
Chapter 4

Categorizing and Tagging Words

4.1 Introduction

In Chapter 3 we dealt with words in their own right. We saw that some distinctions can be collapsed
using normalization, but we did not make any further generalizations. We looked at the distribution
of often, identifying the words that follow it; we noticed that often frequently modifies verbs. We also
assumed that you knew that words such as was, called and appears are all verbs, and that you knew
that often is an adverb. In fact, we take it for granted that most people have a rough idea about how to
group words into different categories.

There is a long tradition of classifying words into categories called parts of speech. These are
sometimes also called word classes or lexical categories. Apart from verb and adverb, other familiar
examples are noun, preposition, and adjective. One of the notable features of the Brown corpus is
that all the words have been tagged for their part-of-speech. Now, instead of just looking at the words
that immediately follow often, we can look at the part-of-speech tags (or POS tags). Table 4.1 lists
the top eight, ordered by frequency, along with explanations of each tag. As we can see, the majority
of words following often are verbs.

Tag Freq Example Comment
vbn 61 burnt, gone verb: past participle
vb 51 make, achieve verb: base form
vbd 36 saw, looked verb: simple past tense
jj 30 ambiguous, acceptable adjective
vbz 24 sees, goes verb: third-person singular present
in 18 by, in preposition
at 18 a, this article
, 16 , comma

Table 4.1: Part of Speech Tags Following often in the Brown
Corpus

The process of classifying words into their parts-of-speech and labeling them accordingly is known
as part-of-speech tagging, POS-tagging, or simply tagging. The collection of tags used for a
particular task is known as a tag set. Our emphasis in this chapter is on exploiting tags, and tagging
text automatically.

1

4.2. Getting Started with Tagging

Automatic tagging can bring a number of benefits. We have already seen an example of how to
exploit tags in corpus analysis — we get a clear understanding of the distribution of often by looking
at the tags of adjacent words. Automatic tagging also helps predict the behavior of previously unseen
words. For example, if we encounter the word blogging we can probably infer that it is a verb, with
the root blog, and likely to occur after forms of the auxiliary to be (e.g. he was blogging). Parts of
speech are also used in speech synthesis and recognition. For example, wind/nn, as in the wind blew,
is pronounced with a short vowel, whereas wind/vb, as in wind the clock, is pronounced with a long
vowel. Other examples can be found where the stress pattern differs depending on whether the word
is a noun or a verb, e.g. contest, insult, present, protest, rebel, suspect. Without knowing the part of
speech we cannot be sure of pronouncing the word correctly.

In the next section we will see how to access and explore the Brown Corpus. Following this we
will take a more in depth look at the linguistics of word classes. The rest of the chapter will deal with
automatic tagging: simple taggers, evaluation, n-gram taggers, and the Brill tagger.

4.2 Getting Started with Tagging

Several large corpora, such as the Brown Corpus and portions of the Wall Street Journal, have been
tagged for part-of-speech, and we will be able to process this tagged data. Tagged corpus files typically
contain text of the following form (this example is from the Brown Corpus):

The/at grand/jj jury/nn commented/vbd on/in a/at number/nn of/in
other/ap topics/nns ,/, among/in them/ppo the/at Atlanta/np and/cc
Fulton/np-tl County/nn-tl purchasing/vbg departments/nns which/wdt it/pps
said/vbd ‘‘/‘‘ are/ber well/ql operated/vbn and/cc follow/vb generally/rb
accepted/vbn practices/nns which/wdt inure/vb to/in the/at best/jjt

interest/nn of/in both/abx governments/nns ’’/’’ ./.

4.2.1 Representing Tags and Reading Tagged Corpora

By convention in NLTK, a tagged token is represented using a Python tuple. A tuple is just like a list,
only it cannot be modified. We can access the components of a tuple using indexing:

>>> tok = (’fly’, ’nn’)
>>> tok
(’fly’, ’nn’)
>>> tok[0]
’fly’
>>> tok[1]
’nn’

We can create one of these special tuples from the standard string representation of a tagged token,
using the function tag2tuple():

>>> from nltk_lite.tag import tag2tuple
>>> tag2tuple(’fly/nn’)
(’fly’, ’nn’)

We can construct tagged tokens directly from a string. The first step is to tokenize the string (using
tokenize.whitespace()) to access the individual word/tag strings, and then to convert each
of these into a tuple (using tag2tuple()). We do this in two ways. The first method, starting at line

May 16, 2007 2 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

`, initializes an empty list tagged_words, loops over the word/tag tokens, converts them into
tuples, appends them to tagged_words, and finally displays the result. The second method, on line
a, uses a list comprehension to do the same work in a way that is not only more compact, but also
more readable. (List comprehensions were introduced in section 3.3.3).

>>> from nltk_lite import tokenize
>>> sent = ’’’
... The/at grand/jj jury/nn commented/vbd on/in a/at number/nn of/in
... other/ap topics/nns ,/, among/in them/ppo the/at Atlanta/np and/cc
... Fulton/np-tl County/nn-tl purchasing/vbg departments/nns which/wdt it/pps
... said/vbd ‘‘/‘‘ are/ber well/ql operated/vbn and/cc follow/vb generally/rb
... accepted/vbn practices/nns which/wdt inure/vb to/in the/at best/jjt
... interest/nn of/in both/abx governments/nns ’’/’’ ./.
... ’’’
>>> tagged_words = [] `
>>> for t in tokenize.whitespace(sent):
... tagged_words.append(tag2tuple(t))
>>> tagged_words
[(’The’, ’at’), (’grand’, ’jj’), (’jury’, ’nn’), (’commented’, ’vbd’),
(’on’, ’in’), (’a’, ’at’), (’number’, ’nn’), ... (’.’, ’.’)]
>>> [tag2tuple(t) for t in tokenize.whitespace(sent)] a
[(’The’, ’at’), (’grand’, ’jj’), (’jury’, ’nn’), (’commented’, ’vbd’),
(’on’, ’in’), (’a’, ’at’), (’number’, ’nn’), ... (’.’, ’.’)]

We can also conveniently access tagged corpora directly from Python. The first step is to load the
Brown Corpus reader, brown. We then use one of its functions, brown.tagged() to produce a
sequence of sentences, where each sentence is a list of tagged words.

>>> from nltk_lite.corpora import brown, extract
>>> extract(6, brown.tagged(’a’))
[(’The’, ’at’), (’grand’, ’jj’), (’jury’, ’nn’), (’commented’, ’vbd’),
(’on’, ’in’), (’a’, ’at’), (’number’, ’nn’), (’of’, ’in’), (’other’, ’ap’),
(’topics’, ’nns’), (’,’, ’,’), ... (’.’, ’.’)]

Tagged corpora are available for several other languages. For example, we can access tagged
corpora for some Indian languages with nltk_lite.corpora.indian. Figure 4.1 shows the
output of the demonstration code indian.demo(). The tags used with these corpora are documented
in the README file that comes with this data.

Figure 4.1: POS-Tagged Data from Four Indian Languages

Bird, Klein & Loper 3 May 16, 2007

4.2. Getting Started with Tagging

Note

Contributions of tagged data for other languages are invited. These will be incor-
porated into NLTK.

