Chapter 13

Managing Linguistic Data

13.1 Introduction

Linguistic fieldwork deals with a variety of data types, the most important being lexicons, paradigms
and texts. A lexicon is a database of words, minimally containing part of speech information and
glosses. A paradigm, broadly construed, is any kind of rational tabulation of words or phrases to
illustrate contrasts and systematic variation. A text is essentially any larger unit such as a narrative or a
conversation. In addition to these data types, linguistic fieldwork involves various kinds of description,
such as field notes, grammars and analytical papers.

These various kinds of data and description enter into a complex web of relations. For example, the
discovery of a new word in a text may require an update to the lexicon and the construction of a new
paradigm (e.g. to correctly classify the word). Such updates may occasion the creation of some field
notes, the extension of a grammar and possibly even the revision of the manuscript for an analytical
paper. Progress on description and analysis gives fresh insights about how to organise existing data and
it informs the quest for new data. Whether one is sorting data, or generating tabulations, or gathering
statistics, or searching for a (counter-)example, or verifying the transcriptions used in a manuscript, the
principal challenge is computational.

In the following we will consider various methods for manipulating linguistic field data using
the Natural Language Toolkit. We begin by considering methods for processing data created with
proprietary tools (e.g. Microsoft Office products). The bulk of the discussion focusses on field data
stored in the popular 7oolbox format.

Note

Other sections, still to be written, will cover the collection and curation of corpora;
the lifecycle of linguistic data, including coding/annotation and automatic learning of
annotations; and language resources more generally which are crucial in linguistic
research and commercial NLP.

13.2 XML and ElementTree

B inspecting and processing XML
m example: find nodes matching some criterion and add an attribute

m Shakespeare XML corpus example

13.3. Tools and technologies for language documentation and description

13.3 Tools and technologies for language documentation and description

Language documentation projects are increasing in their reliance on new digital technologies and
software tools. Bird and Simons (2003) identified and categorized a wide variety of these tools. We
briefly review these here, and mention various ways that our own programs can interface with them.

13.3.1 General purpose tools

Conventional office software is widely used in computer-based language documentation work, given
its familiarity and ready availability. This includes word processors and spreadsheets.

Word Processors. These are often used in creating dictionaries and interlinear texts. However, it
is rather time-consuming to maintain the consistency of the content and format. Consider a dictionary
in which each entry has a part-of-speech field, drawn from a set of 20 possibilities, displayed after the
pronunciation field, and rendered in 11-point bold. No convential word processor has search or macro
functions capable of verifying that all part-of-speech fields have been correctly entered and displayed.
This task requires exhaustive manual checking. If the word processor permits the document to be saved
in a non-proprietary format, such as RTF, HTML, or XML, it may be possible to write programs to do
this checking automatically.

Consider the following fragment of a lexical entry: “sleep [sli:p] vi condition of body and mind...”.
We can enter this in MSWord, then “Save as Web Page”, then inspect the resulting HTML:

<p class=MsoNormal>sleep

[sli:p]

vi

<i>a condition of body and mind ...<o:p></o0:p></i>
</p>

Observe that the entry is represented as an HTML paragraph, using the <p> element, and that the
part of speech appears inside a element. The following
program defines the set of legal parts-of-speech, legal_pos. Then it extracts all 11-point content
from the dict .htm file and stores it in the set used_pos. Observe that the search pattern contains
a parenthesized sub-expression; only the material that matches this sub-expression is returned by
re.findall. Finally, the program constructs the set of illegal parts-of-speech as used_pos -
legal_pos:

>>> re

>>> legal _pos = set(['n’, 'v.t.’, 'v.i.’, "adj’, ’'det’])
>>> pattern = re.compile(r"’ font-size:11.0pt’>([a-z.]+)<")
>>> document = open("dict.htm") .read()

>>> used_pos = set (re.findall (pattern, document))

>>> illegal_pos = used_pos.difference(legal_pos)

>>> list (illegal_pos)

["v.i’, "intrans’]

This simple program represents the tip of the iceberg. We can develop sophisticated tools to check
the consistency of word processor files, and report errors so that the maintainer of the dictionary can
correct the original file using the original word processor. We can write other programs to convert

May 16, 2007 2 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

the data into a different format. For example, the following program extracts the words and their
pronunciations and generates output in “comma-separated value” (CSV) format:

>>> re
>>> document = open("dict.htm") .read()
>>> document = re.sub("[\r\n]", "", document)

>>> word_pattern = re.compile(r">([\w]+)")
>>> pron_pattern = re.compile (r"\[.#*>([a-z:]+)<.*\]")
>>> entry document .split ("<p") :
word_match = word_pattern.search (entry)
pron_match = pron_pattern.search (entry)
word_match pron_match:
lex = word match.group (1)
pos = pron_match.group (1)
... 'negs","ss"’ % (lex, pos)
"sleep", "sli:p"
"walk", "wo:k"
"wake", "weik"

We could also produce output in the Toolbox format (to be discussed in detail later):

\1x sleep

\ph sli:p

\ps v.i

\gl a condition of body and mind

\1x walk

\ph wo:k

\ps v.intr

\gl progress by lifting and setting down each foot

\1x wake

\ph weik

\ps intrans

\gl cease to sleep

Spreadsheets. These are often used for wordlists or paradigms. A comparative wordlist may be
stored in a spreadsheet, with a row for each cognate set, and a column for each language. Examples
are available from www.rosettaproject.org. Programs such as Excel can export spreadsheets
in the CSV format, and we can write programs to manipulate them, with the help of Python’s csv
module. For example, we may want to print out cognates having an edit-distance of at least three from
each other (i.e. 3 insertions, deletions, or substitutions).

