Please, help us to better know about our user community by answering the following short survey: https://forms.gle/wpyrxWi18ox9Z5ae9
Eigen  3.4.0
 
Loading...
Searching...
No Matches
CoreEvaluators.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12
13#ifndef EIGEN_COREEVALUATORS_H
14#define EIGEN_COREEVALUATORS_H
15
16namespace Eigen {
17
18namespace internal {
19
20// This class returns the evaluator kind from the expression storage kind.
21// Default assumes index based accessors
22template<typename StorageKind>
23struct storage_kind_to_evaluator_kind {
24 typedef IndexBased Kind;
25};
26
27// This class returns the evaluator shape from the expression storage kind.
28// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc.
29template<typename StorageKind> struct storage_kind_to_shape;
30
31template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; };
32template<> struct storage_kind_to_shape<SolverStorage> { typedef SolverShape Shape; };
33template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; };
34template<> struct storage_kind_to_shape<TranspositionsStorage> { typedef TranspositionsShape Shape; };
35
36// Evaluators have to be specialized with respect to various criteria such as:
37// - storage/structure/shape
38// - scalar type
39// - etc.
40// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators.
41// We currently distinguish the following kind of evaluators:
42// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate)
43// - binary_evaluator for expression taking two arguments (CwiseBinaryOp)
44// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp)
45// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching.
46// - mapbase_evaluator for Map, Block, Ref
47// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator)
48
49template< typename T,
50 typename Arg1Kind = typename evaluator_traits<typename T::Arg1>::Kind,
51 typename Arg2Kind = typename evaluator_traits<typename T::Arg2>::Kind,
52 typename Arg3Kind = typename evaluator_traits<typename T::Arg3>::Kind,
53 typename Arg1Scalar = typename traits<typename T::Arg1>::Scalar,
54 typename Arg2Scalar = typename traits<typename T::Arg2>::Scalar,
55 typename Arg3Scalar = typename traits<typename T::Arg3>::Scalar> struct ternary_evaluator;
56
57template< typename T,
58 typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
59 typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
60 typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
61 typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator;
62
63template< typename T,
64 typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind,
65 typename Scalar = typename T::Scalar> struct unary_evaluator;
66
67// evaluator_traits<T> contains traits for evaluator<T>
68
69template<typename T>
70struct evaluator_traits_base
71{
72 // by default, get evaluator kind and shape from storage
73 typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
74 typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
75};
76
77// Default evaluator traits
78template<typename T>
79struct evaluator_traits : public evaluator_traits_base<T>
80{
81};
82
83template<typename T, typename Shape = typename evaluator_traits<T>::Shape >
84struct evaluator_assume_aliasing {
85 static const bool value = false;
86};
87
88// By default, we assume a unary expression:
89template<typename T>
90struct evaluator : public unary_evaluator<T>
91{
92 typedef unary_evaluator<T> Base;
93 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
94 explicit evaluator(const T& xpr) : Base(xpr) {}
95};
96
97
98// TODO: Think about const-correctness
99template<typename T>
100struct evaluator<const T>
101 : evaluator<T>
102{
103 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
104 explicit evaluator(const T& xpr) : evaluator<T>(xpr) {}
105};
106
107// ---------- base class for all evaluators ----------
108
109template<typename ExpressionType>
110struct evaluator_base
111{
112 // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices.
113 typedef traits<ExpressionType> ExpressionTraits;
114
115 enum {
116 Alignment = 0
117 };
118 // noncopyable:
119 // Don't make this class inherit noncopyable as this kills EBO (Empty Base Optimization)
120 // and make complex evaluator much larger than then should do.
121 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE evaluator_base() {}
122 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~evaluator_base() {}
123private:
124 EIGEN_DEVICE_FUNC evaluator_base(const evaluator_base&);
125 EIGEN_DEVICE_FUNC const evaluator_base& operator=(const evaluator_base&);
126};
127
128// -------------------- Matrix and Array --------------------
129//
130// evaluator<PlainObjectBase> is a common base class for the
131// Matrix and Array evaluators.
132// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense,
133// so no need for more sophisticated dispatching.
134
135// this helper permits to completely eliminate m_outerStride if it is known at compiletime.
136template<typename Scalar,int OuterStride> class plainobjectbase_evaluator_data {
137public:
138 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
139 plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr)
140 {
141#ifndef EIGEN_INTERNAL_DEBUGGING
142 EIGEN_UNUSED_VARIABLE(outerStride);
143#endif
144 eigen_internal_assert(outerStride==OuterStride);
145 }
146 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
147 Index outerStride() const EIGEN_NOEXCEPT { return OuterStride; }
148 const Scalar *data;
149};
150
151template<typename Scalar> class plainobjectbase_evaluator_data<Scalar,Dynamic> {
152public:
153 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
154 plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr), m_outerStride(outerStride) {}
155 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
156 Index outerStride() const { return m_outerStride; }
157 const Scalar *data;
158protected:
159 Index m_outerStride;
160};
161
162template<typename Derived>
163struct evaluator<PlainObjectBase<Derived> >
164 : evaluator_base<Derived>
165{
166 typedef PlainObjectBase<Derived> PlainObjectType;
167 typedef typename PlainObjectType::Scalar Scalar;
168 typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
169
170 enum {
171 IsRowMajor = PlainObjectType::IsRowMajor,
172 IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime,
173 RowsAtCompileTime = PlainObjectType::RowsAtCompileTime,
174 ColsAtCompileTime = PlainObjectType::ColsAtCompileTime,
175
176 CoeffReadCost = NumTraits<Scalar>::ReadCost,
177 Flags = traits<Derived>::EvaluatorFlags,
178 Alignment = traits<Derived>::Alignment
179 };
180 enum {
181 // We do not need to know the outer stride for vectors
182 OuterStrideAtCompileTime = IsVectorAtCompileTime ? 0
183 : int(IsRowMajor) ? ColsAtCompileTime
184 : RowsAtCompileTime
185 };
186
187 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
188 evaluator()
189 : m_d(0,OuterStrideAtCompileTime)
190 {
191 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
192 }
193
194 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
195 explicit evaluator(const PlainObjectType& m)
196 : m_d(m.data(),IsVectorAtCompileTime ? 0 : m.outerStride())
197 {
198 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
199 }
200
201 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
202 CoeffReturnType coeff(Index row, Index col) const
203 {
204 if (IsRowMajor)
205 return m_d.data[row * m_d.outerStride() + col];
206 else
207 return m_d.data[row + col * m_d.outerStride()];
208 }
209
210 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
211 CoeffReturnType coeff(Index index) const
