Chapter 10

Advanced Programming in Python

This chapter introduces concepts in algorithms, data structures, program design, and advanced Python
programming. It also contains review of the basic mathematical notions of set, relation, and function,
and illustrates them in terms of Python data structures. It contains many working program fragments
which you should try yourself.

10.1 Object-Oriented Programming in Python

Object-Oriented Programming is a programming paradigm in which complex structures and processes
are decomposed into modules, each encapsulating a single data type and the legal operations on that

type.
10.1.1 Variable scope (notes)
m local and global variables
| scope rules
m global variables introduce dependency on context and limits the reusability of a function
® importance of avoiding side-effects

m functions hide implementation details

10.1.2 Modules
10.1.3 Data Classes: Trees in NLTK

An important data type in language processing is the syntactic tree. Here we will review the parts of
the NLTK code which defines the Tree class.

The first line of a class definition is the class keyword followed by the class name, in this case
Tree. This class is derived from Python’s built-in 1ist class, permitting us to use standard list
operations to access the children of a tree node.

>>> Tree (list) :

10.1. Object-Oriented Programming in Python

Next we define the initializer, also known as the constructor. It has a special name, starting and
ending with double underscores; Python knows to call this function when you asks for a new tree
object by writing t = Tree (node, children). The constructor’s first argument is special, and
is standardly called self, giving us a way to refer to the current object from inside the definition. This
constructor calls the list initializer (similar to calling self = list (children)), then defines the
node property of a tree.

def _ init_(self, node, children):
list._ init__ (self, children)
self.node = node

Next we define another special function that Python knows to call when we index a Tree. The first
case is the simplest, when the index is an integer, e.g. t [2], we just ask for the list item in the obvious
way. The other cases are for handling slices, like t [1:2],0rt [:].

def _ getitem__ (self, index):
if isinstance(index, int):
return list._ getitem_ (self, index)
else:
if len(index) ==
return self
elif len(index) ==
return self[int (index[0])]
else:
return self[int (index[0])] [index[1:]]

This method was for accessing a child node. Similar methods are provided for setting and deleting
achild (using __setitem_)and __delitem_).

Two other special member functions are __repr__ () and __str__ (). The __repr__ ()
function produces a string representation of the object, one which can be executed to re-create the
object, and is accessed from the interpreter simply by typing the name of the object and pressing
enter’. The __str___ () function produces a human-readable version of the object; here we call a
pretty-printing function we have defined called pp () .

def _ repr_ (self):
import string
childstr = string.join([repr(c) for c in self])
return ' (%s: %s)’ % (self.node, childstr)
def _ str (self):
return self.pp()

Next we define some member functions that do other standard operations on trees. First, for
accessing the leaves:

def leaves (self):
leaves = []
for child in self:
if isinstance(child, Tree):
leaves.extend(child.leaves())
else:
leaves.append (child)
return leaves

May 16, 2007 2 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

Next, for computing the height:

def height (self):
max_child height = 0
for child in self:
if isinstance(child, Tree):
max_child_height = max(max_child_height, child.height ())
else:
max_child height = max(max_child height, 1)
return 1 + max_child height

And finally, for enumerating all the subtrees (optionally filtered):

def subtrees(self, filter=None):
if not filter or filter (self):
yield self
for child in self:
if isinstance(child, Tree):
for subtree in child.subtrees (filter):
yield subtree

10.1.4 Processing Classes: N-gram Taggers in NLTK

This section will discuss the tag . ngram module.

10.2 Program Development

Programming is a skill which is acquired over several years of experience with a variety of pro-
gramming languages and tasks. Key high-level abilities are algorithm design and its manifestation
in structured programming. Key low-level abilities include familiarity with the syntactic constructs of
the language, and knowledge of a variety of diagnostic methods for trouble-shooting a program which
does not exhibit the expected behaviour.

10.2.1 Programming Style

We have just seen how the same task can be performed in different ways, with implications for
efficiency. Another factor influencing program development is programming style. Consider the
following program to compute the average length of words in the Brown Corpus:

>>> nltk_lite.corpora brown
>>> count = 0
>>> total = 0
>>> sent brown.raw(’'a’):
token sent:
count +=1
. total += len (token)
>>> float (total) / count
4.2765382469

In this program we use the variable count to keep track of the number of tokens seen, and total
to store the combined length of all words. This is a low-level style, not far removed from machine code,

Bird, Klein & Loper 3 May 16, 2007

10.2. Program Development

the primitive operations performed by the computer’s CPU. The two variables are just like a CPU’s
registers, accumulating values at many intermediate stages, values which are almost meaningless. We
say that this program is written in a procedural style, dictating the machine operations step by step.
Now consider the following program which computes the same thing:

>>> tokens = [token sent brown.raw(’'a’) token sent]
>>> total = sum(map(len, tokens))
>>> float (total) /len (tokens)

4.2765382469

The first line uses a list comprehension to construct the sequence of tokens. The second line maps
the 1en function to this sequence, to create a list of length values, which are summed. The third line
computes the average as before. Notice here that each line of code performs a complete, meaningful
action. Moreover, they do not dictate how the computer will perform the computations; we state high
level relationships like “total is the sum of the lengths of the tokens” and leave the details to the
Python interpreter. Accordingly, we say that this program is written in a declarative style.

Here is another example to illustrate the procedural/declarative distinction. Notice again that the
procedural version involves low-level steps and a variable having meaningless intermediate values:

>>> word_list = []
>>> sent brown.raw(’'a’):
token sent:
token word list:

ce word_list.append (token)
>>> word_list.sort ()

The declarative version (given second) makes use of higher-level built-in functions:

>>> tokens = [word sent brown.raw(’'a’) word sent]
>>> word_list = list (set (tokens))
>>> word_list.sort ()

What do these programs compute? Which version did you find easier to interpret?