Databases. Sometimes lexicons are stored in a full-fledged relational database. When properly
normalized, these databases can implement many well-formedness constraints. For example, we can
require that all parts-of-speech come from a specified vocabulary by declaring that the part-of-speech
field is an enumerated type. However, the relational model is often too restrictive for linguistic data,
which typically has many optional and repeatable fields (e.g. dictionary sense definitions and example
sentences). Query languages such as SQL cannot express many linguistically-motivated queries, e.g.
find all words that appear in example sentences for which no dictionary entry is provided. Now
supposing that the database supports exporting data to CSV format, and that we can save the data
toafiledict.csv:

Bird, Klein & Loper 3 May 16, 2007

13.4. Processing Toolbox Data

"sleep","sli:p","v.i","a condition of body and mind "
"walk", "wo:k","v.intr", "progress by lifting and setting down each foot

"wake", "weik", "intrans", "cease to sleep"

Now we can express this query in the following program:

>>> csv

>>> lexemes = []

>>> defn words = []

>>> row csv.reader (open('"dict.csv")):

lexeme, pron, pos, defn = row
lexemes . append (lexeme)
defn_words += defn.split ()
>>> undefined = list (set (defn words) .difference (set (lexemes)))
>>> undefined.sort ()
>>> undefined
["...”, "a’", "and’, 'body’, ’'by’, ’'cease’, ’'condition’, ’'down’, ’'each’,
"foot’, ’'lifting’, 'mind’, 'of’, ’'progress’, ’'setting’, ’'to’]

13.4 Processing Toolbox Data

Over the last two decades, several dozen tools have been developed that provide specialized support
for linguistic data management. (Please see Bird and Simons 2003 for a detailed list of such tools.)
Perhaps the single most popular tool for managing linguistic field data is Shoebox, recently renamed
Toolbox. Toolbox uses a simple file format which we can easily read and write, permitting us to apply
computational methods to linguistic field data. In this section we discuss a variety of techniques for
manipulating Toolbox data in ways that are not supported by the Toolbox software.

A Toolbox file consists of a collection of entries (or records), where each record is made up of one
or more fields. Here is an example of an entry taken from a Toolbox dictionary of Rotokas. (Rotokas
is an East Papuan language spoken on the island of Bougainville; this data was provided by Stuart
Robinson, and is a sample from a larger lexicon):

\1x kaa

\ps N

\pt MASC

\cl isi

\ge cooking banana

\tkp banana bilong kukim

\pt itoo

\sf FLORA

\dt 12/Aug/2005

\ex Taeavi iria kaa isi kovopaueva kaparapasia.
\xp Taeavi 1 bin planim gaden banana bilong kukim tasol long paia.

\xe Taeavi planted banana in order to cook it.

This lexical entry contains the following fields: 1x lexeme; ps part-of-speech; pt part-of-speech;
cl classifier; ge English gloss; tkp Tok Pisin gloss; sf Semantic field; dt Date last edited; ex
Example sentence; xp Pidgin translation of example; xe English translation of example. These field
names are preceded by a backslash, and must always appear at the start of a line. The characters of the
field names must be alphabetic. The field name is separated from the field’s contents by whitespace.
The contents can be arbitrary text, and can continue over several lines (but cannot contain a line-initial
backslash).

May 16, 2007 4 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

13.4.1 Accessing Toolbox Data

We can use the toolbox.parse_corpus () method to access a Toolbox file and load it into an
elementtree object.

>>> nltk_lite.corpora toolbox
>>> lexicon = toolbox.parse_corpus (' rotokas.dic’)

There are two ways to access the contents of the lexicon object, by indexes and by paths. Indexes
use the familiar syntax, thus lexicon[3] returns entry number 3 (which is actually the fourth entry
counting from zero). And lexicon[3] [0] returns its first field:

>>> lexicon[3][0]
<Element 1lx at 77bd28>
>>> lexicon[3][0] .tag
lel

>>> lexicon[3][0] .text
"kaa’

We can iterate over all the fields of a given entry:

>>> toolbox.to_sfm_ string(lexicon[3])

\1x kaa

\ps N

\pt MASC

\cl isi

\ge cooking banana

\tkp banana bilong kukim

\pt itoo

\sf FLORA

\dt 12/Aug/2005

\ex Taeavi iria kaa isi kovopaueva kaparapasia.
\xp Taeavi i bin planim gaden banana bilong kukim tasol long paia.
\xe Taeavi planted banana in order to cook it.

The second way to access the contents of the lexicon object uses paths. The lexicon is a series of
record objects, each containing a series of field objects, such as 1x and ps. We can conveniently
address all of the lexemes using the path record/1x. Here we use the findall () function to
search for any matches to the path record/1x, and we access the text content of the element,
normalising it to lowercase.

>>> [lexeme.text.lower () lexeme lexicon.findall (' record/1x’)]
["kaa’, '"kaa’, 'kaa’, ’'kaakaaro’, ’'kaakaaviko’, ’'kaakaavo’, ’'kaakaoko’,
"kaakasi’, ’'kaakau’, ’'kaakauko’, ’‘kaakito’, ’kaakuupato’, ..., ’"kuvuto’]

13.4.2 Adding and Removing Fields

It is often convenient to add new fields that are derived from existing ones. Such fields often facilitate
analysis. For example, let us define a function which maps a string of consonants and vowels to the
corresponding CV sequence, e.g. kakapua would map to CVCVCVV.