4.2.2 Nouns and Verbs

Linguists recognize several major categories of words in English, such as nouns, verbs, adjectives and
determiners. In this section we will discuss the most important categories, namely nouns and verbs.

Nouns generally refer to people, places, things, or concepts, e.g.: woman, Scotland, book, intelli-
gence. Nouns can appear after determiners and adjectives, and can be the subject or object of the verb,
as shown in Table 4.2.

Word After a determiner Subject of the verb
woman the woman who I saw yesterday ... the woman sat down
Scotland the Scotland I remember as a child ... Scotland has five million people
book the book I bought yesterday ... this book recounts the colonization of Aus-

tralia
intelligence the intelligence displayed by the child ... Mary’s intelligence impressed her teachers

Table 4.2: Syntactic Patterns involving some Nouns

Nouns can be classified as common nouns and proper nouns. Proper nouns identify particular
individuals or entities, e.g. Moses and Scotland. Common nouns are all the rest. Another distinction
exists between count nouns and mass nouns. Count nouns are thought of as distinct entities which
can be counted, such as pig (e.g. one pig, two pigs, many pigs). They cannot occur with the word much
(i.e. *much pigs). Mass nouns, on the other hand, are not thought of as distinct entities (e.g. sand).
They cannot be pluralized, and do not occur with numbers (e.g. *two sands, *many sands). However,
they can occur with much (i.e. much sand).

Verbs are words which describe events and actions, e.g. fall, eat in Table 4.3. In the context of a
sentence, verbs express a relation involving the referents of one or more noun phrases.

Word Simple With modifiers and adjuncts (italicized)
fall Rome fell Dot com stocks suddenly fell like a stone
eat Mice eat cheese John ate the pizza with gusto

Table 4.3: Syntactic Patterns involving some Verbs

Verbs can be classified according to the number of arguments (usually noun phrases) that they
require. The word fall is intransitive, requiring exactly one argument (the entity which falls). The word
eat is transitive, requiring two arguments (the eater and the eaten). Other verbs are more complex; for
instance put requires three arguments, the agent doing the putting, the entity being put somewhere, and
a location. We will return to this topic when we come to look at grammars and parsing (see Chapter 7).

In the Brown Corpus, verbs have a range of possible tags, e.g.: give/vb (present), gives/vbz
(present, 3ps), giving/vbg (present continuous; gerund) gave/vbd (simple past), and given/
vbn (past participle). We will discuss these tags in more detail in a later section.

May 16, 2007 4 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

4.2.3 Nouns and verbs in tagged corpora

Now that we are able to access tagged corpora, we can write simple simple programs to garner statistics
about the tags. In this section we will focus on the nouns and verbs.

What are the 10 most common verbs? We can write a program to find all words tagged with VB,
VBZ, VBG, VBD or VBN.

>>> from nltk_lite.probability import FreqDist
>>> fd = FreqDist()
>>> for sent in brown.tagged():
... for word, tag in sent:
... if tag[:2] == ’vb’:
... fd.inc(word+"/"+tag)
>>> fd.sorted_samples()[:20]
[’said/vbd’, ’make/vb’, ’see/vb’, ’get/vb’, ’know/vb’, ’made/vbn’,
’came/vbd’, ’go/vb’, ’take/vb’, ’went/vbd’, ’say/vb’, ’used/vbn’,
’made/vbd’, ’United/vbn-tl’, ’think/vb’, ’took/vbd’, ’come/vb’,
’knew/vbd’, ’find/vb’, ’going/vbg’]

Let’s study nouns, and find the most frequent nouns of each noun part-of-speech type. The program
in Listing 4.1 finds all tags starting with nn, and provides a few example words for each one. Observe
that there are many noun tags; the most important of these have $ for possessive nouns, s for plural
nouns (since plural nouns typically end in s), p for proper nouns.

Some tags contain a plus sign; these are compound tags, and are assigned to words that contain two
parts normally treated separately. Some tags contain a minus sign; this indicates disjunction [MORE].

4.2.4 The Default Tagger

The simplest possible tagger assigns the same tag to each token. This may seem to be a rather banal
step, but it establishes an important baseline for tagger performance. In order to get the best result, we
tag each word with the most likely word. (This kind of tagger is known as a majority class classifier).
What then, is the most frequent tag? We can find out using a simple program:

>>> fd = FreqDist()
>>> for sent in brown.tagged(’a’):
... for word, tag in sent:
... fd.inc(tag)
>>> fd.max()
’nn’

Now we can create a tagger, called default_tagger, which tags everything as nn.

>>> from nltk_lite import tag
>>> tokens = tokenize.whitespace(’John saw 3 polar bears .’)
>>> default_tagger = tag.Default(’nn’)
>>> list(default_tagger.tag(tokens))
[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’nn’), (’polar’, ’nn’),
(’bears’, ’nn’), (’.’, ’nn’)]

Note

The tokenizer is a generator over tokens. We cannot print it directly, but we can
convert it to a list for printing, as shown in the above program. Note that we can
only use a generator once, but if we save it as a list, the list can be used many
times over.

Bird, Klein & Loper 5 May 16, 2007

4.2. Getting Started with Tagging

Listing 1 Program to Find the Most Frequent Noun Tags
from nltk_lite.probability import ConditionalFreqDist
def findtags(tag_prefix, tagged_text):

cfd = ConditionalFreqDist()
for sent in tagged_text:

for word, tag in sent:
if tag.startswith(tag_prefix):

cfd[tag].inc(word)
tagdict = {}
for tag in cfd.conditions():

tagdict[tag] = cfd[tag].sorted_samples()[:5]
return tagdict

>>> tagdict = findtags(’nn’, brown.tagged(’a’))
>>> for tag in sorted(tagdict):
... print tag, tagdict[tag]
nn [’year’, ’time’, ’state’, ’week’, ’home’]
nn$ ["year’s", "world’s", "state’s", "city’s", "company’s"]
nn$-hl ["Golf’s", "Navy’s"]
nn$-tl ["President’s", "Administration’s", "Army’s", "Gallery’s", "League’s"]
nn-hl [’Question’, ’Salary’, ’business’, ’condition’, ’cut’]
nn-nc [’aya’, ’eva’, ’ova’]
nn-tl [’President’, ’House’, ’State’, ’University’, ’City’]
nn-tl-hl [’Fort’, ’Basin’, ’Beat’, ’City’, ’Commissioner’]
nns [’years’, ’members’, ’people’, ’sales’, ’men’]
nns$ ["children’s", "women’s", "janitors’", "men’s", "builders’"]
nns$-hl ["Dealers’", "Idols’"]
nns$-tl ["Women’s", "States’", "Giants’", "Bombers’", "Braves’"]
nns-hl [’$12,500’, ’$14’, ’$37’, ’A135’, ’Arms’]
nns-tl [’States’, ’Nations’, ’Masters’, ’Bears’, ’Communists’]
nns-tl-hl [’Nations’]

May 16, 2007 6 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

This is a simple algorithm, and it performs poorly when used on its own. On a typical corpus, it
will tag only about an eighth of the tokens correctly:

>>> tag.accuracy(default_tagger, brown.tagged(’a’))
0.13089484257215028

Default taggers assign their tag to every single word, even words that have never been encountered
before. As it happens, most new words are nouns. Thus, default taggers they help to improve the
robustness of a language processing system. We will return to them later, in the context of our
discussion of backoff.