Consider one further example, which sorts three-letter words by their final letters. The words come
from the widely-used Unix word-list, made available as an NLTK corpus called words. Two words
ending with the same letter will be sorted according to their second-last letters. The result of this sort
method is that many rhyming words will be contiguous. Two programs are given; Which one is more
declarative, and which is more procedural?

As an aside, for readability we define a function for reversing strings that will be used by both
programs:

>>> reverse (word) :
return word[::-1]

Here’s the first program. We define a helper function reverse_cmp which calls the built-in cmp
comparison function on reversed strings. The cmp function returns -1, 0, or 1, depending on whether
its first argument is less than, equal to, or greater than its second argument. We tell the list sort function
to use reverse_cmp instead of cmp (the default).

>>> nltk_lite.corpora words
>>> reverse_cmp (X,y):
return cmp (reverse(x), reverse(y))

May 16, 2007 4 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

>>> word list = [word word words.raw(’'en’) len (word) == 3]
>>> word_list.sort (reverse_cmp)
>>> word_list[-12:]

["toy’, 'spy’, ’'cry’, ’'dry’, 'fry’, 'pry’, ’'try’, ’'buy’, ’'guy’, ’'ivy’,
"Paz’, 'Liz’]

Here’s the second program. In the first loop it collects up all the three-letter words in reversed form.
Next, it sorts the list of reversed words. Then, in the second loop, it iterates over each position in the
list using the variable i, and replaces each item with its reverse. We have now re-reversed the words,
and can print them out.

>>> word_list = []
>>> word words.raw(’'en’) :
len (word) ==
e word_list.append (reverse (word))
>>> word_list.sort ()

>>> i range (len (word_1list)):
.. word_list[i] = reverse(word_list[i])
>>> word_list[-12:]

["toy’, 'spy’, 'cry’, ’'dry’, 'fry’, ’'pry’, ’'try’, 'buy’, 'guy’, ’'ivy’,
"Paz’, 'Liz’]

Choosing between procedural and declarative styles is just that, a question of style. There are no
hard boundaries, and it is possible to mix the two. Readers new to programming are encouraged to
experiment with both styles, and to make the extra effort required to master higher-level constructs,
such as list comprehensions, and built-in functions like map and filter.

10.2.2 Debugging

>>> pdb
>>> mymodule
>>> pdb.run('mymodule.test ()’)

Commands:

list [first [,last]]: list sourcecode for the current file

next: continue execution until the next line in the current function is reached
cont: continue execution until a breakpoint is reached (or the end of the program)
break: list the breakpoints

break n: insert a breakpoint at this line number in the current file

break file.py:n: insert a breakpoint at this line in the specified file

break function: insert a breakpoint at the first executable line of the function

10.2.3 Case Study: T9

10.2.4 Exercises

1. £+ Write a program to sort words by length. Define a helper function cmp_ len which
uses the cmp comparison function on word lengths.

2. (D Consider the tokenized sentence [’ The’, ’'dog’, ’gave’, ’'John’, ’the
’ "newspaper’]. Using the map () and len () functions, write a single line pro-
gram to convert this list of tokens into a list of token lengths: [3, 3, 4, 4, 3, 9

]

Bird, Klein & Loper 5 May 16, 2007

10.3. XML

(1] (2aBc] (3DEF]
(4l] (Buke] (6wmnO)

(7pPars] (8Tuv] (9 wxyz]

Figure 10.1: T9: Text on 9 Keys

10.3 XML

1. () Write a recursive function to produce an XML representation for a tree, with non-
terminals represented as XML elements, and leaves represented as text content, e.g.:

<S>
<NP type="“SBJ’>
<NP>
<NNP>Pierre</NNP>
<NNP>Vinken</NNP>
</NP>
<COMMA>,</COMMA>
<ADJP>
<NP>
<CD>61</CD>
<NNS>years</NNS>
</NP>
<JJ>old</JJ>
<COMMA>,</COMMA>
</NP>
<VP>
<MD>will</MD>
<VP>
<VB>join</VB>
<NP>
<DT>the</DT>
<NN>board</NN>
</NP>
<PP type=“CLR”>
<IN>as</IN>
<NP>
<DT>a</DT>
<JJ>nonexecutive</JJ>

May 16, 2007 6 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

<NN>director</NN>
</NP>
</PP>
<NP type="“TMP”’>
<NNP>Nov.</NNP>
<CD>29</CD>
</NP>
</VP>
</VP>
<PERIOD>.</PERIOD>

</S>

10.4 Algorithm Design

An algorithm is a “recipe” for solving a problem. For example, to multiply 16 by 12 we might use any
of the following methods:

1. Add 16 to itself 12 times over
2. Perform “long multiplication”, starting with the least-significant digits of both numbers
3. Look up a multiplication table

4. Repeatedly halve the first number and double the second, 16%12 = 8%24 = 4*%48 = 2*%96 =
192

5. Do 10*12 to get 120, then add 6*12

Each of these methods is a different algorithm, and requires different amounts of computation time
and different amounts of intermediate information to store. A similar situation holds for many other
superficially simple tasks, such as sorting a list of words. Now, as we saw above, Python provides a
built-in function sort () that performs this task efficiently. However, NLTK-Lite also provides several
algorithms for sorting lists, to illustrate the variety of possible methods. To illustrate the difference in
efficiency, we will create a list of 1000 numbers, randomize the list, then sort it, counting the number
of list manipulations required.

