
Chunk Parsing

Steven Bird Ewan Klein Edward Loper

University of Melbourne, AUSTRALIA

University of Edinburgh, UK

University of Pennsylvania, USA

May 16, 2007

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

• chunk parsing:
• efficient and robust approach to parsing natural language
• a popular alternative to the full parsing

• chunks:
• non-overlapping regions of text
• contain a head word (e.g. noun)
• adjacent modifiers and function words

• motivations:
• extract information
• ignore information

Extracting Information: Coreference
Annotation

Extracting Information: Message
Understanding

Ignoring Information: Lexical
Acquisition

• studying syntactic patterns, e.g. finding verbs in a corpus,
displaying possible arguments

• e.g. gave, in 100 files of the Penn Treebank corpus
• replaced internal details of each noun phrase with NP

gave NP
gave up NP in NP
gave NP up
gave NP help
gave NP to NP

• use in lexical acquisition, grammar development

Analogy with Tokenization and Tagging

• fundamental in NLP: segmentation and labelling
• tokenization and tagging

• other similarities: skipping material; finite-state; application
specific

Chunking vs Parsing

1 Parsing

[
[G.K. Chesterton],
[

[author] of
[

[The Man] who was
[Thursday]

]
]

]

2 Chunking:

[G.K. Chesterton],
[author] of
[The Man] who was
[Thursday]

Chunking vs Parsing

1 flat vs nested
2 context
3 robustness
4 efficiency
5 methodology

Chunking vs Parsing

1 flat vs nested
2 context
3 robustness
4 efficiency
5 methodology

Chunking vs Parsing

1 flat vs nested
2 context
3 robustness
4 efficiency
5 methodology

Chunking vs Parsing

1 flat vs nested
2 context
3 robustness
4 efficiency
5 methodology

Chunking vs Parsing

1 flat vs nested
2 context
3 robustness
4 efficiency
5 methodology

Perfection is unattainable

1. Prepositional phrase:
[
[I]
[turned]
[off the spectroroute]

]

2. Verb-particle construction:
[
[I]
[turned off]
[the spectroroute]

]

Tag Representation

Tree Representation

Chunk Structures

(S: (NP: ’I’)
’saw’
(NP: ’the’ ’big’ ’dog’)
’on’
(NP: ’the’ ’hill’))

• Demonstration: reading chunk structures from Treebank
and CoNLL-2000 corpora

Chunk Parsing

• regular expressions over part-of-speech tags:
parse.RegexpChunk

• Tag string: a string consisting of tags delimited with
angle-brackets, e.g. <DT><JJ><NN><VBD><DT><NN>

• Tag pattern: regular expression over tag strings

• <DT><JJ>?<NN>
• <NN|JJ>+
• <NN.*>

• chunk a sequence of words matching a tag pattern:
parse.ChunkRule

>>> grammar = "NP: {<DT|NN>+} # Chunk sequences of DT and NN’"

A Simple NP Chunker

grammar = r"""
NP:

{<DT>?<JJ>*<NN>} # chunk determiners, adjectives and nouns
{<NNP>+} # chunk sequences of proper nouns

"""
cp = chunk.Regexp(grammar)
tagged_tokens = [("the", "DT"), ("little", "JJ"), ("cat", "NN"),

("sat", "VBD"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]

>>> cp.parse(tagged_tokens)
(S:

(NP: (’the’, ’DT’) (’little’, ’JJ’) (’cat’, ’NN’))
(’sat’, ’VBD’)
(’on’, ’IN’)
(NP: (’the’, ’DT’) (’mat’, ’NN’)))

Developing Chunkers

cp1 = chunk.Regexp(r"""
NP: {<DT><JJ><NN>} # Chunk det+adj+noun

{<DT|NN>+} # Chunk sequences of NN and DT
""")
cp2 = chunk.Regexp(r"""
NP: {<DT|NN>+} # Chunk sequences of NN and DT

{<DT><JJ><NN>} # Chunk det+adj+noun
""")

>>> print cp1.parse(tagged_tokens, trace=1)
Input:
<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk det+adj+noun:
{<DT> <JJ> <NN>} <VBD> <IN> <DT> <NN>
Chunk sequences of NN and DT:
{<DT> <JJ> <NN>} <VBD> <IN> {<DT> <NN>}

• tracing; rule ordering; overlapping contexts

More Chunking Rules: Chinking

• chink: sequence of stopwords

• chinking: process of removing tokens from a chunk

Entire chunk Middle of a chunk End of a chunk
Input: [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN]
Operation: Chink a/DT big/JJ cat/NN Chink big/JJ Chink cat/NN
Output: a/DT big/JJ cat/NN [a/DT] big/JJ [cat/NN] [a/DT big/JJ] cat/NN

Chinking Example

>>> grammar = r"""
... NP:
... {<.*>+} # Chunk everything
... }<VBD|IN>+{ # Chink sequences of VBD and IN
... """
>>> cp = chunk.Regexp(grammar)
>>> print cp.parse(tagged_tokens)
(S:

(NP: (’the’, ’DT’) (’little’, ’JJ’) (’cat’, ’NN’))
(’sat’, ’VBD’)
(’on’, ’IN’)
(NP: (’the’, ’DT’) (’mat’, ’NN’)))

>>> print chunk.accuracy(cp, conll2000.chunked(files=’test’, chunk_types=(’NP’,)))
0.581041433607

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Evaluating Chunk Parsers

• Process:
1 take some already chunked text
2 strip off the chunks
3 rechunk it
4 compare the result with the original chunked text

• ChunkScore.score()
• precision: what fraction of the returned chunks were

correct?
• recall : what fraction of correct chunks were returned?