>>> re
>>> cv(s):
s = s.lower()

Bird, Klein & Loper 5 May 16, 2007

13.4. Processing Toolbox Data

s = re.sub(r’' [*a-z]’, r'_’', s)
s = re.sub(r’ [aeiou]’, r'v’, s)
s = re.sub(xr’' [*V_]', r’'Cc’, s)

return (s)

This mapping has four steps. First, the string is converted to lowercase, then we replace any
non-alphabetic characters [~a-z] with an underscore. Next, we replace all vowels with V. Finally,
anything that is not a V or an underscore must be a consonant, so we replace it with a C. Now, we can
scan the lexicon and add a new cv field after every 1x field.

>>> from nltk_lite.etree.ElementTree import SubElement
>>> for entry in lexicon:
for field in entry:
if field.tag == ’"1x’:
cv_field = SubElement (entry, ’'cv’)
cv_field.text = cv(field.text)

Let’s see what this does for a particular entry. Note the last line of output, which shows the new
CV field:

>>> print toolbox.to_sfm string(lexicon[53])

\1lx kaeviro

\ps V

\pt A

\ge 1lift off

\ge take off

\tkp go antap

\sc MOTION

\vx 1

\nt used to describe action of plane

\dt 03/Jun/2005

\ex Pita kaeviroroe kepa kekesia oa vuripierevo kiuvu.
\xp Pita i go antap na lukim haus win i bagarapim.

\xe Peter went to look at the house that the wind destroyed.
\cv CVVCVCV

(NB. To insert this field in a different position, we need to create the new cv field using Element
("cv’), assign a text value to it then use the insert () method of the parent element.)

This technique can be used to make copies of Toolbox data that lack particular fields. For example,
we may want to sanitise our lexical data before giving it to others, by removing unnecessary fields (e.g.
fields containing personal comments.)

>>> retain = ('1x’, 'ps’, ’‘ge’)

>>> for entry in lexicon:

.. entry[:] = [f for £ in entry if f.tag in retain]
>>> print toolbox.to_sfm_string(lexicon[53])

\1lx kaeviro

\ps V.A

\ge 1lift off

\ge take off

May 16, 2007 6 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

13.4.3 Formatting Entries

We can also print a formatted version of a lexicon. It allows us to request specific fields without needing
to be concerned with their relative ordering in the original file.

>>> lexicon = toolbox.parse_corpus (' rotokas.dic’)
>>> for entry in lexicon[70:80]:
1x = entry.findtext (’'1x’)
Ps entry.findtext ('ps’)
ge = entry.findtext ('ge’)
... print "%s (%s) '%s’'" % (1lx, ps, ge)
kakae (???) ’'small’
kakae (CLASS) ’'child’
kakaevira (ADV) ’'small-like’
kakapikoa (???) ’'small’
kakapikoto (N) ’'newborn baby’
kakapu (V) ’‘place in sling for purpose of carrying’
kakapua (N) ’'sling for lifting’
kakara (N) ’'arm band’
Kakarapaia (N) ’‘village name’
kakarau (N) ’frog’

Note

Producing CSV output
We could have produced comma-separated value (CSV) format with a slightly
different print statement: print 7 "%s"; "%s"; "%s"\n’ % (1lx, ps, ge)

We can use the same idea to generate HTML tables instead of plain text. This would be useful for
publishing a Toolbox lexicon on the web. It produces HTML elements <table>, <tr> (table row),
and <t d> (table data).

>>> html = "<table>\n"
>>> for entry in lexicon[70:80]:
1x = entry.findtext ('1x’)
pPs = entry.findtext ('ps’)
ge = entry.findtext ('ge’)
. html += " <tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (1lx, ps, ge)
>>> html += "</table>"
>>> print html
<table>
<tr><td>kakae</td><td>???</td><td>small</td></tr>
<tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
<tr><td>kakaevira</td><td>ADV</td><td>small-like</td></tr>
<tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
<tr><td>kakapikoto</td><td>N</td><td>newborn baby</td></tr>
<tr><td>kakapu</td><td>V</td><td>place in sling for purpose of carrying</td></tr>
<tr><td>kakapua</td><td>N</td><td>sling for lifting</td></tr>
<tr><td>kakara</td><td>N</td><td>arm band</td></tr>
<tr><td>Kakarapaia</td><td>N</td><td>village name</td></tr>
<tr><td>kakarau</td><td>N</td><td>frog</td></tr>
</table>

XML output

Bird, Klein & Loper 7 May 16, 2007

13.4. Processing Toolbox Data

>>> import sys
>>> from nltk_lite.etree.ElementTree import ElementTree
>>> tree = ElementTree (lexicon[3])
>>> tree.write(sys.stdout)
<record>
<lx>kaa</lx>
<ps>N</ps>
<pt>MASC</pt>
<cl>isi</cl>
<ge>cooking banana</ge>
<tkp>banana bilong kukim</tkp>
<pt>itoo</pt>
<sf>FLORA</sf>
<dt>12/Aug/2005</dt>
<ex>Taeavi iria kaa isi kovopaueva kaparapasia.</ex>
<xp>Taeavi i bin planim gaden banana bilong kukim tasol long paia.</xp>
<xe>Taeavi planted banana in order to cook it.</xe>
</record>

13.4.4 Exploration

In this section we consider a variety of analysis tasks.