>>> random shuffle
>>> a = range(1000) # [0,1,2,...999]
>>> shuffle (a) # randomize

Now we can try a simple sort method called bubble sort, which scans through the list many times,
exchanging adjacent items if they are out of order. It sorts the list a in-place, and returns the number of
times it modified the list:

>>> nltk lite.misc sort
>>> sort.bubble (a)
250918

We can try the same task using various sorting algorithms. Evidently merge sort is much better
than bubble sort, and guicksort is better still.

Bird, Klein & Loper 7 May 16, 2007

10.4. Algorithm Design

>>> shuffle(a); sort.merge(a)
6175
>>> shuffle(a); sort.quick(a)
2378

Readers are encouraged to look at nltk_lite.misc.sort to see how these different methods
work. The collection of NLTK-Lite modules exemplify a variety of algorithm design techniques,
including brute-force, divide-and-conquer, dynamic programming, and greedy search. Readers who
would like a systematic introduction to algorithm design should consult the resources mentioned at the
end of this tutorial.

10.4.1 Decorate-Sort-Undecorate
In Chapter 6 we saw how to sort a list of items according to some property of the list.

>>> words = ’'I turned off the spectroroute’.split()
>>> words.sort (cmp)

>>> words

["I’, '"off’, ’'spectroroute’, ’'the’, ’'turned’]

>>> words.sort (lambda x, y: cmp(len(y), len(x)))
>>> words

[/ spectroroute’, ’'turned’, 'off’, 'the’, 'I']

This is inefficient when the list of items gets long, as we compute len () twice for every compari-
son (about 2nlog(n) times). The following is more efficient:

>>> [pair[l] for pair in sorted((len(w), w) for w in words) [::-1]]
[/ spectroroute’, 'turned’, ’'the’, 'off’, 'I’]

This technique is called decorate-sort-undecorate. We can compare its performance by timing
how long it takes to execute it a million times.

>>> from timeit import Timer

>>> Timer ("sorted(words, lambda x, y: cmp(len(y), len(x)))",

e "words='TI turned off the spectroroute’.split()").timeit ()
8.3548779487609863

>>> Timer (" [pair[l] for pair in sorted((len(w), w) for w in words)]",
... "words='1I turned off the spectroroute’ .split()").timeit ()
9.9698889255523682

MORE: consider what happens as the lists get longer...

10.4.2 Problem Transformation (aka Transform-and-Conquer)
Find words which, when reversed, make legal words. Extremely wasteful solution:

>>> from nltk_lite.corpora import words
>>> for wordl in words.raw():
for word2 in words.raw():
if wordl == word2[::-1]:
print wordl

More efficient:

May 16, 2007 8 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

>>> from nltk lite.corpora import words

>>> wordlist = set (words.raw())

>>> rev_wordlist = set(w[::-1l] for w in wordlist)

>>> sorted(wordlist.intersection (rev_wordlist))

["ah’, ’'are’, 'bag’, ’'ban’, ’'bard’, ’'bat’, ’'bats’, ’'bib’, ’'bob’, ’'boob’, ’'brag’,

"bud’, ’'buns’, ’'bus’, 'but’, ’‘civic’, '‘dad’, ‘dam’, ’'decal’, ‘deed’, ’'deeps’, ’'deer’,
"deliver’, ’'denier’, ’'desserts’, ’‘deus’, ’'devil’, ’‘dial’, ’‘diaper’, ’'did’, ’'dim’,
"dog’, ’'don’, ’'doom’, ’‘drab’, ’'draw’, ’'drawer’, ’‘'dub’, ’'dud’, 'edit’, 'eel’, ’'eke’,
"em’, 'emit’, ’'era’, ’'ere’, 'evil’, 'ewe’, 'eye’, ’'fires’, ’'flog’, ’'flow’, ’'gab’,
"gag’, ’'garb’, ’'gas’, ‘gel’, ’'gig’, ’'gnat’, ’‘god’, ’'golf’, ’‘gulp’, 'gum’, ’‘gums’,
"guns’, ’‘gut’, ’"ha’, 'huh’, ’'keel’, ’'keels’, ’'keep’, ’'knits’, ’'laced’, ’lager’,
"laid’, ’'lap’, 'lee’, ’'leek’, ’'leer’, 'leg’, ’'leper’, ’'level’, ’'lever’, ’'liar’,
"live’, ’'lived’, 'loop’, 'loops’, 'loot’, ’'loots’, 'mad’, 'madam’, 'me’, ’'meet’,
"mets’, ‘mid’, 'mood’, 'mug’, ’'nab’, ’'nap’, 'naps’, 'net’, ’'nip’, ’'nips’, ’'no’,
"nod’, ’'non’ "noon’, ’'not’, 'nmow’, ‘nun’, ’'nuts’, ‘on’, ’'pal’, ’'pals’, ’'pan’,

"pans’, ’'par’, ’'part’, ’'parts’, ’'pat’, 'paws’, ’'peek’, ’'peels’, ’'peep’, ’'pep’,
"pets’, ’'pin’, ’'pins’, ’'pip’, ’'pit’, 'plug’, ’'pool’, ’'pools’, ’'pop’, ’'pot’, ’'pots’,