4.2.5 Exercises

1. ☼ Working with someone else, take turns to pick a word which can be either a noun or a
verb (e.g. contest); the opponent has to predict which one is likely to be the most frequent
in the Brown corpus; check the opponents prediction, and tally the score over several turns.

2. Ñ Write programs to process the Brown Corpus and find answers to the following ques-
tions:

1) Which nouns are more common in their plural form, rather than their singular
form? (Only consider regular plurals, formed with the -s suffix.)

2) Which word has the greatest number of distinct tags. What are they, and what
do they represent?

3) List tags in order of decreasing frequency. What do the 20 most frequent tags
represent?

4) Which tags are nouns most commonly found after? What do these tags repre-
sent?

3. Ñ Generate some statistics for tagged data to answer the following questions:

a) What proportion of word types are always assigned the same part-of-speech
tag?

b) How many words are ambiguous, in the sense that they appear with at least two
tags?

c) What percentage of word occurrences in the Brown Corpus involve these am-
biguous words?

4. Ñ Above we gave an example of the tag.accuracy() function. It has two arguments,
a tagger and some tagged text, and it works out how accurately the tagger performs on this
text. For example, if the supplied tagged text was [(’the’, ’dt’), (’dog’, ’
nn’)] and the tagger produced the output [(’the’, ’nn’), (’dog’, ’nn’)],
then the accuracy score would be 0.5. Can you figure out how the tag.accuracy()
function works?

a) A tagger takes a list of words as input, and produces a list of tagged words
as output. However, tag.accuracy() is given correctly tagged text as its
input. What must the tag.accuracy() function do with this input before
performing the tagging?

Bird, Klein & Loper 7 May 16, 2007

4.3. Looking for Patterns in Words

b) Once the supplied tagger has created newly tagged text, how would tag.
accuracy() go about comparing it with the original tagged text and com-
puting the accuracy score?

4.3 Looking for Patterns in Words

4.3.1 Some morphology

English nouns can be morphologically complex. For example, words like books and women are plural.
Words with the -ness suffix are nouns that have been derived from adjectives, e.g. happiness and illness.
The -ment suffix appears on certain nouns derived from verbs, e.g. government and establishment.

English verbs can also be morphologically complex. For instance, the present participle of a verb
ends in -ing, and expresses the idea of ongoing, incomplete action (e.g. falling, eating). The -ing suffix
also appears on nouns derived from verbs, e.g. the falling of the leaves (this is known as the gerund).
In the Brown corpus, these are tagged vbg.

The past participle of a verb often ends in -ed, and expresses the idea of a completed action (e.g.
fell, ate). These are tagged vbd.

[MORE: Modal verbs, e.g. would ...]
Common tag sets often capture some morpho-syntactic information; that is, information about

the kind of morphological markings which words receive by virtue of their syntactic role. Consider,
for example, the selection of distinct grammatical forms of the word go illustrated in the following
sentences:

(1a) Go away!

(1b) He sometimes goes to the cafe.

(1c) All the cakes have gone.

(1d) We went on the excursion.

Each of these forms — go, goes, gone, and went — is morphologically distinct from the others.
Consider the form, goes. This cannot occur in all grammatical contexts, but requires, for instance, a
third person singular subject. Thus, the following sentences are ungrammatical.

(2a) *They sometimes goes to the cafe.

(2b) *I sometimes goes to the cafe.

By contrast, gone is the past participle form; it is required after have (and cannot be replaced in this
context by goes), and cannot occur as the main verb of a clause.

(3a) *All the cakes have goes.

(3b) *He sometimes gone to the cafe.

We can easily imagine a tag set in which the four distinct grammatical forms just discussed were
all tagged as VB. Although this would be adequate for some purposes, a more fine-grained tag set will
provide useful information about these forms that can be of value to other processors which try to detect
syntactic patterns from tag sequences. As we noted at the beginning of this chapter, the Brown tag set
does in fact capture these distinctions, as summarized in Table 4.4.

May 16, 2007 8 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Form Category Tag
go base vb
goes 3rd singular present vbz
gone past participle vbn
went simple past vbd

Table 4.4: Some morphosyntactic distinctions in the Brown tag
set

These differences between the forms are encoded in their Brown Corpus tags: be/be, being/
beg, am/bem, been/ben and was/bedz. This means that an automatic tagger which uses this
tag set is in effect carrying out a limited amount of morphological analysis.

Most part-of-speech tag sets make use of the same basic categories, such as noun, verb, adjective,
and preposition. However, tag sets differ both in how finely they divide words into categories; and in
how they define their categories. For example, is might be just tagged as a verb in one tag set; but as a
distinct form of the lexeme BE in another tag set (as in the Brown Corpus). This variation in tag sets
is unavoidable, since part-of-speech tags are used in different ways for different tasks. In other words,
there is no one ’right way’ to assign tags, only more or less useful ways depending on one’s goals.
More details about the Brown corpus tag set can be found in the Appendix.

4.3.2 The Regular Expression Tagger

The regular expression tagger assigns tags to tokens on the basis of matching patterns. For instance,
we might guess that any word ending in ed is the past participle of a verb, and any word ending with ’s
is a possessive noun. We can express these as a list of regular expressions:

>>> patterns = [
... (r’.*ing$’, ’vbg’), # gerunds
... (r’.*ed$’, ’vbd’), # simple past
... (r’.*es$’, ’vbz’), # 3rd singular present
... (r’.*ould$’, ’md’), # modals
... (r’.*\’s$’, ’nn$’), # possessive nouns
... (r’.*s$’, ’nns’), # plural nouns
... (r’^-?[0-9]+(.[0-9]+)?$’, ’cd’), # cardinal numbers
... (r’.*’, ’nn’) # nouns (default)
...]

Note that these are processed in order, and the first one that matches is applied.
Now we can set up a tagger and use it to tag some text.

>>> regexp_tagger = tag.Regexp(patterns)
>>> list(regexp_tagger.tag(brown.raw(’a’)))[3]
[(’‘‘’, ’nn’), (’Only’, ’nn’), (’a’, ’nn’), (’relative’, ’nn’),
(’handful’, ’nn’), (’of’, ’nn’), (’such’, ’nn’), (’reports’, ’nns’),
(’was’, ’nns’), (’received’, ’vbd’), ("’’", ’nn’), (’,’, ’nn’),
(’the’, ’nn’), (’jury’, ’nn’), (’said’, ’nn’), (’,’, ’nn’), (’‘‘’, ’nn’),
(’considering’, ’vbg’), (’the’, ’nn’), (’widespread’, ’nn’), ..., (’.’, ’nn’)]

How well does this do?

>>> tag.accuracy(regexp_tagger, brown.tagged(’a’))
0.20326391789486245

Bird, Klein & Loper 9 May 16, 2007

4.3. Looking for Patterns in Words

The regular expression is a catch-all, which tags everything as a noun. This is equivalent to the
default tagger (only much less efficient). Instead of re-specifying this as part of the regular expression
tagger, is there a way to combine this tagger with the default tagger? We will see how to do this later,
under the heading of backoff taggers.