Reduplication: First, we will develop a program to find reduplicated words. In order to do this we
need to store all verbs, along with their English glosses. We need to keep the glosses so that they can
be displayed alongside the wordforms. The following code defines a Python dictionary lexgloss
which maps verbs to their English glosses:

>>> lexgloss = {}
>>> for entry in lexicon:
1x = entry.findtext (’'1x’)
if 1x and entry.findtext ('ps’)[0] == 'V':
. lexgloss[1lx] = entry.findtext ('ge’)
kasi (burn); kasikasi (angry)
kee (shatter); keekee (chipped)
kauo (jump); kauokauo (jump up and down)
kea (confused); keakea (lie)
kape (unable to meet); kapekape (embrace)
kapo (fasten.cover.strip); kapokapo (fasten.cover.strips)
kavo (collect); kavokavo (perform sorcery)
karu (open); karukaru (open)
kare (return); karekare (return)
kari (rip); karikari (tear)
kae (blow); kaekae (tempt)

Next, for each verb 1ex, we will check if the lexicon contains the reduplicated form lex+1lex. If
it does, we report both forms along with their glosses.

>>> for lex in lexgloss:
if lex+lex in lexgloss:
print "%s (%s); %s (%s)" %\
(lex, lexgloss[lex], lex+lex, lexgloss[lex+lex])

May 16, 2007 8 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

Complex Search Criteria: Phonological description typically identifies the segments, alternations,
syllable canon and so forth. It is relatively straightforward to count up the occurrences of all the
different types of CV syllables that occur in lexemes.

In the following example, we first import the regular expression and probability modules. Then we
iterate over the lexemes to find all sequences of a non-vowel [“aeiou] followed by a vowel [aeiou

].

>>> nltk_1lite.tokenize regexp
>>> nltk_lite.probability FreqDist
>>> fd = FreqgDist ()
>>> lexemes = [lexeme.text.lower () lexeme lexicon.findall (' record/1x’)]
>>> lex lexemes:
syl regexp (lex, pattern=r’ [“aeiou] [aeiou]’):

fd.inc(syl)

Now, rather than just printing the syllables and their frequency counts, we can tabulate them to
generate a useful display.

>>> vowel "aeiou’ :
cons "ptkvsr’ :
"%s%s:%4d ' % (cons, vowel, fd.count (cons+vowel)),

pa: 83 ta: 47 ka: 428 wva: 93 sa: 0 ra: 187
pe: 31 te: 8 ke: 151 ve: 27 se: 0 re: 63
pi: 105 ti: 0 ki: 94 wvi: 105 si: 100 ri: 84
po: 34 to: 148 ko: 430 vo: 48 so: 2 ro: 89
pu: 51 tu: 37 ku: 175 wvu: 49 su: 1 ru: 79

Consider the t and s columns, and observe that ti is not attested, while si is frequent. This
suggests that a phonological process of palatalisation is operating in the language. We would then want
to consider the other syllables involving s (e.g. the single entry having su, namely kasuari ’cassowary’
is a loanword).

Prosodically-motivated search: A phonological description may include an examination of the
segmental and prosodic constraints on well-formed morphemes and lexemes. For example, we may
want to find trisyllabic verbs ending in a long vowel. Our program can make use of the fact that syllable
onsets are obligatory and simple (only consist of a single consonant). First, we will encapsulate the
syllabic counting part in a separate function. It gets the CV template of the word cv (word) and
counts the number of consonants it contains:

>>> num_cons (word) :
template = cv(word)
return template.count ('C’)

We also encapsulate the vowel test in a function, as this improves the readability of the final
program. This function returns the value True just in case char is a vowel.

>>> is_vowel (char) :
return (char "aeiou’)

Over time we may create a useful collection of such functions. We can save them in a file
utilities.py, and then at the start of each program we can simply import all the functions in
one go using utilities *. We take the entry to be a verb if the first letter of its
part of speech is a V. Here, then, is the program to display trisyllabic verbs ending in a long vowel:

Bird, Klein & Loper 9 May 16, 2007

13.4. Processing Toolbox Data

>>> entry lexicon:
1lx = entry.findtext ('1x’)

1x:

ps = entry.findtext ('ps’)
num_cons (1x) == ps[0] == 'V’\

is_vowel (1x[-1]) is_vowel (1x[-2]):
ge = entry.findtext ('ge’)
"$s (%s) '%s’" % (1lx, ps, ge)

kaetupie (V.B) ’'tighten’
kakupie (V.B) ’shout’
kapatau (V.B) ’'add to’
kapuapie (V.B) ’'wound’
kapupie (V.B) ’‘close tight’
kapuupie (V.B) ’close’

karepie (V.B) ’'return’

karivai (V.A) ’'have an appetite’
kasipie (V.B) ’'care for’
kaukaupie (V.B) ’'shine intensely’
kavorou (V.A) ’'covet’

kavupie (V.B) ’'leave.behind’

kuverea (V.A) ’'incomplete’

Finding Minimal Sets: In order to establish a contrast segments (or lexical properties, for that
matter), we would like to find pairs of words which are identical except for a single property. For
example, the words pairs mace vs maze and face vs faze — and many others like them — demonstrate
the existence of a phonemic distinction between s and z in English. NLTK-Lite provides flexible
support for constructing minimal sets, using the MinimalSet () class. This class needs three pieces
of information for each item to be added: context: the material that must be fixed across all members
of a minimal set; target: the material that changes across members of a minimal set; display: the
material that should be displayed for each item.