"pup’ "radar’, ’'rail’, 'rap’, 'rat’, ’'rats’, ’'raw’, ’'redder’, ’'redraw’, ’'reed’,
"reel’, ’'refer’, 'regal’, ’'reined’, 'remit’, ’'repaid’, ’'repel’, ’'revel’, ’'reviled’,
"reviver’, ’'reward’, ’'rotator’, ’'rotor’, ’‘sag’, ’'saw’, ’'sees’, ’'serif’, ’'sexes’,
"slap’, ’'sleek’, ’'sleep’, ’'sloop’, ’'smug’, ’'snap’, ’'snaps’, ’'snip’, ’snoops’,
"snub’, ’'snug’, ’solos’, ’'span’, ’'spans’, ’‘spat’, ’'speed’, ’'spin’, ’'spit’, ’spool’,
"spoons’, ’spot’, ’'spots’, ’'stab’, ’'star’, ’'stem’, ’'step’, ’'stew’, ’'stink’, ’'stool’,
"stop’, ’'stops’, ’'strap’, 'straw’, ’'stressed’, ’'stun’, ’'sub’, 'sued’, ’'swap’, ’'tab’,
"tang’, 'tap’, ’'taps’, ’'tar’, ’'teem’, ’'ten’, 'tide’, 'time’, ’'timer’, ’'tip’, ’'tips’,
"tit’, ’'ton’, ’"tool’, 'top’, ’'tops’, 'trap’, ’'tub’, ’'tug’, 'war’, ’'ward’, ’'warder’,
"warts’, 'was’, 'wets’, 'wolf’, ’'won’]

Observe that this output contains redundant information; each word and its reverse is included.
How could we remove this redundancy?

Presorting, sets:

Find words which have at least (or exactly) one instance of all vowels. Instead of writing extremely
complex regular expressions, some simple preprocessing does the trick:

>>> words = ["sequoia", "abacadabra'", "yiieeaouuu!"]

>>> vowels = "aeiou"

>>> [w for w in words if set (w) .issuperset (vowels)]

[/ sequoia’, ’'yiieeaouuu!’]

>>> [w for w in words if sorted(c for ¢ in w if ¢ in vowels) == list (vowels)]
[' sequoia’]

10.4.3 Exercises

1. (P Consider again the problem of hyphenation across linebreaks. Suppose that you have
successfully written a tokenizer that returns a list of strings, where some strings may
contain a hyphen followed by a newline character, e.g. 1long—-\nterm. Write a function
which iterates over the tokens in a list, removing the newline character from each, in each
of the following ways:

a) Use doubly-nested for loops. The outer loop will iterate over each token in the
list, while the inner loop will iterate over each character of a string.

b) Replace the inner loop with a call to re . sub ()

Bird, Klein & Loper 9 May 16, 2007

10.5. Search

c) Finally, replace the outer loop with call to the map () function, to apply this
substitution to each token.

d) Discuss the clarity (or otherwise) of each of these approaches.

2. % Develop a simple extractive summarization tool, which prints the sentences of a doc-
ument which contain the highest total word frequency. Use FregDist to count word
frequencies, and use sum to sum the frequencies of the words in each sentence. Rank
the sentences according to their score. Finally, print the n highest-scoring sentences in
document order. Carefully review the design of your program, especially your approach to
this double sorting. Make sure the program is written as clearly as possible.

10.5 Search

Many NLP tasks can be construed as search problems. For example, the task of a parser is to identify
one or more parse trees for a given sentence. As we saw in Part II, there are several algorithms for
parsing. A recursive descent parser performs backtracking search, applying grammar productions in
turn until a match with the next input word is found, and backtracking when there is no match. We saw
in Chapter 8 that the space of possible parse trees is very large; a parser can be thought of as providing
a relatively efficient way to find the right solution(s) within a very large space of candidates.

As another example of search, suppose we want to find the most complex sentence in a text corpus.
Before we can begin we have to be explicit about how the complexity of a sentence is to be measured:
word count, verb count, character count, parse-tree depth, etc. In the context of learning this is known
as the objective function, the property of candidate solutions we want to optimize.

In this section we will explore some other search methods which are useful in NLP. For concreteness
we will apply them to the problem of learning word segmentations in text, following the work of [Brent,
1995]. Put simply, this is the problem faced by a language learner in dividing a continuous speech
stream into individual words. We will consider this problem from the perspective of a child hearing
utterances from a parent, e.g.

(1a) doyouseethekitty
(1b) seethedoggy
(1c) doyoulikethekitty
(1d) likethedoggy

Our first challenge is simply to represent the problem: we need to find a way to separate the text
content from the segmentation. We will borrow an idea from I0OB-tagging (Chapter 5), by annotating
each character with a boolean value to indicate whether or not a word-break appears after the character.
We will assume that the learner is given the utterance breaks, since these often correspond to extended
pauses. Here is a possible representation, including the initial and target segmentations:

>>> text
>>> segl
>>> seg2

"doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
"0000000000000001000000000010000000000000000100000000000"
"0100100100100001001001000010100100010010000100010010000"

May 16, 2007 10 Bird, Klein & Loper

file:bibliography.html#brent1995
file:bibliography.html#brent1995

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

Observe that the segmentation strings consist of zeros and ones. They are one character shorter
than the source text, since a text of length »n can only be broken up in n — 1 places.

Now let’s check that our chosen representation is effective. We need to make sure we can read
segmented text from the representation. The following function, segment (), takes a text string and
a segmentation string, and returns a list of strings.

Listing 1 Program to Reconstruct Segmented Text from String Representation
segment (text, segs):

words = []
last = 0
i range (len (segs)) :
segs[i] == "1’":
words . append (text [last:i+1])
last = i+l

words . append (text [last:])
return words

>>> segment (text, segl)

[doyouseethekitty’, ’seethedoggy’, ’'doyoulikethekitty’, ’likethedoggy’]

>>> segment (text, seg2)

["do’, ’'you’, ’'see’, ’'the’, ’kitty’, ’'see’, ’'the’, ’'doggy’, ’'do’, ’you’,
"like’, ’'the’, kitty’, ’'like’, ’'the’, ’‘doggy’]

Now the learning task becomes a search problem: find the bit string that causes the text string to be
correctly segmented into words. Our first task is done: we have represented the problem in a way that
allows us to reconstruct the data, and to focus on the information to be learned.