4.3.3 Exercises

1. ☼ Search the web for “spoof newspaper headlines”, to find such gems as: British Left
Waffles on Falkland Islands, and Juvenile Court to Try Shooting Defendant. Manually tag
these headlines to see if knowledge of the part-of-speech tags removes the ambiguity.

2. ☼ Satisfy yourself that there are restrictions on the distribution of go and went, in the sense
that they cannot be freely interchanged in the kinds of contexts illustrated in (1).

3. Ñ Write code to search for particular words and phrases according to tags, to answer the
following questions:

a) Produce an alphabetically sorted list of the distinct words tagged as md.

b) Identify words which can be plural nouns or third person singular verbs (e.g.
deals, flies).

c) Identify three-word prepositional phrases of the form IN + DET + NN (eg. in
the lab).

d) What is the ratio of masculine to feminine pronouns?

4. Ñ In the introduction we saw a table involving frequency counts for the adjectives adore,
love, like, prefer and preceding qualifiers such as really. Investigate the full range of
qualifiers (Brown tag ql) which appear before these four adjectives.

5. Ñ We defined the regexp_tagger, which can be used as a fall-back tagger for un-
known words. This tagger only checks for cardinal numbers. By testing for particular
prefix or suffix strings, it should be possible to guess other tags. For example, we could tag
any word that ends with -s as a plural noun. Define a regular expression tagger (using tag
.Regexp which tests for at least five other patterns in the spelling of words. (Use inline
documentation to explain the rules.)

6. Ñ Consider the regular expression tagger developed in the exercises in the previous
section. Evaluate the tagger using tag.accuracy(), and try to come up with ways
to improve its performance. Discuss your findings. How does objective evaluation help in
the development process?

7. � There are 264 distinct words in the Brown Corpus having exactly three possible tags.

a) Print a table with the integers 1..10 in one column, and the number of distinct
words in the corpus having 1..10 distinct tags.

b) For the word with the greatest number of distinct tags, print out sentences from
the corpus containing the word, one for each possible tag.

8. � Write a program to classify contexts involving the word must according to the tag of
the following word. Can this be used to discriminate between the epistemic and deontic
uses of must?

May 16, 2007 10 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

4.4 Baselines and Backoff

So far the performance of our simple taggers has been disappointing. Before we embark on a process
to get 90+% performance, we need to do two more things. First, we need to establish a more principled
baseline performance than the default tagger, which was too simplistic, and the regular expression
tagger, which was too arbitrary. Second, we need a way to connect multiple taggers together, so that if
a more specialized tagger is unable to assign a tag, we can “back off” to a more generalized tagger.

4.4.1 The Lookup Tagger

A lot of high-frequency words do not have the nn tag. Let’s find some of these words and their tags.
The function in Listing 4.2 takes a list of sentences and counts up the words, and returns the n most
frequent words. We’ll test out this function for the 100 most frequent words:

Listing 2 Program to Find the N Most Frequent Words
def wordcounts(sents, n):

"find the n most frequent words"
fd = FreqDist()
for sent in sents:

for word in sent:
fd.inc(word) # count the word

return fd.sorted_samples()[:n]

>>> frequent_words = wordcounts(brown.raw(’a’), 100)
>>> frequent_words
[’the’, ’,’, ’.’, ’of’, ’and’, ’to’, ’a’, ’in’, ’for’, ’The’,
’that’, ’‘‘’, ’is’, ’was’, "’’", ’on’, ’at’, ’with’, ’be’, ’by’,
’as’, ’he’, ’said’, ’his’, ’will’, ’it’, ’from’, ’are’, ’;’, ’--’,
’an’, ’has’, ’had’, ’who’, ’have’, ’not’, ’Mrs.’, ’were’, ’this’,
’which’, ’would’, ’their’, ’been’, ’they’, ’He’, ’one’, ..., ’now’]

Next, let’s inspect the tags that these words have. First we will do this in the most obvious (but highly
inefficient) way:

>>> [(w,t) for sent in brown.tagged(’a’)
... for (w,t) in sent
... if w in frequent_words]
[(’The’, ’at’), (’said’, ’vbd’), (’an’, ’at’), (’of’, ’in’),
(’‘‘’, ’‘‘’), (’no’, ’at’), ("’’", "’’"), (’that’, ’cs’),
(’any’, ’dti’), (’.’, ’.’), ..., ("’’", "’’")]

A much better approach is to set up a dictionary which maps each of the 100 most frequent words to
its most likely tag. We can do this by setting up a frequency distribution cfd over the tags, conditioned
on each of the frequent words, as shown in Listing 4.3. This gives us, for each word, a count of the
frequency of different tags that occur with the word.
Now for any word that appears in this section of the corpus, we can look up its most likely tag. For

example, to find the tag for the word The we can access the corresponding frequency distribution, and
ask for its most frequent event:

Bird, Klein & Loper 11 May 16, 2007

4.4. Baselines and Backoff

Listing 3 Program to Find the Most Likely Tags for the Specified Words
from nltk_lite.probability import ConditionalFreqDist
def wordtags(tagged_sents, words):

"Find the most likely tag for these words in the tagged sentences"
cfd = ConditionalFreqDist()
for sent in tagged_sents:

for (w,t) in sent:
if w in words:

cfd[w].inc(t) # count the word’s tag
return dict((word, cfd[word].max()) for word in words)

>>> table = wordtags(brown.tagged(’a’), frequent_words)
>>> table[’The’]
’at’

Now we can create and evaluate a simple tagger that assigns tags to words based on this table:

>>> baseline_tagger = tag.Lookup(table)
>>> tag.accuracy(baseline_tagger, brown.tagged(’a’))
0.45578495136941344

This is surprisingly good; just knowing the tags for the 100 most frequent words enables us to tag
nearly half the words correctly! Let’s see how it does on some untagged input text:

>>> list(baseline_tagger.tag(brown.raw(’a’)))[3]
[(’‘‘’, ’‘‘’), (’Only’, None), (’a’, ’at’), (’relative’, None),
(’handful’, None), (’of’, ’in’), (’such’, None), (’reports’, None),
(’was’, ’bedz’), (’received’, None), ("’’", "’’"), (’,’, ’,’),
(’the’, ’at’), (’jury’, None), (’said’, ’vbd’), (’,’, ’,’),
(’‘‘’, ’‘‘’), (’considering’, None), (’the’, ’at’), (’widespread’, None),
(’interest’, None), (’in’, ’in’), (’the’, ’at’), (’election’, None),
(’,’, ’,’), (’the’, ’at’), (’number’, None), (’of’, ’in’),
(’voters’, None), (’and’, ’cc’), (’the’, ’at’), (’size’, None),
(’of’, ’in’), (’this’, ’dt’), (’city’, None), ("’’", "’’"), (’.’, ’.’)]

Notice that a lot of these words have been assigned a tag of None. That is because they were not
among the 100 most frequent words. In these cases we would like to assign the default tag of nn, a
process known as backoff.

4.4.2 Backoff

How do we combine these taggers? We want to use the lookup table first, and if it is unable to assign
a tag, then use the default tagger. We do this by specifying the default tagger as an argument to the
lookup tagger. The lookup tagger will call the default tagger just in case it can’t assign a tag itself.