212 {
213 return m_d.data[index];
214 }
215
216 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
217 Scalar& coeffRef(Index row, Index col)
218 {
219 if (IsRowMajor)
220 return const_cast<Scalar*>(m_d.data)[row * m_d.outerStride() + col];
221 else
222 return const_cast<Scalar*>(m_d.data)[row + col * m_d.outerStride()];
223 }
224
225 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
226 Scalar& coeffRef(Index index)
227 {
228 return const_cast<Scalar*>(m_d.data)[index];
229 }
230
231 template<int LoadMode, typename PacketType>
232 EIGEN_STRONG_INLINE
233 PacketType packet(Index row, Index col) const
234 {
235 if (IsRowMajor)
236 return ploadt<PacketType, LoadMode>(m_d.data + row * m_d.outerStride() + col);
237 else
238 return ploadt<PacketType, LoadMode>(m_d.data + row + col * m_d.outerStride());
239 }
240
241 template<int LoadMode, typename PacketType>
242 EIGEN_STRONG_INLINE
243 PacketType packet(Index index) const
244 {
245 return ploadt<PacketType, LoadMode>(m_d.data + index);
246 }
247
248 template<int StoreMode,typename PacketType>
249 EIGEN_STRONG_INLINE
250 void writePacket(Index row, Index col, const PacketType& x)
251 {
252 if (IsRowMajor)
253 return pstoret<Scalar, PacketType, StoreMode>
254 (const_cast<Scalar*>(m_d.data) + row * m_d.outerStride() + col, x);
255 else
256 return pstoret<Scalar, PacketType, StoreMode>
257 (const_cast<Scalar*>(m_d.data) + row + col * m_d.outerStride(), x);
258 }
259
260 template<int StoreMode, typename PacketType>
261 EIGEN_STRONG_INLINE
262 void writePacket(Index index, const PacketType& x)
263 {
264 return pstoret<Scalar, PacketType, StoreMode>(const_cast<Scalar*>(m_d.data) + index, x);
265 }
266
267protected:
268
269 plainobjectbase_evaluator_data<Scalar,OuterStrideAtCompileTime> m_d;
270};
271
272template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
273struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
274 : evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
275{
276 typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
277
278 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
279 evaluator() {}
280
281 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
282 explicit evaluator(const XprType& m)
283 : evaluator<PlainObjectBase<XprType> >(m)
284 { }
285};
286
287template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
288struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
289 : evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
290{
291 typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
292
293 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
294 evaluator() {}
295
296 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
297 explicit evaluator(const XprType& m)
298 : evaluator<PlainObjectBase<XprType> >(m)
299 { }
300};
301
302// -------------------- Transpose --------------------
303
304template<typename ArgType>
305struct unary_evaluator<Transpose<ArgType>, IndexBased>
306 : evaluator_base<Transpose<ArgType> >
307{
308 typedef Transpose<ArgType> XprType;
309
310 enum {
311 CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
312 Flags = evaluator<ArgType>::Flags ^ RowMajorBit,
313 Alignment = evaluator<ArgType>::Alignment
314 };
315
316 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
317 explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {}
318
319 typedef typename XprType::Scalar Scalar;
320 typedef typename XprType::CoeffReturnType CoeffReturnType;
321
322 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
323 CoeffReturnType coeff(Index row, Index col) const
324 {
325 return m_argImpl.coeff(col, row);
326 }
327
328 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
329 CoeffReturnType coeff(Index index) const
330 {
331 return m_argImpl.coeff(index);
332 }
333
334 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
335 Scalar& coeffRef(Index row, Index col)
336 {
337 return m_argImpl.coeffRef(col, row);
338 }
339
340 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
341 typename XprType::Scalar& coeffRef(Index index)
342 {
343 return m_argImpl.coeffRef(index);
344 }
345
346 template<int LoadMode, typename PacketType>
347 EIGEN_STRONG_INLINE
348 PacketType packet(Index row, Index col) const
349 {
350 return m_argImpl.template packet<LoadMode,PacketType>(col, row);
351 }
352
353 template<int LoadMode, typename PacketType>
354 EIGEN_STRONG_INLINE
355 PacketType packet(Index index) const
356 {
357 return m_argImpl.template packet<LoadMode,PacketType>(index);
358 }
359
360 template<int StoreMode, typename PacketType>
361 EIGEN_STRONG_INLINE
362 void writePacket(Index row, Index col, const PacketType& x)
363 {
364 m_argImpl.template writePacket<StoreMode,PacketType>(col, row, x);
365 }
366
367 template<int StoreMode, typename PacketType>
368 EIGEN_STRONG_INLINE
369 void writePacket(Index index, const PacketType& x)
370 {
371 m_argImpl.template writePacket<StoreMode,PacketType>(index, x);
372 }
373
374protected:
375 evaluator<ArgType> m_argImpl;
376};
377
378// -------------------- CwiseNullaryOp --------------------
379// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator.
380// Likewise, there is not need to more sophisticated dispatching here.
381
382template<typename Scalar,typename NullaryOp,
383 bool has_nullary = has_nullary_operator<NullaryOp>::value,
384 bool has_unary = has_unary_operator<NullaryOp>::value,
385 bool has_binary = has_binary_operator<NullaryOp>::value>
386struct nullary_wrapper
387{
388 template <typename IndexType>
389 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); }
390 template <typename IndexType>
391 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
392
393 template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp<T>(i,j); }
394 template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
395};
396
397template<typename Scalar,typename NullaryOp>
398struct nullary_wrapper<Scalar,NullaryOp,true,false,false>
399{
400 template <typename IndexType>
401 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); }
402 template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp<T>(); }
403};
404
405template<typename Scalar,typename NullaryOp>
406struct nullary_wrapper<Scalar,NullaryOp,false,false,true>
407{
408 template <typename IndexType>
409 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); }
410 template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp<T>(i,j); }
411};
412
413// We need the following specialization for vector-only functors assigned to a runtime vector,
414// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd.
415// In this case, i==0 and j is used for the actual iteration.
416template<typename Scalar,typename NullaryOp>
417struct nullary_wrapper<Scalar,NullaryOp,false,true,false>
418{
419 template <typename IndexType>
420 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
421 eigen_assert(i==0 || j==0);
422 return op(i+j);
423 }
424 template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
425 eigen_assert(i==0 || j==0);
426 return op.template packetOp<T>(i+j);
427 }
428
429 template <typename IndexType>
430 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
431 template <typename T, typename IndexType>
432 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
433};
434
435template<typename Scalar,typename NullaryOp>
436struct nullary_wrapper<Scalar,NullaryOp,false,false,false> {};
437
438#if 0 && EIGEN_COMP_MSVC>0
439// Disable this ugly workaround. This is now handled in traits<Ref>::match,
440// but this piece of code might still become handly if some other weird compilation
441// erros pop up again.