Examples of Minimal Set Parameters

Minimal Set Context Target Display

bib, bid, big first two letters third letter word

deal (N), deal (V) whole word pos word (pos)
Table 13.1:

We begin by creating a list of parameter values, generated from the full lexical entries. In our first
example, we will print minimal sets involving lexemes of length 4, with a target position of 1 (second
segment). The context is taken to be the entire word, except for the target segment. Thus, if lex is
kasi, then contextis lex[:1]+’_"+1lex[2:],or k_si. Note that no parameters are generated if
the lexeme does not consist of exactly four segments.

>>> nltk lite.utilities MinimalSet

>>> pos =1

>>> ms = MinimalSet ((lex[:pos] + '’ + lex[pos+l:], lex[pos], lex)
lex lexemes len(lex) == 4)

Now we print the table of minimal sets. We specify that each context was seen at least 3 times.

May 16, 2007 10 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

>>> for context in ms.contexts (3):
print context + ’':’,
for target in ms.targets():

print "%$-4s" % ms.display(context, target, "-"),

ce print

k_si: kasi - kesi kusi kosi
k_va: kava - - kuva kova
k_ru: karu kiru keru kuru koru
k_pu: kapu kipu - - kopu
k_ro: karo kiro - - koro
k_ri: kari kiri keri kuri kori
k_pa: kapa - kepa - kopa
k ra: kara kira kera - kora
k_ku: kaku - - kuku koku
k_ki: kaki kiki - - koki

Observe in the above example that the context, target, and displayed material were all based on
the lexeme field. However, the idea of minimal sets is much more general. For instance, suppose we
wanted to get a list of wordforms having more than one possible part-of-speech. Then the target will
be part-of-speech field, and the context will be the lexeme field. We will also display the English gloss
field.

>>> entries = [(e.findtext ('1x’), e.findtext ('ps’), e.findtext('ge’))
for e in lexicon
.. if e.findtext ('1x’) and e.findtext ('ps’) and e.findtext ('ge’)]
>>> ms = MinimalSet ((1lx, ps[0], "%s (%s)" % (ps[0], ge))
... for (1x, ps, ge) in entries)
>>> for context in ms.contexts()[:10]:
print "%$10s:" % context, "; ".join(ms.display_all (context))

kokovara: N (unripe coconut); V (unripe)
kapua: N (sore); V (have sores)
koie: N (pig); V (get pig to eat)
kovo: C (garden); N (garden); V (work)
kavori: N (crayfish); V (collect crayfish or lobster)
korita: N (cutlet?); V (dissect meat)
keru: N (bone); V (harden like bone)
kirokiro: N (bush used for sorcery); V (write)
kaapie: N (hook); V (snag)
kou: C (heap); V (lay egqg)

The following program uses MinimalSet to find pairs of entries in the corpus which have
different attachments based on the verb only.

>>> from nltk_lite.utilities import MinimalSet
>>> ms = MinimalSet ()
>>> for entry in ppattach.dictionary(’'training’):
target = entry[’attachment’]
context (entry['nounl’], entry[’'prep’], entry[’'noun2’])
display = (target, entry[’'verb’])
... ms.add (context, target, display)
>>> for context in ms.contexts():
print context, ms.display_all (context)

Here is one of the pairs found by the program.

Bird, Klein & Loper 11 May 16, 2007

13.4. Processing Toolbox Data

@) received (NP offer) (PP from group)
rejected (NP offer (PP from group))

This finding gives us clues to a structural difference: the verb receive usually comes with two
following arguments; we receive something from someone. In contrast, the verb reject only needs a
single following argument; we can reject something without needing to say where it originated from.

13.4.5 Example Applications: Improving Access to Lexical Resources

A lexicon constructed as part of field-based research is a potential language resource for speakers of a
language. Even when the language in question has a standard writing system, many speakers will not
be literate in the language. They may be able to attempt an approximate spelling for a word, or they
may prefer to access the dictionary via an index which uses the language of wider communication. In
this section we deal with the first of these. The second is left to the reader as an exercise. We will also
generate a wordfinder puzzle which can be used to test knowledge of lexical items.

Fuzzy Spelling (notes)

Confusible sets of segments: if two segments are confusible, map them to the same integer.

>>> group = {
"0, # blank (for short words)
'p’:1, ’'b’:1, ’'v’:1, # labials
't’:2, 'd":2, 's’':2, # alveolars
"17:3, 'r’:3, # sonorant consonants
i’ 4, e’ : 4, # high front vowels
"u’:5, ‘'o’:5, # high back vowels
"a’:6 # low vowels

}

Soundex: idea of a signature. Words with the same signature considered confusible. Consider first
letter of a word to be so cognitively salient that people will not get it wrong.

>>> def soundex (word) :

if len(word) == 0: return word # sanity check
word += '/ ! # ensure word long enough
c0 = word[0] .upper ()

cl group [word[1]]
cons = filter(lambda x: x in ’'pbvtdslr ', word[2:])
c2 group[cons[0]]
c3 group[cons[1]]
e return "%$s%d%d%d" % (c0, cl, c2, c3)
>>> print soundex(’'kalosavi’)
K632
>>> print soundex(’'ti’)
T400

Now we can build a soundex index of the lexicon:

>>> soundex_idx = {}
>>> for lex in lexemes:
code = soundex (lex)
if code not in soundex_ idx:

May 16, 2007 12 Bird, Klein & Loper

13. Managing Linguistic Data

Introduction to Natural Language Processing (DRAFT)

soundex_idx[code] = set ()
soundex_idx[code] .add (lex)

We should sort these candidates by proximity with the target word.