>>> baseline_tagger = tag.Lookup(table, backoff=tag.Default(’nn’))
>>> tag.accuracy(baseline_tagger, brown.tagged(’a’))
0.58177695566561249

May 16, 2007 12 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

4.4.3 Choosing a good baseline

We can write a simple (but somewhat inefficient) program to create and evaluate lookup taggers having
a range of sizes, as shown in Listing 4.4. We include a backoff tagger that tags everything as a noun. A
consequence of using this backoff tagger is that the lookup tagger only has to store word/tag pairs for
words other than nouns.

Listing 4 Lookup Tagger Performace with Varying Model Size
def performance(size):

frequent_words = wordcounts(brown.raw(’a’), size)
table = wordtags(brown.tagged(’a’), frequent_words)
baseline_tagger = tag.Lookup(table, backoff=tag.Default(’nn’))
return tag.accuracy(baseline_tagger, brown.tagged(’a’))

>>> from pylab import *
>>> sizes = 2**arange(15)
>>> perfs = [performance(size) for size in sizes]
>>> plot(sizes, perfs, ’-bo’)
>>> title(’Lookup Tagger Performance with Varying Model Size’)
>>> xlabel(’Model Size’)
>>> ylabel(’Performance’)
>>> show()

Observe that performance initially increases rapidly as the model size grows, eventually reaching
a plateau, when large increases in model size yield little improvement in performance. (This example
used the pylab plotting package; we will return to this later in Section 6.3.4).

4.4.4 Exercises

1. Ñ Explore the following issues that arise in connection with the lookup tagger:

a) What happens to the tagger performance for the various model sizes when a
backoff tagger is omitted?

b) Consider the curve in Figure 4.2; suggest a good size for a lookup tagger that
balances memory and performance. Can you come up with scenarios where it
would be preferable to minimize memory usage, or to maximize performance
with no regard for memory usage?

2. Ñ What is the upper limit of performance for a lookup tagger, assuming no limit to the
size of its table? (Hint: write a program to work out what percentage of tokens of a word
are assigned the most likely tag for that word, on average.)

4.5 Getting Better Coverage

4.5.1 More English Word Classes

Two other important word classes are adjectives and adverbs. Adjectives describe nouns, and can
be used as modifiers (e.g. large in the large pizza), or in predicates (e.g. the pizza is large). English

Bird, Klein & Loper 13 May 16, 2007

4.5. Getting Better Coverage

adjectives can be morphologically complex (e.g. fallV+ing in the falling stocks). Adverbs modify verbs
to specify the time, manner, place or direction of the event described by the verb (e.g. quickly in the
stocks fell quickly). Adverbs may also modify adjectives (e.g. really in Mary’s teacher was really nice).

English has several categories of closed class words in addition to prepositions, such as articles
(also often called determiners) (e.g., the, a), modals (e.g., should, may), and personal pronouns
(e.g., she, they). Each dictionary and grammar classifies these words differently.

Part-of-speech tags are closely related to the notion of word class used in syntax. The assumption
in linguistics is that every distinct word type will be listed in a lexicon (or dictionary), with information
about its pronunciation, syntactic properties and meaning. A key component of the word’s properties
will be its class. When we carry out a syntactic analysis of an example like fruit flies like a banana, we
will look up each word in the lexicon, determine its word class, and then group it into a hierarchy of
phrases, as illustrated in the following parse tree.

Syntactic analysis will be dealt with in more detail in Part II. For now, we simply want to make the
connection between the labels used in syntactic parse trees and part-of-speech tags. Table 4.5 shows
the correspondence:

Word Class Label Brown Tag Word Class

Det AT article
N NN noun
V VB verb
Adj JJ adjective
P IN preposition
Card CD cardinal number
-- . Sentence-ending punctuation

Table 4.5: Word Class Labels and Brown Corpus Tags

4.5.2 Some diagnostics

Now that we have examined word classes in detail, we turn to a more basic question: how do we decide
what category a word belongs to in the first place? In general, linguists use three criteria: morphological
(or formal); syntactic (or distributional); semantic (or notional). A morphological criterion is one
which looks at the internal structure of a word. For example, -ness is a suffix which combines with an
adjective to produce a noun. Examples are happy → happiness, ill → illness. So if we encounter a
word which ends in -ness, this is very likely to be a noun.

A syntactic criterion refers to the contexts in which a word can occur. For example, assume that
we have already determined the category of nouns. Then we might say that a syntactic criterion for an

May 16, 2007 14 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

adjective in English is that it can occur immediately before a noun, or immediately following the words
be or very. According to these tests, near should be categorized as an adjective:

(4a) the near window

(4b) The end is (very) near.

A familiar example of a semantic criterion is that a noun is “the name of a person, place or thing”.
Within modern linguistics, semantic criteria for word classes are treated with suspicion, mainly because
they are hard to formalize. Nevertheless, semantic criteria underpin many of our intuitions about word
classes, and enable us to make a good guess about the categorization of words in languages that we are
unfamiliar with. For example, if we all we know about the Dutch verjaardag is that it means the same
as the English word birthday, then we can guess that verjaardag is a noun in Dutch. However, some
care is needed: although we might translate zij is vandaag jarig as it’s her birthday today, the word
jarig is in fact an adjective in Dutch, and has no exact equivalent in English!

All languages acquire new lexical items. A list of words recently added to the Oxford Dictionary
of English includes cyberslacker, fatoush, blamestorm, SARS, cantopop, bupkis, noughties, muggle,
and robata. Notice that all these new words are nouns, and this is reflected in calling nouns an open
class. By contrast, prepositions are regarded as a closed class. That is, there is a limited set of words
belonging to the class (e.g., above, along, at, below, beside, between, during, for, from, in, near, on,
outside, over, past, through, towards, under, up, with), and membership of the set only changes very
gradually over time.

With this background we are now ready to embark on our main task for this chapter, automatically
assigning part-of-speech tags to words.

4.5.3 Unigram Tagging

The tag.Unigram() class implements a simple statistical tagging algorithm: for each token, it
assigns the tag that is most likely for that particular token. For example, it will assign the tag jj to
any occurrence of the word frequent, since frequent is used as an adjective (e.g. a frequent word) more
often than it is used as a verb (e.g. I frequent this cafe).

Before a unigram tagger can be used to tag data, it must be trained on a tagged corpus. It uses this
corpus to determine which tags are most common for each word. Unigram taggers are trained using
the train() method, which takes a tagged corpus:

>>> from nltk_lite.corpora import brown
>>> from itertools import islice
>>> train_sents = list(islice(brown.tagged(), 500)) # sents 0..499
>>> unigram_tagger = tag.Unigram()
>>> unigram_tagger.train(train_sents)

Once a unigram tagger has been trained, the tag() method can be used to tag new text:

>>> text = "John saw the book on the table"
>>> tokens = list(tokenize.whitespace(text))
>>> list(unigram_tagger.tag(tokens))
[(’John’, ’np’), (’saw’, ’vbd’), (’the’, ’at’), (’book’, None),
(’on’, ’in’), (’the’, ’at’), (’table’, None)]

The unigram tagger will assign the special tag None to any token that was not encountered in the
training data.

Bird, Klein & Loper 15 May 16, 2007

4.6. N-Gram Taggers

4.5.4 Affix Taggers

Affix taggers are like unigram taggers, except they are trained on word prefixes or suffixes of a specified
length. (NB. Here we use prefix and suffix in the string sense, not the morphological sense.) For
example, the following tagger will consider suffixes of length 3 (e.g. -ize, -ion), for words having at
least 5 characters.