442
443// MSVC exhibits a weird compilation error when
444// compiling:
445// Eigen::MatrixXf A = MatrixXf::Random(3,3);
446// Ref<const MatrixXf> R = 2.f*A;
447// and that has_*ary_operator<scalar_constant_op<float>> have not been instantiated yet.
448// The "problem" is that evaluator<2.f*A> is instantiated by traits<Ref>::match<2.f*A>
449// and at that time has_*ary_operator<T> returns true regardless of T.
450// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>.
451// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(),
452// and packet() are really instantiated as implemented below:
453
454// This is a simple wrapper around Index to enforce the re-instantiation of
455// has_*ary_operator when needed.
456template<typename T> struct nullary_wrapper_workaround_msvc {
457 nullary_wrapper_workaround_msvc(const T&);
458 operator T()const;
459};
460
461template<typename Scalar,typename NullaryOp>
462struct nullary_wrapper<Scalar,NullaryOp,true,true,true>
463{
464 template <typename IndexType>
465 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
466 return nullary_wrapper<Scalar,NullaryOp,
467 has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
468 has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
469 has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i,j);
470 }
471 template <typename IndexType>
472 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const {
473 return nullary_wrapper<Scalar,NullaryOp,
474 has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
475 has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
476 has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i);
477 }
478
479 template <typename T, typename IndexType>
480 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
481 return nullary_wrapper<Scalar,NullaryOp,
482 has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
483 has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
484 has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i,j);
485 }
486 template <typename T, typename IndexType>
487 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const {
488 return nullary_wrapper<Scalar,NullaryOp,
489 has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
490 has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
491 has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i);
492 }
493};
494#endif // MSVC workaround
495
496template<typename NullaryOp, typename PlainObjectType>
497struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
498 : evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
499{
500 typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
501 typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
502
503 enum {
504 CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
505
506 Flags = (evaluator<PlainObjectTypeCleaned>::Flags
507 & ( HereditaryBits
508 | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
509 | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
510 | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
511 Alignment = AlignedMax
512 };
513
514 EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n)
515 : m_functor(n.functor()), m_wrapper()
516 {
517 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
518 }
519
520 typedef typename XprType::CoeffReturnType CoeffReturnType;
521
522 template <typename IndexType>
523 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
524 CoeffReturnType coeff(IndexType row, IndexType col) const
525 {
526 return m_wrapper(m_functor, row, col);
527 }
528
529 template <typename IndexType>
530 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
531 CoeffReturnType coeff(IndexType index) const
532 {
533 return m_wrapper(m_functor,index);
534 }
535
536 template<int LoadMode, typename PacketType, typename IndexType>
537 EIGEN_STRONG_INLINE
538 PacketType packet(IndexType row, IndexType col) const
539 {
540 return m_wrapper.template packetOp<PacketType>(m_functor, row, col);
541 }
542
543 template<int LoadMode, typename PacketType, typename IndexType>
544 EIGEN_STRONG_INLINE
545 PacketType packet(IndexType index) const
546 {
547 return m_wrapper.template packetOp<PacketType>(m_functor, index);
548 }
549
550protected:
551 const NullaryOp m_functor;
552 const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
553};
554
555// -------------------- CwiseUnaryOp --------------------
556
557template<typename UnaryOp, typename ArgType>
558struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased >
559 : evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> >
560{
561 typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
562
563 enum {
564 CoeffReadCost = int(evaluator<ArgType>::CoeffReadCost) + int(functor_traits<UnaryOp>::Cost),
565
566 Flags = evaluator<ArgType>::Flags
567 & (HereditaryBits | LinearAccessBit | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
568 Alignment = evaluator<ArgType>::Alignment
569 };
570
571 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
572 explicit unary_evaluator(const XprType& op) : m_d(op)
573 {
574 EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
575 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
576 }
577
578 typedef typename XprType::CoeffReturnType CoeffReturnType;
579
580 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
581 CoeffReturnType coeff(Index row, Index col) const
582 {
583 return m_d.func()(m_d.argImpl.coeff(row, col));
584 }
585
586 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
587 CoeffReturnType coeff(Index index) const
588 {
589 return m_d.func()(m_d.argImpl.coeff(index));
590 }
591
592 template<int LoadMode, typename PacketType>
593 EIGEN_STRONG_INLINE
594 PacketType packet(Index row, Index col) const
595 {
596 return m_d.func().packetOp(m_d.argImpl.template packet<LoadMode, PacketType>(row, col));
597 }
598
599 template<int LoadMode, typename PacketType>
600 EIGEN_STRONG_INLINE
601 PacketType packet(Index index) const
602 {
603 return m_d.func().packetOp(m_d.argImpl.template packet<LoadMode, PacketType>(index));
604 }
605
606protected:
607
608 // this helper permits to completely eliminate the functor if it is empty
609 struct Data
610 {
611 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
612 Data(const XprType& xpr) : op(xpr.functor()), argImpl(xpr.nestedExpression()) {}
613 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
614 const UnaryOp& func() const { return op; }
615 UnaryOp op;
616 evaluator<ArgType> argImpl;
617 };
618
619 Data m_d;
620};
621
622// -------------------- CwiseTernaryOp --------------------
623
624// this is a ternary expression
625template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
626struct evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
627 : public ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
628{
629 typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
630 typedef ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > Base;
631
632 EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
633};
634
635template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
636struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased, IndexBased>
637 : evaluator_base<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
638{
639 typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
640
641 enum {
642 CoeffReadCost = int(evaluator<Arg1>::CoeffReadCost) + int(evaluator<Arg2>::CoeffReadCost) + int(evaluator<Arg3>::CoeffReadCost) + int(functor_traits<TernaryOp>::Cost),
643
644 Arg1Flags = evaluator<Arg1>::Flags,
645 Arg2Flags = evaluator<Arg2>::Flags,
646 Arg3Flags = evaluator<Arg3>::Flags,
647 SameType = is_same<typename Arg1::Scalar,typename Arg2::Scalar>::value && is_same<typename Arg1::Scalar,typename Arg3::Scalar>::value,
648 StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit),
649 Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & (
