Please, help us to better know about our user community by answering the following short survey: https://forms.gle/wpyrxWi18ox9Z5ae9
Eigen  3.4.0
 
Loading...
Searching...
No Matches
Memory.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9// Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10//
11// This Source Code Form is subject to the terms of the Mozilla
12// Public License v. 2.0. If a copy of the MPL was not distributed
13// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14
15
16/*****************************************************************************
17*** Platform checks for aligned malloc functions ***
18*****************************************************************************/
19
20#ifndef EIGEN_MEMORY_H
21#define EIGEN_MEMORY_H
22
23#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
24
25// Try to determine automatically if malloc is already aligned.
26
27// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
28// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
29// This is true at least since glibc 2.8.
30// This leaves the question how to detect 64-bit. According to this document,
31// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
32// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
33// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
34#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
35 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
36 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
37#else
38 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
39#endif
40
41// FreeBSD 6 seems to have 16-byte aligned malloc
42// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
43// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
44// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
45#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
46 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
47#else
48 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
49#endif
50
51#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
52 || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
53 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
54 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
55 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
56#else
57 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
58#endif
59
60#endif
61
62namespace Eigen {
63
64namespace internal {
65
66EIGEN_DEVICE_FUNC
67inline void throw_std_bad_alloc()
68{
69 #ifdef EIGEN_EXCEPTIONS
70 throw std::bad_alloc();
71 #else
72 std::size_t huge = static_cast<std::size_t>(-1);
73 #if defined(EIGEN_HIPCC)
74 //
75 // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining),
76 // and as a consequence the code in the #else block triggers the hipcc warning :
77 // "no overloaded function has restriction specifiers that are compatible with the ambient context"
78 //
79 // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects
80 // the same on "operator new"
81 // Reverting code back to the old version in this #if block for the hipcc compiler
82 //
83 new int[huge];
84 #else
85 void* unused = ::operator new(huge);
86 EIGEN_UNUSED_VARIABLE(unused);
87 #endif
88 #endif
89}
90
91/*****************************************************************************
92*** Implementation of handmade aligned functions ***
93*****************************************************************************/
94
95/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
96
100EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES)
101{
102 eigen_assert(alignment >= sizeof(void*) && (alignment & (alignment-1)) == 0 && "Alignment must be at least sizeof(void*) and a power of 2");
103
104 EIGEN_USING_STD(malloc)
105 void *original = malloc(size+alignment);
106
107 if (original == 0) return 0;
108 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(alignment-1))) + alignment);
109 *(reinterpret_cast<void**>(aligned) - 1) = original;
110 return aligned;
111}
112
114EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void *ptr)
115{
116 if (ptr) {
117 EIGEN_USING_STD(free)
118 free(*(reinterpret_cast<void**>(ptr) - 1));
119 }
120}
121
127inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
128{
129 if (ptr == 0) return handmade_aligned_malloc(size);
130 void *original = *(reinterpret_cast<void**>(ptr) - 1);
131 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
132 original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
133 if (original == 0) return 0;
134 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
135 void *previous_aligned = static_cast<char *>(original)+previous_offset;
136 if(aligned!=previous_aligned)
137 std::memmove(aligned, previous_aligned, size);
138
139 *(reinterpret_cast<void**>(aligned) - 1) = original;
140 return aligned;
141}
142
143/*****************************************************************************
144*** Implementation of portable aligned versions of malloc/free/realloc ***
145*****************************************************************************/
146
147#ifdef EIGEN_NO_MALLOC
148EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
149{
150 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
151}
152#elif defined EIGEN_RUNTIME_NO_MALLOC
153EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
154{
155 static bool value = true;
156 if (update == 1)
157 value = new_value;
158 return value;
159}
160EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
161EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
162EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
163{
164 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
165}
166#else
167EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
168{}
169#endif
170
174EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
175{
176 check_that_malloc_is_allowed();
177
178 void *result;
179 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
180
181 EIGEN_USING_STD(malloc)
182 result = malloc(size);
183
184 #if EIGEN_DEFAULT_ALIGN_BYTES==16
185 eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade aligned memory allocator.");
186 #endif
187 #else
188 result = handmade_aligned_malloc(size);
189 #endif
190
191 if(!result && size)
192 throw_std_bad_alloc();
193
194 return result;
195}
196
198EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
199{
200 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
201
202 EIGEN_USING_STD(free)
203 free(ptr);
204
205 #else
206 handmade_aligned_free(ptr);
207 #endif
208}
209
215inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
216{
217 EIGEN_UNUSED_VARIABLE(old_size)
218
219 void *result;
220#if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
221 result = std::realloc(ptr,new_size);
222#else
223 result = handmade_aligned_realloc(ptr,new_size,old_size);
224#endif
225
226 if (!result && new_size)
227 throw_std_bad_alloc();
228
229 return result;
230}
231
232/*****************************************************************************
233*** Implementation of conditionally aligned functions ***
234*****************************************************************************/
235
239template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
240{
241 return aligned_malloc(size);
242}
243
244template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
245{
246 check_that_malloc_is_allowed();
247
248 EIGEN_USING_STD(malloc)
249 void *result = malloc(size);
250
251 if(!result && size)
252 throw_std_bad_alloc();
253 return result;
254}
255
257template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
258{
259 aligned_free(ptr);
260}
261
262template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
263{
264 EIGEN_USING_STD(free)
265 free(ptr);
266}
267
268template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
269{
270 return aligned_realloc(ptr, new_size, old_size);
271}
272
273template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
274{
275 return std::realloc(ptr, new_size);
276}
277
278/*****************************************************************************
279*** Construction/destruction of array elements ***
280*****************************************************************************/
281
285template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
286{
287 // always destruct an array starting from the end.