>>> affix_tagger = tag.Affix(-2, 3)
>>> affix_tagger.train(train_sents)
>>> list(affix_tagger.tag(tokens))
[(’John’, ’np’), (’saw’, ’nn’), (’the’, ’at’), (’book’, ’np’),
(’on’, None), (’the’, ’at’), (’table’, ’jj’)]

4.5.5 Exercises

1. ☼ Train a unigram tagger and run it on some new text. Observe that some words are not
assigned a tag. Why not?

2. ☼ Train an affix tagger tag.Affix() and run it on some new text. Experiment with
different settings for the affix length and the minimum word length. Can you find a setting
which seems to perform better than the one described above? Discuss your findings.

3. Ñ Write a program which calls tag.Affix() repeatedly, using different settings for the
affix length and the minimum word length. What parameter values give the best overall
performance? Why do you think this is the case?

4.6 N-Gram Taggers

Earlier we encountered the unigram tagger, which assigns a tag to a word based on the identity of that
word. In this section we will look at taggers that exploit a larger amount of context when assigning a
tag.

4.6.1 Bigram Taggers

Bigram taggers use two pieces of contextual information for each tagging decision, typically the
current word together with the tag of the previous word. Given the context, the tagger assigns the
most likely tag. In order to do this, the tagger uses a bigram table, a fragment of which is shown in
Table 4.6. Given the tag of the previous word (down the left), and the current word (across the top), it
can look up the preferred tag.

tag ask Congress to increase grants to states
at nn
tl to to
bd to nns to
md vb vb
vb np to nns to nns
np to to
to vb vb
nn np to nn nns to

May 16, 2007 16 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

tag ask Congress to increase grants to states
nns to to
in np in in nns
jj to nns to nns

Table 4.6: Fragment of Bigram Table

The best way to understand the table is to work through an example. Suppose we are processing
the sentence The President will ask Congress to increase grants to states for vocational rehabilitation
. and that we have got as far as will/md. We can use the table to simply read off the tags that should
be assigned to the remainder of the sentence. When preceded by md, the tagger guesses that ask has the
tag vb (italicized in the table). Moving to the next word, we know it is preceded by vb, and looking
across this row we see that Congress is assigned the tag np. The process continues through the rest
of the sentence. When we encounter the word increase, we correctly assign it the tag vb (unlike the
unigram tagger which assigned it nn). However, the bigram tagger mistakenly assigns the infinitival
tag to the word to immediately preceding states, and not the preposition tag. This suggests that we may
need to consider even more context in order to get the correct tag.

4.6.2 N-Gram Taggers

As we have just seen, it may be desirable to look at more than just the preceding word’s tag when
making a tagging decision. An n-gram tagger is a generalization of a bigram tagger whose context
is the current word together with the part-of-speech tags of the n-1: preceding tokens, as shown in the
following diagram. It then picks the tag which is most likely for that context. The tag to be chosen, tn,
is circled, and the context is shaded in grey. In the example of an n-gram tagger shown in Figure 4.3,
we have n=3; that is, we consider the tags of the two preceding words in addition to the current word.

Note

A 1-gram tagger is another term for a unigram tagger: i.e., the context used to tag
a token is just the text of the token itself. 2-gram taggers are also called bigram
taggers, and 3-gram taggers are called trigram taggers.

The tag.Ngram class uses a tagged training corpus to determine which part-of-speech tag is most
likely for each context. Here we see a special case of an n-gram tagger, namely a bigram tagger:

>>> bigram_tagger = tag.Bigram()
>>> bigram_tagger.train(brown.tagged([’a’,’b’]))

Once a bigram tagger has been trained, it can be used to tag untagged corpora:

>>> text = "John saw the book on the table"
>>> tokens = list(tokenize.whitespace(text))
>>> list(bigram_tagger.tag(tokens))
[(’John’, None), (’saw’, None), (’the’, ’at’), (’book’, ’nn’),
(’on’, ’in’), (’the’, ’at’), (’table’, None)]

As with the other taggers, n-gram taggers assign the tag NONE to any token whose context was not
seen during training.

As n gets larger, the specificity of the contexts increases, as does the chance that the data we wish
to tag contains contexts that were not present in the training data. This is known as the sparse data

Bird, Klein & Loper 17 May 16, 2007

4.6. N-Gram Taggers

Figure 4.2: Lookup Tagger

Figure 4.3: Tagger Context

May 16, 2007 18 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

problem, and is quite pervasive in NLP. Thus, there is a trade-off between the accuracy and the coverage
of our results (and this is related to the precision/recall trade-off in information retrieval.)

Note

n-gram taggers should not consider context that crosses a sentence boundary.
Accordingly, NLTK taggers are designed to work with lists of sentences, where
each sentence is a list of words. At the start of a sentence, tn−1 and preceding tags
are set to None.

4.6.3 Combining Taggers

One way to address the trade-off between accuracy and coverage is to use the more accurate algorithms
when we can, but to fall back on algorithms with wider coverage when necessary. For example, we
could combine the results of a bigram tagger, a unigram tagger, and a regexp_tagger, as follows:

1. Try tagging the token with the bigram tagger.

2. If the bigram tagger is unable to find a tag for the token, try the unigram tagger.

3. If the unigram tagger is also unable to find a tag, use a default tagger.

Each NLTK tagger other than tag.Default permits a backoff-tagger to be specified. The
backoff-tagger may itself have a backoff tagger:

>>> t0 = tag.Default(’nn’)
>>> t1 = tag.Unigram(backoff=t0)
>>> t2 = tag.Bigram(backoff=t1)
>>> t1.train(brown.tagged(’a’)) # section a: press-reportage
>>> t2.train(brown.tagged(’a’))

Note

We specify the backoff tagger when the tagger is initialized, so that training can take
advantage of the backing off. Thus, if the bigram tagger would assign the same tag
as its unigram backoff tagger in a certain context, the bigram tagger discards the
training instance. This keeps the bigram tagger model as small as possible. We
can further specify that a tagger needs to see more than one instance of a context
in order to retain it, e.g. Bigram(cutoff=2, backoff=t1) will discard contexts
which have only been seen once or twice.

As before we test the taggers against unseen data. Here we will use a different segment of the
corpus.