650 HereditaryBits
651 | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) &
652 ( (StorageOrdersAgree ? LinearAccessBit : 0)
653 | (functor_traits<TernaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
654 )
655 )
656 ),
657 Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit),
658 Alignment = EIGEN_PLAIN_ENUM_MIN(
659 EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment),
660 evaluator<Arg3>::Alignment)
661 };
662
663 EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) : m_d(xpr)
664 {
665 EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<TernaryOp>::Cost);
666 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
667 }
668
669 typedef typename XprType::CoeffReturnType CoeffReturnType;
670
671 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
672 CoeffReturnType coeff(Index row, Index col) const
673 {
674 return m_d.func()(m_d.arg1Impl.coeff(row, col), m_d.arg2Impl.coeff(row, col), m_d.arg3Impl.coeff(row, col));
675 }
676
677 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
678 CoeffReturnType coeff(Index index) const
679 {
680 return m_d.func()(m_d.arg1Impl.coeff(index), m_d.arg2Impl.coeff(index), m_d.arg3Impl.coeff(index));
681 }
682
683 template<int LoadMode, typename PacketType>
684 EIGEN_STRONG_INLINE
685 PacketType packet(Index row, Index col) const
686 {
687 return m_d.func().packetOp(m_d.arg1Impl.template packet<LoadMode,PacketType>(row, col),
688 m_d.arg2Impl.template packet<LoadMode,PacketType>(row, col),
689 m_d.arg3Impl.template packet<LoadMode,PacketType>(row, col));
690 }
691
692 template<int LoadMode, typename PacketType>
693 EIGEN_STRONG_INLINE
694 PacketType packet(Index index) const
695 {
696 return m_d.func().packetOp(m_d.arg1Impl.template packet<LoadMode,PacketType>(index),
697 m_d.arg2Impl.template packet<LoadMode,PacketType>(index),
698 m_d.arg3Impl.template packet<LoadMode,PacketType>(index));
699 }
700
701protected:
702 // this helper permits to completely eliminate the functor if it is empty
703 struct Data
704 {
705 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
706 Data(const XprType& xpr) : op(xpr.functor()), arg1Impl(xpr.arg1()), arg2Impl(xpr.arg2()), arg3Impl(xpr.arg3()) {}
707 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
708 const TernaryOp& func() const { return op; }
709 TernaryOp op;
710 evaluator<Arg1> arg1Impl;
711 evaluator<Arg2> arg2Impl;
712 evaluator<Arg3> arg3Impl;
713 };
714
715 Data m_d;
716};
717
718// -------------------- CwiseBinaryOp --------------------
719
720// this is a binary expression
721template<typename BinaryOp, typename Lhs, typename Rhs>
722struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
723 : public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
724{
725 typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
726 typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base;
727
728 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
729 explicit evaluator(const XprType& xpr) : Base(xpr) {}
730};
731
732template<typename BinaryOp, typename Lhs, typename Rhs>
733struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased>
734 : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
735{
736 typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
737
738 enum {
739 CoeffReadCost = int(evaluator<Lhs>::CoeffReadCost) + int(evaluator<Rhs>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
740
741 LhsFlags = evaluator<Lhs>::Flags,
742 RhsFlags = evaluator<Rhs>::Flags,
743 SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value,
744 StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit),
745 Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
746 HereditaryBits
747 | (int(LhsFlags) & int(RhsFlags) &
748 ( (StorageOrdersAgree ? LinearAccessBit : 0)
749 | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
750 )
751 )
752 ),
753 Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
754 Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment)
755 };
756
757 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
758 explicit binary_evaluator(const XprType& xpr) : m_d(xpr)
759 {
760 EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
761 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
762 }
763
764 typedef typename XprType::CoeffReturnType CoeffReturnType;
765
766 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
767 CoeffReturnType coeff(Index row, Index col) const
768 {
769 return m_d.func()(m_d.lhsImpl.coeff(row, col), m_d.rhsImpl.coeff(row, col));
770 }
771
772 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
773 CoeffReturnType coeff(Index index) const
774 {
775 return m_d.func()(m_d.lhsImpl.coeff(index), m_d.rhsImpl.coeff(index));
776 }
777
778 template<int LoadMode, typename PacketType>
779 EIGEN_STRONG_INLINE
780 PacketType packet(Index row, Index col) const
781 {
782 return m_d.func().packetOp(m_d.lhsImpl.template packet<LoadMode,PacketType>(row, col),
783 m_d.rhsImpl.template packet<LoadMode,PacketType>(row, col));
784 }
785
786 template<int LoadMode, typename PacketType>
787 EIGEN_STRONG_INLINE
788 PacketType packet(Index index) const
789 {
790 return m_d.func().packetOp(m_d.lhsImpl.template packet<LoadMode,PacketType>(index),
791 m_d.rhsImpl.template packet<LoadMode,PacketType>(index));
792 }
793
794protected:
795
796 // this helper permits to completely eliminate the functor if it is empty
797 struct Data
798 {
799 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
800 Data(const XprType& xpr) : op(xpr.functor()), lhsImpl(xpr.lhs()), rhsImpl(xpr.rhs()) {}
801 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
802 const BinaryOp& func() const { return op; }
803 BinaryOp op;
804 evaluator<Lhs> lhsImpl;
805 evaluator<Rhs> rhsImpl;
806 };
807
808 Data m_d;
809};
810
811// -------------------- CwiseUnaryView --------------------
812
813template<typename UnaryOp, typename ArgType>
814struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
815 : evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
816{
817 typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
818
819 enum {
820 CoeffReadCost = int(evaluator<ArgType>::CoeffReadCost) + int(functor_traits<UnaryOp>::Cost),
821
822 Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)),
823
824 Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost...
825 };
826
827 EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : m_d(op)
828 {
829 EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
830 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
831 }
832
833 typedef typename XprType::Scalar Scalar;
834 typedef typename XprType::CoeffReturnType CoeffReturnType;
835
836 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
837 CoeffReturnType coeff(Index row, Index col) const
838 {
839 return m_d.func()(m_d.argImpl.coeff(row, col));
840 }
841
842 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
843 CoeffReturnType coeff(Index index) const
844 {
845 return m_d.func()(m_d.argImpl.coeff(index));
846 }
847
848 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
849 Scalar& coeffRef(Index row, Index col)
850 {
851 return m_d.func()(m_d.argImpl.coeffRef(row, col));
852 }
853
854 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
855 Scalar& coeffRef(Index index)
856 {
857 return m_d.func()(m_d.argImpl.coeffRef(index));
858 }
859
860protected:
861
862 // this helper permits to completely eliminate the functor if it is empty
863 struct Data
864 {
865 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
866 Data(const XprType& xpr) : op(xpr.functor()), argImpl(xpr.nestedExpression()) {}
867 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
868 const UnaryOp& func() const { return op; }
869 UnaryOp op;
870 evaluator<ArgType> argImpl;
871 };
872
873 Data m_d;
874};
875
876// -------------------- Map --------------------
877
878// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ?