Now that we have effectively represented the problem we need to choose the objective function. We
assume the learner is acquiring words and storing them in an internal lexicon. Given a suitable lexicon,
it is possible to reconstruct the source text as a sequence of lexical items. Following [Brent, 1995], we
can use the size of the lexicon and the amount of information needed to reconstruct the source text as
the basis for an objective function, as shown in Figure 10.2.

It is a simple matter to implement this objective function, as shown in Listing 10.2.

10.5.1 Exhaustive Search

m brute-force approach
m enumerate search space, evaluate at each point

m this example: search space size is 2%° = 36,028,797,018,963,968

For a computer that can do 100,000 evaluations per second, this would take over 10,000 years!

10.5.2 Hill-Climbing Search

Starting from a given location in the search space, evaluate nearby locations and move to a new location
only if it is an improvement on the current location.

Bird, Klein & Loper 11 May 16, 2007

file:bibliography.html#brent1995

10.5. Search

SEGMENTATION REPRESENTATION OBJECTIVE

LEXICON DERIVATION
| doyou | see | thekitt |y | 1. doyou [1]2]4]6] LEXICON:

5 6+4+5+8+8+2 = 33
. see
@ 3. like n DERIVATION:
- - 4. thekitt 4+3+4+3 =14
| doyou | like | thekitt | y | 5. thedogg nﬂ oL,
6.y 36+14 = 47

Figure 10.2: Calculation of Objective Function for Given Segmentation

Listing 2 Computing the Cost of Storing the Lexicon and Reconstructing the Source Text
def evaluate (text, segs):
import string
words = segment (text, segs)
text_size = len(words)
lexicon_size = len(string.join(list (set (words))))
return text_size + lexicon_size

>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"

>>> seg3 = "0000100100000011001000000110000100010000001100010000001"

>>> segment (text, seg3)

["doyou’, ’'see’, ’'thekitt’, 'y’, ’'see’, ’'thedogg’, 'y’, ’'doyou’, ’'like’,
"thekitt’, 'y’, ’'like’, ’'thedogg’, 'y’]

>>> evaluate (text, seg3)

47

May 16, 2007 12 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

Listing 3 Hill-Climbing Search
flip(segs, pos):
return segs|[:pos] + ‘l-int (segs[pos])' + segs[pos+1l:]
hill climb(text, segs, iterations):

i range (iterations) :
pos, best = 0, evaluate(text, segs)
i range (len (segs)) :

score = evaluate(text, flip(segs, 1i))
score < best:
pos, best = i, score
pos !'= O:
segs = flip(segs, pos)
evaluate (text, segs), segment (text, segs)
return segs

>>> evaluate (text, segl), segment (text, segl)

63 [’/doyouseethekitty’, ’seethedoggy’, ’'doyoulikethekitty’, ’likethedoggy’]
>>> hill climb(text, segsl, 20)

61 [’doyouseethekittyseethedoggy’, ’'doyoulikethekitty’, ’likethedoggy’]

59 [’doyouseethekittyseethedoggydoyoulikethekitty’, ’likethedoggy’]

57 [’'doyouseethekittyseethedoggydoyoulikethekittylikethedoggy’]

10.5.3 Non-Deterministic Search

® Simulated annealing

10.6 Miscellany

10.6.1 Named Arguments

One of the difficulties in re-using functions is remembering the order of arguments. Consider the
following function, which finds the n most frequent words that are at least min_ 1en characters long:

>>> nltk_lite.probability FregDist
>>> nltk_ lite tokenize
>>> freq words(file, min, num):

freqdist = FreqDist ()
text = open(file) .read()
word tokenize.wordpunct (text) :
len (word) >= min:
freqdist.inc (word)
.. return freqdist.sorted_ samples () [:num]
>>> freq words (’'programming.txt’, 4, 10)
["string’, 'word’, 'that’, ’'this’, ’'phrase’, ’'Python’, ’list’, 'words’,
"very’, "using’]

This function has three arguments. It follows the convention of listing the most basic and substantial
argument first (the file). However, it might be hard to remember the order of the second and third

Bird, Klein & Loper 13 May 16, 2007

10.6. Miscellany

Listing 4 Non-Deterministic Search Using Simulated Annealing

flip n(segs, n):
i range (n) :
segs = flip(segs, randint (0, len(segs)-1))
return segs
anneal (text, segs, iterations, rate):
distance = float (len(segs))
while distance > 0.5:
best_segs, best = segs, evaluate(text, segs)
i range (iterations) :
guess = flip n(segs, int (round(distance)))
score = evaluate (text, guess)
score < best:
best = score
best_segs = guess
segs = best_segs
score = best
distance = distance/rate
evaluate (text, segs),

return segs

>>> anneal (text, segs, 5000, 1.2)

60
58
56
54
53
51
42

["doyouseetheki’, 'tty’, ’'see’, ’'thedoggy’, 'doyouliketh’, ’'ekittylike’, ’thedo
["doy’, ’'ouseetheki’, ’'ttysee’, ’'thedoggy’, ’'doy’, ’'o’, ’ulikethekittylike’, 't
["doyou’, ’'seetheki’, ’'ttysee’, ’'thedoggy’, ’'doyou’, ’liketh’, ’'ekittylike’, 't
["doyou’, ’'seethekit’, ’'tysee’, ’'thedoggy’, ’'doyou’, ’likethekittylike’, ’thedo
["doyou’, ’'seethekit’, ’'tysee’, ’'thedoggy’, ’'doyou’, ’like’, ’'thekitty’, ’'like’
["doyou’, ’'seethekittysee’, ’'thedoggy’, ’'doyou’, ’'like’, ’'thekitty’, ’'like’, 't
["doyou’, ’'see’, ’'thekitty’, ’'see’, 'thedoggy’, ’'doyou’, ’'like’, ’'thekitty’, 1