>>> accuracy0 = tag.accuracy(t0, brown.tagged(’b’)) # section b: press-editorial
>>> accuracy1 = tag.accuracy(t1, brown.tagged(’b’))
>>> accuracy2 = tag.accuracy(t2, brown.tagged(’b’))

>>> print ’Default Accuracy = %4.1f%%’ % (100 * accuracy0)
Default Accuracy = 12.5%
>>> print ’Unigram Accuracy = %4.1f%%’ % (100 * accuracy1)
Unigram Accuracy = 81.0%
>>> print ’Bigram Accuracy = %4.1f%%’ % (100 * accuracy2)
Bigram Accuracy = 81.9%

Bird, Klein & Loper 19 May 16, 2007

4.6. N-Gram Taggers

4.6.4 Investigating tagger performance

What is the upper limit to tagger performance? Unfortunately perfect tagging is impossible. Consider
the case of a trigram tagger. How many cases of part-of-speech ambiguity does it encounter? We can
determine the answer to this question empirically:

>>> from nltk_lite.corpora import brown
>>> from nltk_lite.probability import ConditionalFreqDist
>>> cfdist = ConditionalFreqDist()
>>> for sent in brown.tagged(’a’):
... p = [(None, None)] # empty token/tag pair
... trigrams = zip(p+p+sent, p+sent+p, sent+p+p)
... for (pair1,pair2,pair3) in trigrams:
... context = (pair1[1], pair2[1], pair3[0]) # last 2 tags, this word
... cfdist[context].inc(pair3[1]) # current tag
>>> total = ambiguous = 0
>>> for cond in cfdist.conditions():
... if cfdist[cond].B() > 1:
... ambiguous += cfdist[cond].N()
... total += cfdist[cond].N()
>>> print float(ambiguous) / total
0.0560190160471

Thus, one out of twenty trigrams is ambiguous. Given the current word and the previous two tags,
there is more than one tag that could be legitimately assigned to the current word according to the
training data. Assuming we always pick the most likely tag in such ambiguous contexts, we can derive
an empirical upper bound on the performance of a trigram tagger.

Another way to investigate the performance of a tagger is to study its mistakes. Some tags may be
harder than others to assign, and it might be possible to treat them specially by pre- or post-processing
the data. A convenient way to look at tagging errors is the confusion matrix. It charts expected tags
(the gold standard) against actual tags generated by a tagger:

>>> from nltk_lite.evaluate import ConfusionMatrix
>>> from nltk_lite.tag import untag
>>> def tag_list(tagged_sents):
... return [tag for (word, tag) in sent for sent in tagged_sents]
>>> def apply_tagger(tagger, corpus):
... return [tagger.tag(untag(sent)) for sent in corpus]
>>> gold = tag_list(brown.tagged(’b’))
>>> test = tag_list(apply_tagger(t2, brown.tagged(’b’)))
>>> print ConfusionMatrix(gold, test)

Based on such analysis we may decide to modify the tagset. Perhaps a distinction between tags that
is difficult to make can be dropped, since it is not important in the context of some larger processing
task. We could collapse distinctions with the aid of a dictionary that maps the existing tagset to a
simpler tagset:

>>> mapping = {’pps’: ’nn’, ’ppss’: ’nn’}
>>> data = [(word, mapping.get(tag, tag))

for (word, tag) in sent for sent in tagged_sents]

We can do this for both the training and test data.

May 16, 2007 20 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

4.6.5 Storing Taggers

Training a tagger on a large corpus may take several minutes. Instead of training a tagger every time
we need one, it is convenient to save a trained tagger in a file for later re-use. Let’s save our tagger t2
to a file t2.pkl.

>>> from cPickle import dump
>>> output = open(’t2.pkl’, ’wb’)
>>> dump(t2, output, -1)
>>> output.close()

Now, in a separate Python process, we can load our saved tagger.

>>> from cPickle import load
>>> input = open(’t2.pkl’, ’rb’)
>>> tagger = load(input)
>>> input.close()

Now let’s check that it can be used for tagging.

>>> text = """The board’s action shows what free enterprise
... is up against in our complex maze of regulatory laws ."""
>>> tokens = list(tokenize.whitespace(text))
>>> list(tagger.tag(tokens))
[(’The’, ’at’), ("board’s", ’nn$’), (’action’, ’nn’), (’shows’, ’nns’),
(’what’, ’wdt’), (’free’, ’jj’), (’enterprise’, ’nn’), (’is’, ’bez’),
(’up’, ’rp’), (’against’, ’in’), (’in’, ’in’), (’our’, ’pp$’), (’complex’, ’jj’),
(’maze’, ’nn’), (’of’, ’in’), (’regulatory’, ’nn’), (’laws’, ’nns’), (’.’, ’.’)]

4.6.6 Smoothing

[Brief discussion of NLTK’s smoothing classes, for another approach to handling unknown words:
Lidstone, Laplace, Expected Likelihood, Heldout, Witten-Bell, Good-Turing.]

4.6.7 Exercises

1. ☼ Train a bigram tagger with no backoff tagger, and run it on some of the training data.
Next, run it on some new data. What happens to the performance of the tagger? Why?

2. Ñ Inspect the confusion matrix for the bigram tagger t2 defined above, and identify one
or more sets of tags to collapse. Define a dictionary to do the mapping, and evaluate the
tagger on the simplified data.

3. Ñ How serious is the sparse data problem? Investigate the performance of n-gram taggers
as n increases from 1 to 6. Tabulate the accuracy score. Estimate the training data required
for these taggers, assuming a vocabulary size of 105 and a tagset size of 102.

4. � Create a default tagger and various unigram and n-gram taggers, incorporating backoff,
and train them on part of the Brown corpus.

a) Create three different combinations of the taggers. Test the accuracy of each
combined tagger. Which combination works best?

b) Try varying the size of the training corpus. How does it affect your results?

Bird, Klein & Loper 21 May 16, 2007

4.7. Conclusion

5. � Our approach for tagging an unknown word has been to consider the letters of the word
(using tag.Regexp() and tag.Affix()), or to ignore the word altogether and tag it
as a noun (using tag.Default()). These methods will not do well for texts having new
words that are not nouns. Consider the sentence I like to blog on Kim’s blog. If blog:lx:
is a new word, then looking at the previous tag (to vs np$) would probably be helpful.
I.e. we need a default tagger that is sensitive to the preceding tag.

a) Create a new kind of unigram tagger that looks at the tag of the previous word,
and ignores the current word. (The best way to do this is to modify the source
code for tag.Unigram(), which presumes knowledge of Python classes
discussed in Section 10.1.)

b) Add this tagger to the sequence of backoff taggers (including ordinary trigram
and bigram taggers that look at words), right before the usual default tagger.

c) Evaluate the contribution of this new unigram tagger.

4.7 Conclusion

This chapter has introduced the language processing task known as tagging, with an emphasis on part-
of-speech tagging. English word classes and their corresponding tags were introduced. We showed
how tagged tokens and tagged corpora can be represented, then discussed a variety of taggers: default
tagger, regular expression tagger, unigram tagger and n-gram taggers. We also described some objective
evaluation methods. In the process, the reader has been introduced to an important paradigm in
language processing, namely language modeling. This paradigm former is extremely general, and
we will encounter it again later.

Observe that the tagging process simultaneously collapses distinctions (i.e., lexical identity is
usually lost when all personal pronouns are tagged PRP), while introducing distinctions and removing
ambiguities (e.g. deal tagged as VB or NN). This move facilitates classification and prediction. When
we introduce finer distinctions in a tag set, we get better information about linguistic context, but we
have to do more work to classify the current token (there are more tags to choose from). Conversely,
with fewer distinctions, we have less work to do for classifying the current token, but less information
about the context to draw on.

There are several other important approaches to tagging involving Transformation-Based Learning,
Markov Modeling, and Finite State Methods. We will discuss these in a later chapter. In Chapter 5
we will see a generalization of tagging called chunking in which a contiguous sequence of words is
assigned a single tag.