879// but that might complicate template specialization
880template<typename Derived, typename PlainObjectType>
881struct mapbase_evaluator;
882
883template<typename Derived, typename PlainObjectType>
884struct mapbase_evaluator : evaluator_base<Derived>
885{
886 typedef Derived XprType;
887 typedef typename XprType::PointerType PointerType;
888 typedef typename XprType::Scalar Scalar;
889 typedef typename XprType::CoeffReturnType CoeffReturnType;
890
891 enum {
892 IsRowMajor = XprType::RowsAtCompileTime,
893 ColsAtCompileTime = XprType::ColsAtCompileTime,
894 CoeffReadCost = NumTraits<Scalar>::ReadCost
895 };
896
897 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
898 explicit mapbase_evaluator(const XprType& map)
899 : m_data(const_cast<PointerType>(map.data())),
900 m_innerStride(map.innerStride()),
901 m_outerStride(map.outerStride())
902 {
903 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
904 PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
905 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
906 }
907
908 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
909 CoeffReturnType coeff(Index row, Index col) const
910 {
911 return m_data[col * colStride() + row * rowStride()];
912 }
913
914 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
915 CoeffReturnType coeff(Index index) const
916 {
917 return m_data[index * m_innerStride.value()];
918 }
919
920 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
921 Scalar& coeffRef(Index row, Index col)
922 {
923 return m_data[col * colStride() + row * rowStride()];
924 }
925
926 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
927 Scalar& coeffRef(Index index)
928 {
929 return m_data[index * m_innerStride.value()];
930 }
931
932 template<int LoadMode, typename PacketType>
933 EIGEN_STRONG_INLINE
934 PacketType packet(Index row, Index col) const
935 {
936 PointerType ptr = m_data + row * rowStride() + col * colStride();
937 return internal::ploadt<PacketType, LoadMode>(ptr);
938 }
939
940 template<int LoadMode, typename PacketType>
941 EIGEN_STRONG_INLINE
942 PacketType packet(Index index) const
943 {
944 return internal::ploadt<PacketType, LoadMode>(m_data + index * m_innerStride.value());
945 }
946
947 template<int StoreMode, typename PacketType>
948 EIGEN_STRONG_INLINE
949 void writePacket(Index row, Index col, const PacketType& x)
950 {
951 PointerType ptr = m_data + row * rowStride() + col * colStride();
952 return internal::pstoret<Scalar, PacketType, StoreMode>(ptr, x);
953 }
954
955 template<int StoreMode, typename PacketType>
956 EIGEN_STRONG_INLINE
957 void writePacket(Index index, const PacketType& x)
958 {
959 internal::pstoret<Scalar, PacketType, StoreMode>(m_data + index * m_innerStride.value(), x);
960 }
961protected:
962 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
963 Index rowStride() const EIGEN_NOEXCEPT {
964 return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value();
965 }
966 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
967 Index colStride() const EIGEN_NOEXCEPT {
968 return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value();
969 }
970
971 PointerType m_data;
972 const internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_innerStride;
973 const internal::variable_if_dynamic<Index, XprType::OuterStrideAtCompileTime> m_outerStride;
974};
975
976template<typename PlainObjectType, int MapOptions, typename StrideType>
977struct evaluator<Map<PlainObjectType, MapOptions, StrideType> >
978 : public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType>
979{
980 typedef Map<PlainObjectType, MapOptions, StrideType> XprType;
981 typedef typename XprType::Scalar Scalar;
982 // TODO: should check for smaller packet types once we can handle multi-sized packet types
983 typedef typename packet_traits<Scalar>::type PacketScalar;
984
985 enum {
986 InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
987 ? int(PlainObjectType::InnerStrideAtCompileTime)
988 : int(StrideType::InnerStrideAtCompileTime),
989 OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
990 ? int(PlainObjectType::OuterStrideAtCompileTime)
991 : int(StrideType::OuterStrideAtCompileTime),
992 HasNoInnerStride = InnerStrideAtCompileTime == 1,
993 HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
994 HasNoStride = HasNoInnerStride && HasNoOuterStride,
995 IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
996
997 PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit),
998 LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit),
999 Flags = int( evaluator<PlainObjectType>::Flags) & (LinearAccessMask&PacketAccessMask),
1000
1001 Alignment = int(MapOptions)&int(AlignedMask)
1002 };
1003
1004 EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map)
1005 : mapbase_evaluator<XprType, PlainObjectType>(map)
1006 { }
1007};
1008
1009// -------------------- Ref --------------------
1010
1011template<typename PlainObjectType, int RefOptions, typename StrideType>
1012struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> >
1013 : public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType>
1014{
1015 typedef Ref<PlainObjectType, RefOptions, StrideType> XprType;
1016
1017 enum {
1018 Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags,
1019 Alignment = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Alignment
1020 };
1021
1022 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1023 explicit evaluator(const XprType& ref)
1024 : mapbase_evaluator<XprType, PlainObjectType>(ref)
1025 { }
1026};
1027
1028// -------------------- Block --------------------
1029
1030template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel,
1031 bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator;
1032
1033template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
1034struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
1035 : block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel>
1036{
1037 typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
1038 typedef typename XprType::Scalar Scalar;
1039 // TODO: should check for smaller packet types once we can handle multi-sized packet types
1040 typedef typename packet_traits<Scalar>::type PacketScalar;
1041
1042 enum {
1043 CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
1044
1045 RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
1046 ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
1047 MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
1048 MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
1049
1050 ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0,
1051 IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1
1052 : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
1053 : ArgTypeIsRowMajor,
1054 HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor),
1055 InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
1056 InnerStrideAtCompileTime = HasSameStorageOrderAsArgType
1057 ? int(inner_stride_at_compile_time<ArgType>::ret)
1058 : int(outer_stride_at_compile_time<ArgType>::ret),
1059 OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
1060 ? int(outer_stride_at_compile_time<ArgType>::ret)
1061 : int(inner_stride_at_compile_time<ArgType>::ret),
1062 MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0,
1063
1064 FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
1065 FlagsRowMajorBit = XprType::Flags&RowMajorBit,
1066 Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
1068 MaskPacketAccessBit),
1069 Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit,
1070
1071 PacketAlignment = unpacket_traits<PacketScalar>::alignment,
1072 Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic)
1073 && (OuterStrideAtCompileTime!=0)
1074 && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
1075 Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0)
1076 };
1077 typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
1078 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1079 explicit evaluator(const XprType& block) : block_evaluator_type(block)
1080 {
1081 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
1082 }
1083};
1084
1085// no direct-access => dispatch to a unary evaluator
1086template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
1087struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false>
1088 : unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
1089{
1090 typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
1091
1092 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1093 explicit block_evaluator(const XprType& block)
1094 : unary_evaluator<XprType>(block)
1095 {}
1096};
1097
1098template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
1099struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased>
1100 : evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
1101{
1102 typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
1103
1104 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1105 explicit unary_evaluator(const XprType& block)
1106 : m_argImpl(block.nestedExpression()),
1107 m_startRow(block.startRow()),
1108 m_startCol(block.startCol()),
1109 m_linear_offset(ForwardLinearAccess?(ArgType::IsRowMajor ? block.startRow()*block.nestedExpression().cols() + block.startCol() : block.startCol()*block.nestedExpression().rows() + block.startRow()):0)
1110 { }
1111
1112 typedef typename XprType::Scalar Scalar;
1113 typedef typename XprType::CoeffReturnType CoeffReturnType;
1114
1115 enum {
1116 RowsAtCompileTime = XprType::RowsAtCompileTime,