May 16, 2007 14 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

arguments on subsequent use. We can make this function more readable by using keyword arguments.
These appear in the function’s argument list with an equals sign and a default value:

>>> def freq words(file, min=1, num=10) :
freqdist = FreqgDist ()
text = open(file) .read()
for word in tokenize.wordpunct (text):
if len(word) >= min:
freqdist.inc (word)
return freqdist.sorted_ samples () [:num]

Now there are several equivalent ways to call this function:

>>> freq words (’'programming.txt’, 4, 10)

['string’, ’'word’, ’'that’, ’'this’, ’'phrase’, ’'Python’, ’list’, ’'words’, ’'wvery’,

>>> freq words (' programming.txt’, min=4, num=10)

["string’, 'word’, 'that’, ‘this’, ’'phrase’, 'Python’, ’list’, ’'words’, ’'very’,

>>> freq words (’'programming.txt’, num=10, min=4)

['string’, ’'word’, ’'that’, ’'this’, ’'phrase’, ’'Python’, ’list’, ’'words’, ’'very’,

When we use an integrated development environment such as IDLE, simply typing the name of a

function at the command prompt will list the arguments. Using named arguments helps someone to
re-use the code...

A side-effect of having named arguments is that they permit optionality. Thus we can leave out any
arguments for which we are happy with the default value.

>>> freq words (’'programming.txt’, min=4)

['string’, ’'word’, ’'that’, ’'this’, ’'phrase’, ’'Python’, ’list’, ’'words’, ’'very’,

>>> freq words (’'programming.txt’, 4)

['string’, ’'word’, ’'that’, ’'this’, ’'phrase’, ’'Python’, ’list’, ’'words’, ’'wvery’,

Another common use of optional arguments is to permit a flag, e.g.:

>>> def freq words(file, min=1, num=10, trace=False):
freqdist = FreqgDist ()
if trace: print "Opening", file
text = open(file) .read()
if trace: print "Read in %d characters" % len(file)
for word in tokenize.wordpunct (text):
if len(word) >= min:

freqdist.inc (word)

if trace and freqdist.N() % 100 == 0: print "."
if trace: print
return freqdist.sorted_ samples () [:num]

10.6.2 Accumulative Functions

These functions start by initializing some storage, and iterate over input to build it up, before returning
some final object (a large structure or aggregated result). The standard way to do this is to initialize an
empty list, accumulate the material, then return the list:

>>> def find nouns (tagged_text):
nouns = []
for word, tag in tagged text:

Bird, Klein & Loper 15 May 16, 2007

"using’]
"using’]

"using’]

"using’]

"using’]

10.7. Sets and Mathematical Functions

tag[:2] == 'NN’:
nouns . append (word)
return nouns

We can apply this function to some tagged text to extract the nouns:

>>> tagged_text = [('the’, ’'DT’), ('cat’, 'NN’), ('sat’, 'VBD'),
(on’, "IN’), (‘the’, 'DT’), (‘mat’, ’NN’)]
>>> find_nouns (tagged_text)

["cat’, ’'mat’]

However, a superior way to do this is to define a generator

>>> find nouns (tagged_text):
word, tag tagged_text:
tag[:2] == 'NN’:
yield word

The first time this function is called, it gets as far as the yield statement and stops. The calling
program gets the first word and does any necessary processing. Once the calling program is ready
for another word, execution of the function is continued from where it stopped, until the next time it
encounters a yield statement.

Let’s see what happens when we call the function:

>>> find_nouns (tagged_text)
<generator object at 0x14b2f30>

We cannot call it directly. Instead, we can convert it to a list.

>>> list (find nouns (tagged_text))
["cat’, ’'mat’]

We can also iterate over it in the usual way:

>>> noun find nouns (tagged_text) :
ce noun,
cat mat

[Efficiency]

10.7 Sets and Mathematical Functions

10.7.1 Sets

Knowing a bit about sets will come in useful when you look at Chapter 11. A set is a collection of
entities, called the members of the set. Sets can be finite or infinite, or even empty. In Python, we can
define a set just by listing its members; the notation is similar to specifying a list:

>>> setl = set([’a’, 'b’, 1, 2, 3])
>>> setl
set(['a’, 1, 2, 'b’, 3])

In mathematical notation, we would specify this set as:

May 16, 2007 16 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

(2) {"a’,’b’, 1,2, 3}

Set membership is a relation — we can ask whether some entity x belongs to a set A (in mathemat-
ical notation, written x & A).

>>> "a’ setl
True
>>> ¢’ setl
False

However, sets differ from lists in that they are unordered collections. Two sets are equal if and only if
they have exactly the same members:

>>> set2 = set([3, 2, 1, 'b’, "a’])
>>> setl == set2
True

The cardinality of a set A (written | A |) is the number of members in A. We can get this value
using the 1en () function:

>>> len(setl)
5

The argument to the set () constructor can be any sequence, including a string, and just calling
the constructor with no argument creates the empty set (written).

>>> set ('1237)
set([’'1’, "3’, '2'])

>>> a = set()
>>> b = set()
>>> a == Db
True

‘We can construct new sets out of old ones. The union of two sets A and B (written A B) is the set
of elements which belong to A or B. Union is represented in Python with |:

>>> odds = set(’13579")

>>> evens = set ('02468")

>>> numbers = odds | evens

>>> numbers

set([lll, IOI, I3I’ 121, 151’ 141, I'7I’ 161, I9’, IBI])

The intersection of two sets A and B (written A N B) is the set of elements which belong to both
A and B. Intersection is represented in Python with &. If the intersection of two sets is empty, they are
said to be disjoint.