>>>
>>>

nltk_lite.utilities edit_dist
fuzzy_ spell (target) :
scored_candidates = []
code = soundex (target)

word soundex_idx[code]:

dist = edit_dist (word, target)
scored_candidates.append((dist, word))
scored_candidates.sort ()
return [w (d, w) scored_candidates[:10]]

Finally, we can look up a word to get approximate matches:

>>> fuzzy_ spell (' kokopouto’)

4

[' kokopeoto’, ’'kokopuoto’, ’'kokepato’, ’'koovoto’, ’koepato’
>>> fuzzy spell ('’ kogou’)

["kogo’, ’"koou’, "kokeu’, ’'koko’, ’"kokoa’, ’'kokoi’, ’kokoo’,
Wordfinder Puzzle

"kooupato’,

"koku’,

"kooe’,

Here we will generate a grid of letters, containing words found in the dictionary. First we remove
any duplicates and disregard the order in which the lexemes appeared in the dictionary. We do this by
converting it to a set, then back to a list. Then we select the first 200 words, and then only keep those
words having a reasonable length.

>>> words
>>> words
>>> words

list (set (lexemes))
words[:200]
[w w words 3 <= len(w) <= 12]

Now we generate the wordfinder grid, and print it out.

>>>
>>>
>>>

OWPIHIPPIPHEHHRDO
HNHRXRPRIALHDPNGQ

nltk_lite.misc.wordfinder wordfinder

grid, used = wordfinder (words)

HOWAGRHAKZ®™WOm
nNnHPpIIPOARMEDPHAR

i range (len(grid)) :
3j range (len (grid[i])) :
grid[i] [3],

UUVUVKUOROVAKUNC
OISEKSNAIEREPAKLC
AKIOYOVRSKAWJKUY
NKRGVUKGIAUDJKVN
AUNOKOOUKTREKZAETL
OXVEKERVTIAAERIKRK
GOKUTXUIKNVVLIEDO
KNUAJZTKAKOOSUTR
UASPVFOROOKICAOTU
TUIVAOAUKVVSLPEHTHK
IAKRSVKUSAAIXTIKDO
KROEOARERSETROUJX
UAGKRORERITAIYOA

Bird, Klein & Loper 13

May 16, 2007

"kopato’, ’'kopiito

"kooku’]

13.4. Processing Toolbox Data

RRRATOOKOIKIWAKEAARDO
OEAKIKVOPIKHVOKKGIKT
KKLAKAARMUGEPAUAVQATI
OOOUKNXOGKGAREAAPOOR
KVVPUJETZPEKBETIETZEKURA
NEOAVAEORUKBVEKSOQAVUE
CEKKUKIKIRAEKOJI QKKK

Finally we generate the words which need to be found.

>>> for i in range(len(used)):

print "%-12s" % used[i],

.. if float (i+1l)%5 == 0: print
KOKOROPAVIRA KOROROVIVIRA KAEREASIVIRA KOTOKOTOARA KOPUASIVIRA
KATAITOAREI KAITUTUVIRA KERIKERISI KOKARAPATO KOKOVURITO
KAUKAUVIRA KOKOPUVIRA KAEKAESOTO KAVOVOVIRA KOVAKOVARA
KAAREKOPIE KAEPIEVIRA KAPUUPIEPA KOKORUUTO KIKIRAEKO
KATAAVIRA KOVOKOVOA KARIVAITO KARUVIRA KAPOKARI
KUROVIRA KITUKITU KAKUPUTE KAEREASI KUKURIKO
KUPEROO KAKAPUA KIKISI KAVORA KIKIPI
KAPUA KAARE KOETO KATAI KUVA
KUSI KOVO KOAI

13.4.6 Generating Reports

Finally, we take a look at simple methods to generate summary reports, giving us an overall picture of
the quality and organisation of the data.

First, suppose that we wanted to compute the average number of fields for each entry. This is just
the total length of the entries (the number of fields they contain), divided by the number of entries in
the lexicon:

>>> sum(len(entry) for entry in lexicon) / len(lexicon)
10

Next, let’s consider some methods for discovering patterns in the lexical entries. Which fields are
the most frequent?

>>> fd = FregDist ()
>>> for entry in lexicon:
for field in entry:
fd.inc (field.tagq)

>>> fd.sorted_samples () [: 10]
[ge IexI, Ier, IXPI, gp , leI, Ipsl Idtl, IrtI’ IengI]

Which sequences of fields are the most frequent?

>>> fd =
>>>

FreqgDist ()
for entry in lexicon:

fd.inc(’ :’ .join(field.tag for field in entry))
>>> top_ten = fd.sorted_samples () [:10]
>>> print ’‘\n’.Jjoin(top_ten)

lx:rt:ps:ge:gp:dt:ex:xp:xe
lx:ps:ge:gp:dt:ex:xp:xe
lx:ps:ge:gp:dt:ex:xp:xe:ex:xp:xe

May 16, 2007 14 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

lx:rt:ps:ge:gp:dt:ex:xp:xe:ex:xp:xe

lx:ps:ge:gp:nt:dt:ex:xp:xe
lx:ps:ge:gp:dt
lx:ps:ge:ge:gp:dt:ex:xp:xe:ex:xp:xe

lx:rt:ps:ge:ge:gp:dt:ex:xp:xe:ex:xp:xe
lx:ps:ge:ge:gp:dt:ex:xp:xe
lx:rt:ps:ge:ge:gp:dt:ex:xp:xe

Which pairs of consecutive fields are the most frequent?