1117 ForwardLinearAccess = (InnerPanel || int(XprType::IsRowMajor)==int(ArgType::IsRowMajor)) && bool(evaluator<ArgType>::Flags&LinearAccessBit)
1118 };
1119
1120 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1121 CoeffReturnType coeff(Index row, Index col) const
1122 {
1123 return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col);
1124 }
1125
1126 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1127 CoeffReturnType coeff(Index index) const
1128 {
1129 return linear_coeff_impl(index, bool_constant<ForwardLinearAccess>());
1130 }
1131
1132 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1133 Scalar& coeffRef(Index row, Index col)
1134 {
1135 return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col);
1136 }
1137
1138 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1139 Scalar& coeffRef(Index index)
1140 {
1141 return linear_coeffRef_impl(index, bool_constant<ForwardLinearAccess>());
1142 }
1143
1144 template<int LoadMode, typename PacketType>
1145 EIGEN_STRONG_INLINE
1146 PacketType packet(Index row, Index col) const
1147 {
1148 return m_argImpl.template packet<LoadMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col);
1149 }
1150
1151 template<int LoadMode, typename PacketType>
1152 EIGEN_STRONG_INLINE
1153 PacketType packet(Index index) const
1154 {
1155 if (ForwardLinearAccess)
1156 return m_argImpl.template packet<LoadMode,PacketType>(m_linear_offset.value() + index);
1157 else
1158 return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
1159 RowsAtCompileTime == 1 ? index : 0);
1160 }
1161
1162 template<int StoreMode, typename PacketType>
1163 EIGEN_STRONG_INLINE
1164 void writePacket(Index row, Index col, const PacketType& x)
1165 {
1166 return m_argImpl.template writePacket<StoreMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col, x);
1167 }
1168
1169 template<int StoreMode, typename PacketType>
1170 EIGEN_STRONG_INLINE
1171 void writePacket(Index index, const PacketType& x)
1172 {
1173 if (ForwardLinearAccess)
1174 return m_argImpl.template writePacket<StoreMode,PacketType>(m_linear_offset.value() + index, x);
1175 else
1176 return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
1177 RowsAtCompileTime == 1 ? index : 0,
1178 x);
1179 }
1180
1181protected:
1182 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1183 CoeffReturnType linear_coeff_impl(Index index, internal::true_type /* ForwardLinearAccess */) const
1184 {
1185 return m_argImpl.coeff(m_linear_offset.value() + index);
1186 }
1187 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1188 CoeffReturnType linear_coeff_impl(Index index, internal::false_type /* not ForwardLinearAccess */) const
1189 {
1190 return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
1191 }
1192
1193 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1194 Scalar& linear_coeffRef_impl(Index index, internal::true_type /* ForwardLinearAccess */)
1195 {
1196 return m_argImpl.coeffRef(m_linear_offset.value() + index);
1197 }
1198 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1199 Scalar& linear_coeffRef_impl(Index index, internal::false_type /* not ForwardLinearAccess */)
1200 {
1201 return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
1202 }
1203
1204 evaluator<ArgType> m_argImpl;
1205 const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
1206 const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
1207 const variable_if_dynamic<Index, ForwardLinearAccess ? Dynamic : 0> m_linear_offset;
1208};
1209
1210// TODO: This evaluator does not actually use the child evaluator;
1211// all action is via the data() as returned by the Block expression.
1212
1213template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
1214struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true>
1215 : mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>,
1216 typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject>
1217{
1218 typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
1219 typedef typename XprType::Scalar Scalar;
1220
1221 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1222 explicit block_evaluator(const XprType& block)
1223 : mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
1224 {
1225 // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
1226 eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
1227 }
1228};
1229
1230
1231// -------------------- Select --------------------
1232// NOTE shall we introduce a ternary_evaluator?
1233
1234// TODO enable vectorization for Select
1235template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
1236struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
1237 : evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
1238{
1239 typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
1240 enum {
1241 CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
1242 + EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
1243 evaluator<ElseMatrixType>::CoeffReadCost),
1244
1245 Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits,
1246
1247 Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment)
1248 };
1249
1250 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1251 explicit evaluator(const XprType& select)
1252 : m_conditionImpl(select.conditionMatrix()),
1253 m_thenImpl(select.thenMatrix()),
1254 m_elseImpl(select.elseMatrix())
1255 {
1256 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
1257 }
1258
1259 typedef typename XprType::CoeffReturnType CoeffReturnType;
1260
1261 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1262 CoeffReturnType coeff(Index row, Index col) const
1263 {
1264 if (m_conditionImpl.coeff(row, col))
1265 return m_thenImpl.coeff(row, col);
1266 else
1267 return m_elseImpl.coeff(row, col);
1268 }
1269
1270 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1271 CoeffReturnType coeff(Index index) const
1272 {
1273 if (m_conditionImpl.coeff(index))
1274 return m_thenImpl.coeff(index);
1275 else
1276 return m_elseImpl.coeff(index);
1277 }
1278
1279protected:
1280 evaluator<ConditionMatrixType> m_conditionImpl;
1281 evaluator<ThenMatrixType> m_thenImpl;
1282 evaluator<ElseMatrixType> m_elseImpl;
1283};
1284
1285
1286// -------------------- Replicate --------------------
1287
1288template<typename ArgType, int RowFactor, int ColFactor>
1289struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
1290 : evaluator_base<Replicate<ArgType, RowFactor, ColFactor> >
1291{
1292 typedef Replicate<ArgType, RowFactor, ColFactor> XprType;
1293 typedef typename XprType::CoeffReturnType CoeffReturnType;
1294 enum {
1295 Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
1296 };
1297 typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
1298 typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
1299
1300 enum {
1301 CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
1302 LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0,
1303 Flags = (evaluator<ArgTypeNestedCleaned>::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit),
1304
1305 Alignment = evaluator<ArgTypeNestedCleaned>::Alignment
1306 };
1307
1308 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1309 explicit unary_evaluator(const XprType& replicate)
1310 : m_arg(replicate.nestedExpression()),
1311 m_argImpl(m_arg),
1312 m_rows(replicate.nestedExpression().rows()),
1313 m_cols(replicate.nestedExpression().cols())
1314 {}
1315
1316 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1317 CoeffReturnType coeff(Index row, Index col) const
1318 {
1319 // try to avoid using modulo; this is a pure optimization strategy
1320 const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
1321 : RowFactor==1 ? row
1322 : row % m_rows.value();
1323 const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
1324 : ColFactor==1 ? col
1325 : col % m_cols.value();
1326
1327 return m_argImpl.coeff(actual_row, actual_col);
1328 }
1329
1330 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1331 CoeffReturnType coeff(Index index) const
1332 {
1333 // try to avoid using modulo; this is a pure optimization strategy
1334 const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
1335 ? (ColFactor==1 ? index : index%m_cols.value())
1336 : (RowFactor==1 ? index : index%m_rows.value());
1337
1338 return m_argImpl.coeff(actual_index);
1339 }
1340
1341 template<int LoadMode, typename PacketType>
1342 EIGEN_STRONG_INLINE
1343 PacketType packet(Index row, Index col) const
1344 {
1345 const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
1346 : RowFactor==1 ? row
1347 : row % m_rows.value();
1348 const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
1349 : ColFactor==1 ? col
1350 : col % m_cols.value();
1351
1352 return m_argImpl.template packet<LoadMode,PacketType>(actual_row, actual_col);
1353 }
1354
1355 template<int LoadMode, typename PacketType>
1356 EIGEN_STRONG_INLINE
1357 PacketType packet(Index index) const
1358 {
1359 const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
1360 ? (ColFactor==1 ? index : index%m_cols.value())
1361 : (RowFactor==1 ? index : index%m_rows.value());
1362
1363 return m_argImpl.template packet<LoadMode,PacketType>(actual_index);
1364 }
1365
1366protected:
1367 const ArgTypeNested m_arg;
1368 evaluator<ArgTypeNestedCleaned> m_argImpl;
1369 const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows;
1370 const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
1371};
1372
1373// -------------------- MatrixWrapper and ArrayWrapper --------------------
1374//
1375// evaluator_wrapper_base<T> is a common base class for the
1376// MatrixWrapper and ArrayWrapper evaluators.