>>> ints

set([’1’, 0", 72', '=1", '=2"1])
>>> ints & nats

set([’1’, 0", "2'])

>>> odds & evens

set ([])

The (relative) complement of two sets A and B (written A — B) is the set of elements which belong
to A but not B. Complement is represented in Python with —.

Bird, Klein & Loper 17 May 16, 2007

10.7. Sets and Mathematical Functions

>>> nats - ints
Set([,3,, ,5,, 141, I7l, 161, 191, ISI])

>>> odds == nats - evens
True
>>> odds == odds - set ()
True

So far, we have described how to define ’basic’ sets and how to form new sets out of those basic
ones. All the basic sets have been specified by listing all their members. Often we want to specify set
membership more succinctly:

(3) the set of positive integers less than 10
(4) the set of people in Melbourne with red hair

We can informally write these sets using the following predicate notation:

(5) {x1x1is a positive integer less than 10}
(6) {x1x1is a person in Melbourne with red hair}

In axiomatic set theory, the axiom schema of comprehension states that given a one-place predicate
P, there is set A such that for all x, x belongs to A if and only if (written =) P(x) is true:

(7) AV x.(x € A = P(x))

From a computational point of view, (7) is problematic: we have to treat sets as finite objects in the
computer, but there is nothing to stop us defining infinite sets using comprehension. Now, there is a
variant of (7), called the axiom of restricted comprehension, which allows us to specify a set A with a
predicate P so long as we only consider xs which belong to some already defined set B:

®) VBAVx.(xe A=x& B AN Px))

(For all sets B there is a set A such that for all x, x belongs to A if and only if x belongs to B and P(x)
is true.) This is equivalent to the following set in predicate notation:

) {xlx& B A P(x))

(8) corresponds pretty much to what we get with list comprehension in Python: if you already have a
list, then you can define a new list in terms of the old one, using an condition. In other words, (10)
is the Python counterpart of (8).

(10) set ([x x B P(x)1])

To illustrate this further, the following list comprehension relies on the existence of the previously
defined set nats (n % 2 is the remainder when n is divided by 2):

>>> nats = set (range(10))

>>> evensl = set([n n nats n % 2 == 0])
>>> evensl

set ([0, 8, 2, 4, 6])

Now, when we defined evens before, what we actually had was a set of strings, rather than Python
integers. But we can use int to coerce the strings to be of the right type:

May 16, 2007 18 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

>>> evens2 = set ([int (n) n evens])
>>> evensl == evens2
True

If every member of A is also a member of B, we say that A is a subset of B (written A B). The
subset relation is represented in Python with <=.

>>> evensl <= nats

True

>>> set () <= nats
True

>>> evensl <= evensl
True

As the above examples show, B can contain more members than A for A © B to hold, but this need
not be so. Every set is a subset of itself. To exclude the case where a set is a subset of itself, we use the
relation proper subset (written A C B). In Python, this relation is represented as <.

>>> evensl < nats
True

>>> evensl < evensl
False

Sets can contain other sets. For instance, the set A = {{a}, {b} } contains the two singleton sets
{a} and {b}. Note that {a} S A does not hold, since a belongs to {a} but not to A. In Python, it
is a bit more awkward to specify sets whose members are also sets; the latter have to be defined as
frozensets, i.e., immutable objects.

>>> a = frozenset('a’)
>>> aplus = set([a])
>>> aplus

set ([frozenset (['a’])])

We also need to be careful to distinguish between the empty set and the set whose only member is
the empty set: {}.

10.7.2 Exercises

1. &x For each of the following sets, write a specification by hand in predicate notation, and
an implementation in Python using list comprehension.

a. {2,4,8,16,32,64}
b. {2,3,5,7,11,13,17}
c. {0,2,-2,4,-4,6, -6, 8, -8}
2. £+ The powerset of a set A (written A) is the set of all subsets of A, including the empty
set. List the members of the following sets:
{a, b, c}:
{a}
{}

&0 o P

3. () Write a Python function to compute the powerset of an arbitrary set. Remember that
you will have to use frozenset for this.

Bird, Klein & Loper 19 May 16, 2007

10.7. Sets and Mathematical Functions

10.7.3 Tuples

We write x1, ..., x, for the ordered n-tuple of objects xi, ..., x,, where n = 0. These are exactly
the same as Python tuples. Two tuples are equal only if they have the same lengths, and the same
objects in the same order.

>>> tupl = (‘a’, 'b’, ’'c’)
>>> tup2 = (‘a’, ‘c’, 'b")
>>> tupl == tup2

False

A tuple with just 2 elements is called an ordered pair, with just three elements, an ordered triple,
and so on.
Given two sets A and B, we can form a set of ordered pairs by drawing the first member of the pair
from A and the second from B. The Cartesian product of A and B, written A X B, is the set of all such
pairs. More generally, we have for any sets S, ..., S,,

(1) S X ... xS, ={ x1,...,x, | x e85}

In Python, we can build Cartesian products using list comprehension. As you can see, the sets in a
Cartesian product don’t have to be distinct.

>>> A = set([1, 2, 3])
>>> B = set('ab’)

>>> AxXB = set([(a, b) a A b B])

>>> AxB

set ([(1, 'b"), (3, 'b"), (3, 'a’), (2, 'a'), (2, 'b"), (1, "a’')l)
>>> AxXA = set([(al, a2) al A az2 aAl)

>>> AxXA

set ([(1, 2), (3, 2), (1, 3), (3, 3), (3, 1), (2, 1),
(2, 3), (2, 2), (1, 1I)

10.7.4 Relations and Functions

In general, a relation R is a set of tuples. For example, in set-theoretic terms, the binary relation kiss is
the set of all ordered pairs x,y such that x kisses y. More formally, an n-ary relation over sets S 1,
s SpisanysetR € S X ... X §,,.