Part-of-speech tagging is just one kind of tagging, one that does not depend on deep linguistic
analysis. There are many other kinds of tagging. Words can be tagged with directives to a speech
synthesizer, indicating which words should be emphasized. Words can be tagged with sense numbers,
indicating which sense of the word was used. Words can also be tagged with morphological features.
Examples of each of these kinds of tags are shown below. For space reasons, we only show the tag
for a single word. Note also that the first two examples use XML-style tags, where elements in angle
brackets enclose the word that is tagged.

1. Speech Synthesis Markup Language (W3C SSML): That is a <emphasis>big</
emphasis> car!

May 16, 2007 22 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

2. SemCor: Brown Corpus tagged with WordNet senses: Space in any <wf pos="NN
" lemma="form" wnsn="4">form</wf> is completely measured by the
three dimensions. (Wordnet form/nn sense 4: “shape, form, configuration, contour,
conformation”)

3. Morphological tagging, from the Turin University Italian Treebank: E’ italiano ,
come progetto e realizzazione , il primo (PRIMO ADJ ORDIN M SING
) porto turistico dell’ Albania .

Tagging exhibits several properties that are characteristic of natural language processing. First,
tagging involves classification: words have properties; many words share the same property (e.g. cat
and dog are both nouns), while some words can have multiple such properties (e.g. wind is a noun and
a verb). Second, in tagging, disambiguation occurs via representation: we augment the representation
of tokens with part-of-speech tags. Third, training a tagger involves sequence learning from annotated
corpora. Finally, tagging uses simple, general, methods such as conditional frequency distributions and
transformation-based learning.

We have seen that ambiguity in the training data leads to an upper limit in tagger performance.
Sometimes more context will resolve the ambiguity. In other cases however, as noted by Abney
(1996), the ambiguity can only resolved with reference to syntax, or to world knowledge. Despite
these imperfections, part-of-speech tagging has played a central role in the rise of statistical approaches
to natural language processing. In the early 1990s, the surprising accuracy of statistical taggers was
a striking demonstration that it was possible to solve one small part of the language understanding
problem, namely part-of-speech disambiguation, without reference to deeper sources of linguistic
knowledge. Can this idea be pushed further? In Chapter 5, on chunk parsing, we shall see that it
can.

4.8 Further Reading

Tagging: Jurafsky and Martin, Chapter 8
Brill tagging: Manning and Schutze 361ff; Jurafsky and Martin 307ff
HMM tagging: Manning and Schutze 345ff
Abney, Steven (1996). Tagging and Partial Parsing. In: Ken Church, Steve Young, and Gerrit

Bloothooft (eds.), Corpus-Based Methods in Language and Speech. Kluwer Academic Publishers,
Dordrecht. http://www.vinartus.net/spa/95a.pdf

Wikipedia: http://en.wikipedia.org/wiki/Part-of-speech_tagging
List of available taggers: http://www-nlp.stanford.edu/links/statnlp.html

4.9 Further Exercises

1. Impossibility of exact tagging: Write a program to determine the upper bound for accu-
racy of an n-gram tagger. Hint: how often is the context seen during training inadequate
for uniquely determining the tag to assign to a word?

2. Impossibility of exact tagging: Consult the Abney reading and review his discussion of
the impossibility of exact tagging. Explain why correct tagging of these examples requires
access to other kinds of information than just words and tags. How might you estimate the
scale of this problem?

Bird, Klein & Loper 23 May 16, 2007

4.10. Appendix: Brown Tag Set

3. Application to other languages: Obtain some tagged data for another language, and train
and evaluate a variety of taggers on it. If the language is morphologically complex, or if
there are any orthographic clues (e.g. capitalization) to word classes, consider developing
a regular expression tagger for it (ordered after the unigram tagger, and before the default
tagger). How does the accuracy of your tagger(s) compare with the same taggers run on
English data? Discuss any issues you encounter in applying these methods to the language.

4. Comparing n-gram taggers and Brill taggers (advanced): Investigate the relative per-
formance of n-gram taggers with backoff and Brill taggers as the size of the training data
is increased. Consider the training time, running time, memory usage, and accuracy, for a
range of different parameterizations of each technique.

5. HMM taggers: Explore the Hidden Markov Model tagger nltk_lite.tag.hmm.

6. (Advanced) Estimation: Use some of the estimation techniques in nltk_lite.probability,
such as Lidstone or Laplace estimation, to develop a statistical tagger that does a better job
than ngram backoff taggers in cases where contexts encountered during testing were not
seen during training. Read up on the TnT tagger, since this provides useful technical
background: http://www.aclweb.org/anthology/A00-1031

4.10 Appendix: Brown Tag Set

Table 4.7 gives a sample of closed class words, following the classification of the Brown Corpus.
(Note that part-of-speech tags may be presented as either upper-case or lower-case strings -- the case
difference is not significant.)

ap determiner/pronoun,
post-determiner

many other next more last former little several enough most least only very
few fewer past same

at article the an no a every th’ ever’ ye
cc conjunction, coordi-

nating
and or but plus & either neither nor yet ’n’ and/or minus an’

cs conjunction, subor-
dinating

that as after whether before while like because if since for than until so
unless though providing once lest till whereas whereupon supposing albeit
then

in preposition of in for by considering to on among at through with under into regarding
than since despite ...

md modal auxiliary should may might will would must can could shall ought need wilt
pn pronoun, nominal none something everything one anyone nothing nobody everybody every-

one anybody anything someone no-one nothin’
ppl pronoun, singular,

reflexive
itself himself myself yourself herself oneself ownself

pp$ determiner, posses-
sive

our its his their my your her out thy mine thine

pp$$ pronoun, possessive ours mine his hers theirs yours
pps pronoun, personal,

nom, 3rd pers sng
it he she thee

May 16, 2007 24 Bird, Klein & Loper

4. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

ppss pronoun, personal,
nom, not 3rd pers
sng

they we I you ye thou you’uns

wdt WH-determiner which what whatever whichever
wps WH-pronoun, nomi-

native
that who whoever whosoever what whatsoever

Table 4.7: Some English Closed Class Words, with Brown Tag

4.10.1 Acknowledgments

About this document...
This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It is
distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Version
0.7.5, under the terms of the Creative Commons Attribution-ShareAlike License
[http://creativecommons.org/licenses/by-sa/2.5/].
This document is Revision: 4518 Wed May 16 20:08:28 EST 2007

Bird, Klein & Loper 25 May 16, 2007

http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	Categorizing and Tagging Words
	Introduction
	Getting Started with Tagging
	Representing Tags and Reading Tagged Corpora
	Nouns and Verbs
	Nouns and verbs in tagged corpora
	The Default Tagger
	Exercises

	Looking for Patterns in Words
	Some morphology
	The Regular Expression Tagger
	Exercises

	Baselines and Backoff
	The Lookup Tagger
	Backoff
	Choosing a good baseline
	Exercises

	Getting Better Coverage
	More English Word Classes
	Some diagnostics
	Unigram Tagging
	Affix Taggers
	Exercises

	N-Gram Taggers
	Bigram Taggers
	N-Gram Taggers
	Combining Taggers
	Investigating tagger performance
	Storing Taggers
	Smoothing
	Exercises

	Conclusion
	Further Reading
	Further Exercises
	Appendix: Brown Tag Set
	Acknowledgments