1377
1378template<typename XprType>
1379struct evaluator_wrapper_base
1380 : evaluator_base<XprType>
1381{
1382 typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
1383 enum {
1384 CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
1385 Flags = evaluator<ArgType>::Flags,
1386 Alignment = evaluator<ArgType>::Alignment
1387 };
1388
1389 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1390 explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
1391
1392 typedef typename ArgType::Scalar Scalar;
1393 typedef typename ArgType::CoeffReturnType CoeffReturnType;
1394
1395 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1396 CoeffReturnType coeff(Index row, Index col) const
1397 {
1398 return m_argImpl.coeff(row, col);
1399 }
1400
1401 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1402 CoeffReturnType coeff(Index index) const
1403 {
1404 return m_argImpl.coeff(index);
1405 }
1406
1407 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1408 Scalar& coeffRef(Index row, Index col)
1409 {
1410 return m_argImpl.coeffRef(row, col);
1411 }
1412
1413 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1414 Scalar& coeffRef(Index index)
1415 {
1416 return m_argImpl.coeffRef(index);
1417 }
1418
1419 template<int LoadMode, typename PacketType>
1420 EIGEN_STRONG_INLINE
1421 PacketType packet(Index row, Index col) const
1422 {
1423 return m_argImpl.template packet<LoadMode,PacketType>(row, col);
1424 }
1425
1426 template<int LoadMode, typename PacketType>
1427 EIGEN_STRONG_INLINE
1428 PacketType packet(Index index) const
1429 {
1430 return m_argImpl.template packet<LoadMode,PacketType>(index);
1431 }
1432
1433 template<int StoreMode, typename PacketType>
1434 EIGEN_STRONG_INLINE
1435 void writePacket(Index row, Index col, const PacketType& x)
1436 {
1437 m_argImpl.template writePacket<StoreMode>(row, col, x);
1438 }
1439
1440 template<int StoreMode, typename PacketType>
1441 EIGEN_STRONG_INLINE
1442 void writePacket(Index index, const PacketType& x)
1443 {
1444 m_argImpl.template writePacket<StoreMode>(index, x);
1445 }
1446
1447protected:
1448 evaluator<ArgType> m_argImpl;
1449};
1450
1451template<typename TArgType>
1452struct unary_evaluator<MatrixWrapper<TArgType> >
1453 : evaluator_wrapper_base<MatrixWrapper<TArgType> >
1454{
1455 typedef MatrixWrapper<TArgType> XprType;
1456
1457 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1458 explicit unary_evaluator(const XprType& wrapper)
1459 : evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
1460 { }
1461};
1462
1463template<typename TArgType>
1464struct unary_evaluator<ArrayWrapper<TArgType> >
1465 : evaluator_wrapper_base<ArrayWrapper<TArgType> >
1466{
1467 typedef ArrayWrapper<TArgType> XprType;
1468
1469 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1470 explicit unary_evaluator(const XprType& wrapper)
1471 : evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
1472 { }
1473};
1474
1475
1476// -------------------- Reverse --------------------
1477
1478// defined in Reverse.h:
1479template<typename PacketType, bool ReversePacket> struct reverse_packet_cond;
1480
1481template<typename ArgType, int Direction>
1482struct unary_evaluator<Reverse<ArgType, Direction> >
1483 : evaluator_base<Reverse<ArgType, Direction> >
1484{
1485 typedef Reverse<ArgType, Direction> XprType;
1486 typedef typename XprType::Scalar Scalar;
1487 typedef typename XprType::CoeffReturnType CoeffReturnType;
1488
1489 enum {
1490 IsRowMajor = XprType::IsRowMajor,
1491 IsColMajor = !IsRowMajor,
1492 ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
1493 ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
1494 ReversePacket = (Direction == BothDirections)
1495 || ((Direction == Vertical) && IsColMajor)
1496 || ((Direction == Horizontal) && IsRowMajor),
1497
1498 CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
1499
1500 // let's enable LinearAccess only with vectorization because of the product overhead
1501 // FIXME enable DirectAccess with negative strides?
1502 Flags0 = evaluator<ArgType>::Flags,
1503 LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) )
1504 || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1))
1505 ? LinearAccessBit : 0,
1506
1507 Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess),
1508
1509 Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f.