>>> fd = FreqgDist ()
>>> for entry in lexicon:
previous = "0"
for field in entry:
current = field.tag
fd.inc("%s->%s" % (previous, current))

R previous = current

>>> fd.sorted samples () [:10]

['ex->xp’, ’'xp->xe’, ’'0->1x’, ’'ge->gp’, ’'ps—->ge’, ’'dt->ex’, ’'lx->ps’,
"gp->dt’, ’'xe->ex’, 'lx->rt’]

Once we have analyzed the sequences of fields, we might want to write down a grammar for lexical
entries, and look for entries which do not conform to the grammar. In general, toolbox entries have
nested structure. Thus they correspond to a tree over the fields. We can check for well-formedness by
parsing the field names. We first set up a putative grammar for the entries:

>>> from nltk_lite import parse

>>> grammar = parse.cfg.parse_cfg(’'’’
S -> Head "ps" Glosses Comment "dt" Examples
Head -> "1x" | "1lx" "rt"
Glosses —-> Gloss Glosses
Glosses —>
Gloss —-> "ge" | "gp"
Examples -> Example Examples
Examples ->
Example —> "ex" "xp" "xe"
Comment -> "cmt"
Comment ->

rrr

>>> rd_parser = parse.RecursiveDescent (grammar)

Now we try to parse each entry. Those that are accepted by the grammar prefixed with a ” +’, and
those that are rejected are prefixed witha 7 —’.

>>> for entry in lexicon[10:20]:
marker_list = [field.tag for field in entry]
if rd _parser.get_parse_ list (marker_list):
print "+", ’:’.join (marker_list)
else:
print "=", 7 :’ . join (marker_list)
— lx:ps:ge:gp:sf:nt:dt:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:gp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:gp:nt:dt:ex:xp:xe:ex:xp:xe
— lx:ps:ge:gp:nt:sf:dt

Bird, Klein & Loper 15 May 16, 2007

13.4. Processing Toolbox Data

lx:ps:ge:gp:dt:cmt:ex:xp:xe:ex:xp:xe
lx:ps:ge:ge:ge:gp:cmt:dt:ex:xp:xe
lx:rt:ps:ge:gp:cmt:dt:ex:xp:xe:ex:xp:xe
lx:rt:ps:ge:ge:gp:dt
lx:rt:ps:ge:ge:ge:gp:dt:cmt:ex:xp:xe:ex:Xp:xe:ex:Xp:xe
lx:rt:ps:ge:gp:dt:ex:xp:xe

I+ + +

+

Looking at Timestamps

>>> fd = FregDist ()
>>> from string import split
>>> for entry in lexicon:

date = entry.findtext ('dt’)

if date:

(day, month, year) = split(date, '/’)

... fd.inc ((month, year))
>>> for time in fd.sorted_samples():
e print time[0], time[l], ’:’, £d.count (time)
Feb 2005 : 307
Dec 2004 : 151
Jan 2005 : 123
Feb 2004 : 64
Sep 2004 : 49
May 2005 : 46
Mar 2005 : 37
Apr 2005 : 29
Jul 2004 : 14
Nov 2004 : 5

Oct 2004 5
Aug 2004 4
May 2003 2
Jan 2004 1
May 2004 1

To put these in time order, we need to set up a special comparison function. Otherwise, if we just
sort the months, we’ll get them in alphabetical order.

>>> month index = {
"Jan" 1, "Feb" : 2, "Mar" : 3, "Apr" : 4,
"May" : 5, "Jun" : 6, "Jul" : 7, "Aug" : 8,
"Sep" 9, "Oct" : 10, "Nov" : 11, "Dec" : 12

}
>>> def time_cmp(a, b):
a2 = a[l], month_index[a[0]]
b2 = b[1l], month_index[b[0]]
return cmp (a2, b2)

The comparison function says that we compare two times of the form (' Mar’, "2004’) by
reversing the order of the month and year, and converting the month into a number to get (' 2004",
7 37), then using Python’s built-in cmp function to compare them.

Now we can get the times found in the Toolbox entries, sort them according to our time_cmp
comparison function, and then print them in order. This time we print bars to indicate frequency:

May 16, 2007 16 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

>>> times = fd.samples()

>>> times.sort (cmp=time_cmp)

>>> time times:

C time[0], time[l], ':’, '#’ * (1 + £d.count (time)/10)
May 2003 : #
Jan 2004 : #
Feb 2004 : #######

May 2004 : #

Jul 2004 : ##

Aug 2004 : #

Sep 2004 : #####

Oct 2004 : #

Nov 2004 : #

Dec 2004 : #####H##H#H#H#HHH#H#

Jan 2005 : ###H#4#HHHHHH

Feb 2005 : #####H#H44H#H4H##HHAHHHAHSHHHRHHHH
Mar 2005 : ####

Apr 2005 : ###

May 2005 : #####

13.4.7 Exercises

1. & Write a program to filter out just the date field (dt) without having to list the fields we
wanted to retain.

2. %+ Print an index of a lexicon. For each lexical entry, construct a tuple of the form (gloss
, lexeme), then sort and print them all.

3. & What is the frequency of each consonant and vowel contained in lexeme fields?
4. £r How many entries were last modified in 2004?

