Model valuations need not be built by hand, but can also be extracted from relational tables, as
in the Chat-80 example.

11.10 Exercises

1. D Modify the nltk_lite.semantics.evaluate code so that it will give a helpful
error message if an expression is not in the domain of a model’s valuation function.

2. % Specify and implement a typed functional language with quantifiers, Boolean connec-
tives and equality. Modify nltk_lite.semantics.evaluate to interpret expres-
sions of this language.

3. % Extend the chat80 code so that it will extract data from a relational database using
SQL queries.

4. % Taking [WarrenPereiral982] as a starting point, develop a technique for converting a
natural language query into a form that can be evaluated more efficiently in a model. For
example, given a query of the form ’ ( (P x) and (Q x)’, convertitto ’ ((Q x)
and (P x)’ if the extension of * Q’ is smaller than the extension of " P’ .

11.11 Further Reading

The use of characteristic functions for interpreting expressions of natural language was primarily due to
Richard Montague. [Dowty, Wall, & Peters, 1981] gives a comprehensive and reasonably approachable
introduction to Montague’s grammatical framework.

A more recent and wide-reaching study of the use of a A based approach to natural language can be
found in [Carpenter, 1997].

[Heim & Kratzer, 1998] is a thorough application of formal semantics to transformational grammars
in the Government-Binding model.

[Blackburn & Bos, 2005] is the first textbook devoted to computational semantics, and provides an
excellent introduction to the area.

Bird, Klein & Loper 29 May 16, 2007


file:bibliography.html#dowty1981ims
file:bibliography.html#carpenter1997tls
file:bibliography.html#heim1998sgg
file:bibliography.html#blackburn2005rin

11.11. Further Reading

About this document...

This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It is
distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Version
0.7.5, under the terms of the Creative Commons Attribution-ShareAlike License
[http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4518 Wed May 16 20:08:28 EST 2007

May 16, 2007 30 Bird, Klein & Loper


http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	Semantic Interpretation
	Introduction
	The Lambda Calculus
	Propositional Logic
	First-Order Logic
	Predication
	Quantification and Scope
	Alphabetic Variants
	Types and the Untyped Lambda Calculus

	Formal Semantics
	Characteristic Functions
	Valuations
	Assignments
	evaluate() and satisfy()
	Evaluating Non-Logical Constants and Variables
	Evaluating Boolean Connectives
	Evaluating Function Application
	Evaluating Quantified Formulas
	Evaluating lambda abstracts
	Exercises

	Quantifier Scope Revisited
	Evaluating English Sentences
	Using the sem feature
	Quantified nps
	Transitive Verbs

	Case Study: Extracting Valuations from Chat-80
	Summary
	Exercises
	Further Reading