1510 };
1511
1512 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1513 explicit unary_evaluator(const XprType& reverse)
1514 : m_argImpl(reverse.nestedExpression()),
1515 m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1),
1516 m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1)
1517 { }
1518
1519 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1520 CoeffReturnType coeff(Index row, Index col) const
1521 {
1522 return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row,
1523 ReverseCol ? m_cols.value() - col - 1 : col);
1524 }
1525
1526 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1527 CoeffReturnType coeff(Index index) const
1528 {
1529 return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1);
1530 }
1531
1532 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1533 Scalar& coeffRef(Index row, Index col)
1534 {
1535 return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row,
1536 ReverseCol ? m_cols.value() - col - 1 : col);
1537 }
1538
1539 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1540 Scalar& coeffRef(Index index)
1541 {
1542 return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1);
1543 }
1544
1545 template<int LoadMode, typename PacketType>
1546 EIGEN_STRONG_INLINE
1547 PacketType packet(Index row, Index col) const
1548 {
1549 enum {
1550 PacketSize = unpacket_traits<PacketType>::size,
1551 OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
1552 OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
1553 };
1554 typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
1555 return reverse_packet::run(m_argImpl.template packet<LoadMode,PacketType>(
1556 ReverseRow ? m_rows.value() - row - OffsetRow : row,
1557 ReverseCol ? m_cols.value() - col - OffsetCol : col));
1558 }
1559
1560 template<int LoadMode, typename PacketType>
1561 EIGEN_STRONG_INLINE
1562 PacketType packet(Index index) const
1563 {
1564 enum { PacketSize = unpacket_traits<PacketType>::size };
1565 return preverse(m_argImpl.template packet<LoadMode,PacketType>(m_rows.value() * m_cols.value() - index - PacketSize));
1566 }
1567
1568 template<int LoadMode, typename PacketType>
1569 EIGEN_STRONG_INLINE
1570 void writePacket(Index row, Index col, const PacketType& x)
1571 {
1572 // FIXME we could factorize some code with packet(i,j)
1573 enum {
1574 PacketSize = unpacket_traits<PacketType>::size,
1575 OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
1576 OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
1577 };
1578 typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
1579 m_argImpl.template writePacket<LoadMode>(
1580 ReverseRow ? m_rows.value() - row - OffsetRow : row,
1581 ReverseCol ? m_cols.value() - col - OffsetCol : col,
1582 reverse_packet::run(x));
1583 }
1584
1585 template<int LoadMode, typename PacketType>
1586 EIGEN_STRONG_INLINE
1587 void writePacket(Index index, const PacketType& x)
1588 {
1589 enum { PacketSize = unpacket_traits<PacketType>::size };
1590 m_argImpl.template writePacket<LoadMode>
1591 (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x));
1592 }
1593
1594protected:
1595 evaluator<ArgType> m_argImpl;
1596
1597 // If we do not reverse rows, then we do not need to know the number of rows; same for columns
1598 // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors.
1599 const variable_if_dynamic<Index, ReverseRow ? ArgType::RowsAtCompileTime : 1> m_rows;
1600 const variable_if_dynamic<Index, ReverseCol ? ArgType::ColsAtCompileTime : 1> m_cols;
1601};
1602
1603
1604// -------------------- Diagonal --------------------
1605
1606template<typename ArgType, int DiagIndex>
1607struct evaluator<Diagonal<ArgType, DiagIndex> >
1608 : evaluator_base<Diagonal<ArgType, DiagIndex> >
1609{
1610 typedef Diagonal<ArgType, DiagIndex> XprType;
1611
1612 enum {
1613 CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
1614
1615 Flags = (unsigned int)(evaluator<ArgType>::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit,
1616
1617 Alignment = 0
1618 };
1619
1620 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1621 explicit evaluator(const XprType& diagonal)
1622 : m_argImpl(diagonal.nestedExpression()),
1623 m_index(diagonal.index())
1624 { }
1625
1626 typedef typename XprType::Scalar Scalar;
1627 typedef typename XprType::CoeffReturnType CoeffReturnType;
1628
1629 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1630 CoeffReturnType coeff(Index row, Index) const
1631 {
1632 return m_argImpl.coeff(row + rowOffset(), row + colOffset());
1633 }
1634
1635 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1636 CoeffReturnType coeff(Index index) const
1637 {
1638 return m_argImpl.coeff(index + rowOffset(), index + colOffset());
1639 }
1640
1641 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1642 Scalar& coeffRef(Index row, Index)
1643 {
1644 return m_argImpl.coeffRef(row + rowOffset(), row + colOffset());
1645 }
1646
1647 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
1648 Scalar& coeffRef(Index index)
1649 {
1650 return m_argImpl.coeffRef(index + rowOffset(), index + colOffset());
1651 }
1652
1653protected:
1654 evaluator<ArgType> m_argImpl;
1655 const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index;
1656
1657private:
1658 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
1659 Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); }
1660 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
1661 Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
1662};
1663
1664
1665//----------------------------------------------------------------------
1666// deprecated code
1667//----------------------------------------------------------------------
1668
1669// -------------------- EvalToTemp --------------------
1670
1671// expression class for evaluating nested expression to a temporary
1672
1673template<typename ArgType> class EvalToTemp;
1674
1675template<typename ArgType>
1676struct traits<EvalToTemp<ArgType> >
1677 : public traits<ArgType>
1678{ };
1679
1680template<typename ArgType>
1681class EvalToTemp
1682 : public dense_xpr_base<EvalToTemp<ArgType> >::type
1683{
1684 public:
1685
1686 typedef typename dense_xpr_base<EvalToTemp>::type Base;
1687 EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
1688
1689 explicit EvalToTemp(const ArgType& arg)
1690 : m_arg(arg)
1691 { }
1692
1693 const ArgType& arg() const
1694 {
1695 return m_arg;
1696 }
1697
1698 EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
1699 {
1700 return m_arg.rows();
1701 }
1702
1703 EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
1704 {
1705 return m_arg.cols();
1706 }
1707
1708 private:
1709 const ArgType& m_arg;
1710};
1711
1712template<typename ArgType>
1713struct evaluator<EvalToTemp<ArgType> >
1714 : public evaluator<typename ArgType::PlainObject>
1715{
1716 typedef EvalToTemp<ArgType> XprType;
1717 typedef typename ArgType::PlainObject PlainObject;
1718 typedef evaluator<PlainObject> Base;
1719
1720 EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
1721 : m_result(xpr.arg())
1722 {
1723 ::new (static_cast<Base*>(this)) Base(m_result);
1724 }
1725
1726 // This constructor is used when nesting an EvalTo evaluator in another evaluator
1727 EIGEN_DEVICE_FUNC evaluator(const ArgType& arg)
1728 : m_result(arg)
1729 {
1730 ::new (static_cast<Base*>(this)) Base(m_result);
1731 }
1732
1733protected:
1734 PlainObject m_result;
1735};
1736
1737} // namespace internal
1738
1739} // end namespace Eigen
1740
1741#endif // EIGEN_COREEVALUATORS_H
@ BothDirections
Definition: Constants.h:270
@ Horizontal
Definition: Constants.h:267
@ Vertical
Definition: Constants.h:264
const unsigned int PacketAccessBit
Definition: Constants.h:94
const unsigned int LinearAccessBit
Definition: Constants.h:130
const unsigned int EvalBeforeNestingBit
Definition: Constants.h:70
const unsigned int DirectAccessBit
Definition: Constants.h:155
const unsigned int RowMajorBit
Definition: Constants.h:66
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived > arg(const Eigen::ArrayBase< Derived > &x)
const int Dynamic
Definition: Constants.h:22