5. () Write a program that scans an HTML dictionary file to find entries having an illegal
part-of-speech field, and reports the headword for each entry.

6. (D Write a program to find any parts of speech (ps field) that occurred less than ten times.
Perhaps these are typing mistakes?

7. () We saw a method for discovering cases of whole-word reduplication. Write a function
to find words that may contain partial reduplication. Use the re . search () method, and
the following regular expression: (..+)\1

8. (D We saw a method for adding a cv field. There is an interesting issue with keeping this
up-to-date when someone modifies the content of the 1x field on which it is based. Write
a version of this program to add a cv field, replacing any existing cv field.

9. (D Write a program to add a new field sy1 which gives a count of the number of syllables
in the word.

10. (P Write a function which displays the complete entry for a lexeme. When the lexeme is
incorrectly spelled it should display the entry for the most similarly spelled lexeme.

Bird, Klein & Loper 17 May 16, 2007

13.5. Language Archives

11. % Obtain a comparative wordlist in CSV format, and write a program that prints those
cognates having an edit-distance of at least three from each other.

12. % Build an index of those lexemes which appear in example sentences. Suppose the
lexeme for a given entry is w. Then add a single cross-reference field xr £ to this entry,
referencing the headwords of other entries having example sentences containing w. Do
this for all entries and save the result as a toolbox-format file.

13.5 Language Archives

Language technology and the linguistic sciences are confronted with a vast array of language resources,
richly structured, large and diverse. Multiple communities depend on language resources, including
linguists, engineers, teachers and actual speakers. Thanks to recent advances in digital technologies, we
now have unprecedented opportunities to bridge these communities to the language resources they need.
First, inexpensive mass storage technology permits large resources to be stored in digital form, while
the Extensible Markup Language (XML) and Unicode provide flexible ways to represent structured
data and ensure its long-term survival. Second, digital publication on the web is the most practical
and efficient means of sharing language resources. Finally, a standard resource description model and
interchange method provided by the Open Language Archives Community (OLAC) makes it possible
to construct a union catalog over multiple repositories and archives (see http://www.language—
archives.org/).

13.5.1 Managing Metadata for Language Resources

OLAC metadata extends the Dublin Core metadata set with descriptors that are important for language
resources.

The container for an OLAC metadata record is the element <olac>. Here is a valid OLAC
metadata record from the Pacific And Regional Archive for Digital Sources in Endangered Cultures
(PARADISEC):

<olac:olac xsi:schemalLocation="http://purl.org/dc/elements/1.1/ http://www.lanc
http://purl.org/dc/terms/ http://www.language-archives.org/OLAC/1.0/dcterms.:
http://www.language—-archives.org/OLAC/1.0/ http://www.language—-archives.org/(

<dc:title>Tirag Field Tape 019</dc:title>
<dc:identifier>AB1-019</dc:identifier>
<dcterms:hasPart>AB1-019-A.mp3</dcterms:hasPart>
<dcterms:hasPart>AB1-019-A.wav</dcterms:hasPart>
<dcterms:hasPart>AB1-019-B.mp3</dcterms:hasPart>
<dcterms:hasPart>AB1-019-B.wav</dcterms:hasPart>

<dc:contributor xsi:type="olac:role" olac:code="recorder">Brotchie, Amanda</«

<dc:subject xsi:type="olac:language" olac:code="x-sil-MME"/>
<dc:language xsi:type="olac:language" olac:code="x-sil-BCY"/>
<dc:language xsi:type="olac:language" olac:code="x-sil-MME"/>
<dc:format>Digitised: yes;</dc:format>
<dc:type>primary_text</dc:type>

<dcterms:accessRights>standard, as per PDSC Access form</dcterms:accessRight:

<dc:description>SIDE A<p>1. Elicitation Session - Discussion and
translation of Lise’s and Marie-Claire’s Songs and Stories from
Tape 18 (Tamedal)<p><p>SIDE B<p>1l. Elicitation Session: Discussion

May 16, 2007 18 Bird, Klein & Loper

13. Managing Linguistic Data Introduction to Natural Language Processing (DRAFT)

of and translation of Lise’s and Marie-Clare’s songs and stories
from Tape 018 (Tamedal)<p>2. Kastom Story 1 - Bislama
(Alec) . Language as given: Tiraqg</dc:description>

</olac:olac>

Note
The remainder of this section will discuss how to manipulate OLAC metadata.

13.6 Linguistic Annotation

Note

to be written

13.7 Further Reading

Bird, Steven (1999). Multidimensional exploration of online linguistic field data Proceedings of the
29th Meeting of the North-East Linguistic Society, pp 33-50.

Bird, Steven and Gary Simons (2003). Seven Dimensions of Portability for Language Documenta-
tion and Description, Language 79: 557-582.

About this document...

This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It is
distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Version
0.7.5, under the terms of the Creative Commons Attribution-ShareAlike License
[http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4518 Wed May 16 20:08:28 EST 2007

Bird, Klein & Loper 19 May 16, 2007

http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	Managing Linguistic Data
	Introduction
	XML and ElementTree
	Tools and technologies for language documentation and description
	General purpose tools

	Processing Toolbox Data
	Accessing Toolbox Data
	Adding and Removing Fields
	Formatting Entries
	Exploration
	Example Applications: Improving Access to Lexical Resources
	Generating Reports
	Exercises

	Language Archives
	Managing Metadata for Language Resources

	Linguistic Annotation
	Further Reading