Precision and Recall

Chunker evaluation in NLTK

>>> rule = parse.ChunkRule(’<DT|JJ|NN>+’, "Chunk sequences of DT, JJ, and NN")
>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’, top_node=’S’)
>>> chunkscore = parse.ChunkScore()
>>> for chunk_struct in islice(treebank.chunked(), 10):
... test_sent = chunkparser.parse(chunk_struct.leaves())
... chunkscore.score(chunk_struct, test_sent)
>>> print chunkscore
ChunkParse score:

Precision: 48.6%
Recall: 34.0%
F-Measure: 40.0%

Error Analysis: Missed Chunks

>>> from random import randint
>>> missed = chunkscore.missed()
>>> for i in range(15):
... print missed[randint(0,len(missed)-1)]
((’A’, ’DT’), (’Lorillard’, ’NNP’), (’spokewoman’, ’NN’))
((’it’, ’PRP’),)
((’symptoms’, ’NNS’),)
((’even’, ’RB’), (’brief’, ’JJ’), (’exposures’, ’NNS’))
((’its’, ’PRP$’), (’Micronite’, ’NN’), (’cigarette’, ’NN’), (’filters’, ’NNS’))
((’30’, ’CD’), (’years’, ’NNS’))
((’workers’, ’NNS’),)
((’preliminary’, ’JJ’), (’findings’, ’NNS’))
((’Medicine’, ’NNP’),)
((’cancer’, ’NN’), (’deaths’, ’NNS’))
((’Consolidated’, ’NNP’), (’Gold’, ’NNP’), (’Fields’, ’NNP’), (’PLC’, ’NNP’))
((’Medicine’, ’NNP’),)
((’its’, ’PRP$’), (’Micronite’, ’NN’), (’cigarette’, ’NN’), (’filters’, ’NNS’))
((’a’, ’DT’), (’forum’, ’NN’))
((’researchers’, ’NNS’),)

Error Analysis: Incorrect Chunks

>>> incorrect = chunkscore.incorrect()
>>> for i in range(15):
... print incorrect[randint(0,len(incorrect)-1)]
((’New’, ’JJ’), (’York-based’, ’JJ’))
((’Micronite’, ’NN’), (’cigarette’, ’NN’))
((’a’, ’DT’), (’forum’, ’NN’), (’likely’, ’JJ’))
((’later’, ’JJ’),)
((’later’, ’JJ’),)
((’brief’, ’JJ’),)
((’preliminary’, ’JJ’),)
((’New’, ’JJ’), (’York-based’, ’JJ’))
((’resilient’, ’JJ’),)
((’group’, ’NN’),)
((’cancer’, ’NN’),)
((’the’, ’DT’),)
((’cancer’, ’NN’),)
((’Micronite’, ’NN’), (’cigarette’, ’NN’))
((’A’, ’DT’),)

Evaluation Methodology

• Baseline:
• How hard is chunking?
• What is a good baseline for evaluation?

• Bake-off

Evaluation Methodology

• Baseline:
• How hard is chunking?
• What is a good baseline for evaluation?

• Bake-off

Evaluation Methodology

• Baseline:
• How hard is chunking?
• What is a good baseline for evaluation?

• Bake-off

Evaluation Methodology

• Baseline:
• How hard is chunking?
• What is a good baseline for evaluation?

• Bake-off

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Development Methodology

• approaches
• different rules and combinations
• hand-crafted vs automatic

• focus on diagnosis:
• manual
• utility functions
• error analysis
• evaluation

Conclusion

• light-weight methods: as seen in tagging
• applications: extraction, lexical acquisition

(aside: chunking as a utility method in parsing)
• next: parsing
• but first: switch to application focus

Conclusion

• light-weight methods: as seen in tagging
• applications: extraction, lexical acquisition

(aside: chunking as a utility method in parsing)
• next: parsing
• but first: switch to application focus

Conclusion

• light-weight methods: as seen in tagging
• applications: extraction, lexical acquisition

(aside: chunking as a utility method in parsing)
• next: parsing
• but first: switch to application focus

Conclusion

• light-weight methods: as seen in tagging
• applications: extraction, lexical acquisition

(aside: chunking as a utility method in parsing)
• next: parsing
• but first: switch to application focus

	Introduction
	What is it?
	Motivation
	Analogy with Tokenization and Tagging
	Chunking vs Parsing

	Accessing Chunked Corpora
	Representing Chunks: Tags vs Trees
	Chunk Structures

	Chunk Parsing
	Chunking with Regular Expressions
	Developing Chunkers
	More Chunking Rules

	Evaluating Chunk Parsers
	Precision and Recall
	Evaluation in NLTK
	Evaluation Methodology
	Development Methodology