Given a binary relation R over two sets A and B, not everything in A need stand in the R relation to
something in B. As an illustration, consider the set evens and the relation mod defined as follows:

>>> evens = set ([2, 4, 6, 8, 10])

>>> mod = set ([(m,n) m evens n evens n $m== m < n])
>>> mod

set ([(4, 8), (2, 8), (2, 6), (2, 4), (2, 10)])

Now, mod € evens X evens, but there are elements of evens, namely 6, 8 and 10, which do not
stand in the mod relation to anything else in evens. In this case, we say that only 2 and 4 are in the
domain of the mod relation. More formally, for a relation R over A X B, we define

(12) dom(R)={x | y. x,y € A X B}

May 16, 2007 20 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

evens evens

Figure 10.3: Visual Representation of a relation

Correspondingly, the set of entities in B which are the second member of a pair in R is called the range
of R, written ran(R).

We can visually represent the relation mod by drawing arrows to indicate elements that stand in the
relation, as shown in Figure 10.3.
The domain and range of the relation are shown as shaded areas in Figure 10.3.

A relation R © A X B is a (set-theoretic) function just in case it meets the following two condi-
tions:

1. For every a & A there is at most one b & B such that a, b
2. The domain of R is equal to A.

Thus, the mod relation defined earlier is not a function, since the element 2 is paired with four items,
not just one. By contrast, the relation doubles defined as follows is a function:

>>> odds = set([1, 2, 3, 4, 5])

>>> doubles = set ([(m,n) m odds n evens n=m x 2])
>>> doubles

set ([(1, 2), (5, 10), (2, 4), (3, 6), (4, 8)1)

If f is a function & A X B, then we also say that f is a function from A to B. We also write this
as f: A= B.If x,y & f,then we write f(x) =y. Here, x is called an argument of f and y is a
value. In such a case, we may also say that f maps x to y.

Given that functions always map a given argument to a single value, we can also represent them in
Python using dictionaries (which incidentally are also known as mapping objects). The update ()
method on dictionaries can take as input any iterable of key/value pairs, including sets of two-membered
tuples:

>>> d = {}
>>> d.update (doubles)
>>> d

{1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

Bird, Klein & Loper 21 May 16, 2007

10.7. Sets and Mathematical Functions

A function f: §1 X ... X §, = T is called an n-ary function; we usually write f(sy, ..., s,) rather

than f(sy,..., 5,). Forsets A and B, we write AP® for the set of all functions from A to B, that is { f

| f:A— B}.IfS is a set, then we can define a corresponding function f called the characteristic
function of S, defined as follows:

(13) fs(x)=Trueifx & S
fs(x)=Falseifx §

fs is a member of the set {True, False}S.
It can happen that a relation meets condition (1) above but fails condition (2); such relations are
called partial functions. For instance, let’s slightly modify the definition of doubles:

>>> doubles2 = set ([(m,n) m evens n evens n =m % 2])
>>> doubles2
set ([(2, 4), (4, 8)])

doubles?2 is a partial function since its domain is a proper subset of evens. In such a case, we say
that doubles?2 is defined for 2 and 4 but undefined for the other elements in evens.

10.7.5 Exercises

1. % Consider the relation doubles, where evens is defined as in the text earlier:

>>> doubles = set ([(m,mx2) m evens])

Is doubles arelation over evens? Explain your answer.
2. () What happens if you try to update a dictionary with a relation which is not a function?

3. £ Write a couple of Python functions which for any set of pairs R, return the domain and
range of R.

4. (P Let S be a family of three children, {Bart, Lisa, Maggie}. Define relations R € § X §
such that:
a. dom(R) C §;
b. dom(R)=S;
ran(R)=S;
ran(R)=S§;

e. R is atotal function on S.

& o

f. R is a partial function on S.

5. (B Write a Python function which for any set of pairs R, returns True if and only if R is a
function.

May 16, 2007 22 Bird, Klein & Loper

10. Advanced Programming in Python Introduction to Natural Language Processing (DRAFT)

10.8 Further Reading

[Brent1995]
[Hunt & Thomas, 1999]

About this document...

This chapter is a draft from Introduction to Natural Language Processing, by
Steven Bird, Ewan Klein and Edward Loper, Copyright © 2007 the authors. It is
distributed with the Natural Language Toolkit [http://nltk.sourceforge.net], Version
0.7.5, under the terms of the Creative Commons Attribution-ShareAlike License
[http://creativecommons.org/licenses/by-sa/2.5/].

This document is Revision: 4518 Wed May 16 20:08:28 EST 2007

Bird, Klein & Loper 23 May 16, 2007

file:bibliography.html#hunt1999pp
http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	Advanced Programming in Python
	Object-Oriented Programming in Python
	Variable scope (notes)
	Modules
	Data Classes: Trees in NLTK
	Processing Classes: N-gram Taggers in NLTK

	Program Development
	Programming Style
	Debugging
	Case Study: T9
	Exercises

	XML
	Algorithm Design
	Decorate-Sort-Undecorate
	Problem Transformation (aka Transform-and-Conquer)
	Exercises

	Search
	Exhaustive Search
	Hill-Climbing Search
	Non-Deterministic Search

	Miscellany
	Named Arguments
	Accumulative Functions

	Sets and Mathematical Functions
	Sets
	Exercises
	Tuples
	Relations and Functions
	Exercises

	Further Reading