288 if(ptr)
289 while(size) ptr[--size].~T();
290}
291
295template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
296{
297 std::size_t i;
298 EIGEN_TRY
299 {
300 for (i = 0; i < size; ++i) ::new (ptr + i) T;
301 return ptr;
302 }
303 EIGEN_CATCH(...)
304 {
305 destruct_elements_of_array(ptr, i);
306 EIGEN_THROW;
307 }
308 return NULL;
309}
310
311/*****************************************************************************
312*** Implementation of aligned new/delete-like functions ***
313*****************************************************************************/
314
315template<typename T>
316EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
317{
318 if(size > std::size_t(-1) / sizeof(T))
319 throw_std_bad_alloc();
320}
321
326template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
327{
328 check_size_for_overflow<T>(size);
329 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
330 EIGEN_TRY
331 {
332 return construct_elements_of_array(result, size);
333 }
334 EIGEN_CATCH(...)
335 {
336 aligned_free(result);
337 EIGEN_THROW;
338 }
339 return result;
340}
341
342template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
343{
344 check_size_for_overflow<T>(size);
345 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
346 EIGEN_TRY
347 {
348 return construct_elements_of_array(result, size);
349 }
350 EIGEN_CATCH(...)
351 {
352 conditional_aligned_free<Align>(result);
353 EIGEN_THROW;
354 }
355 return result;
356}
357
361template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
362{
363 destruct_elements_of_array<T>(ptr, size);
364 Eigen::internal::aligned_free(ptr);
365}
366
370template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
371{
372 destruct_elements_of_array<T>(ptr, size);
373 conditional_aligned_free<Align>(ptr);
374}
375
376template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
377{
378 check_size_for_overflow<T>(new_size);
379 check_size_for_overflow<T>(old_size);
380 if(new_size < old_size)
381 destruct_elements_of_array(pts+new_size, old_size-new_size);
382 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
383 if(new_size > old_size)
384 {
385 EIGEN_TRY
386 {
387 construct_elements_of_array(result+old_size, new_size-old_size);
388 }
389 EIGEN_CATCH(...)
390 {
391 conditional_aligned_free<Align>(result);
392 EIGEN_THROW;
393 }
394 }
395 return result;
396}
397
398
399template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
400{
401 if(size==0)
402 return 0; // short-cut. Also fixes Bug 884
403 check_size_for_overflow<T>(size);
404 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
405 if(NumTraits<T>::RequireInitialization)
406 {
407 EIGEN_TRY
408 {
409 construct_elements_of_array(result, size);
410 }
411 EIGEN_CATCH(...)
412 {
413 conditional_aligned_free<Align>(result);
414 EIGEN_THROW;
415 }
416 }
417 return result;
418}
419
420template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
421{
422 check_size_for_overflow<T>(new_size);
423 check_size_for_overflow<T>(old_size);
424 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
425 destruct_elements_of_array(pts+new_size, old_size-new_size);
426 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
427 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
428 {
429 EIGEN_TRY
430 {
431 construct_elements_of_array(result+old_size, new_size-old_size);
432 }
433 EIGEN_CATCH(...)
434 {
435 conditional_aligned_free<Align>(result);
436 EIGEN_THROW;
437 }
438 }
439 return result;
440}
441
442template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
443{
444 if(NumTraits<T>::RequireInitialization)
445 destruct_elements_of_array<T>(ptr, size);
446 conditional_aligned_free<Align>(ptr);
447}
448
449/****************************************************************************/
450
468template<int Alignment, typename Scalar, typename Index>
469EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
470{
471 const Index ScalarSize = sizeof(Scalar);
472 const Index AlignmentSize = Alignment / ScalarSize;
473 const Index AlignmentMask = AlignmentSize-1;
474
475 if(AlignmentSize<=1)
476 {
477 // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
478 // so that all elements of the array have the same alignment.
479 return 0;
480 }
481 else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
482 {
483 // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
484 // Consequently, no element of the array is well aligned.
485 return size;
486 }
487 else
488 {
489 Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
490 return (first < size) ? first : size;
491 }
492}
493
496template<typename Scalar, typename Index>
497EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
498{
499 typedef typename packet_traits<Scalar>::type DefaultPacketType;
500 return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
501}
502
505template<typename Index>
506inline Index first_multiple(Index size, Index base)
507{
508 return ((size+base-1)/base)*base;
509}
510
511// std::copy is much slower than memcpy, so let's introduce a smart_copy which
512// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
513template<typename T, bool UseMemcpy> struct smart_copy_helper;
514
515template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
516{
517 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
518}
519
520template<typename T> struct smart_copy_helper<T,true> {
521 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
522 {
523 IntPtr size = IntPtr(end)-IntPtr(start);
524 if(size==0) return;
525 eigen_internal_assert(start!=0 && end!=0 && target!=0);
526 EIGEN_USING_STD(memcpy)
527 memcpy(target, start, size);
528 }
529};
530
531template<typename T> struct smart_copy_helper<T,false> {
532 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
533 { std::copy(start, end, target); }
534};
535
536// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
537template<typename T, bool UseMemmove> struct smart_memmove_helper;
538
539template<typename T> void smart_memmove(const T* start, const T* end, T* target)
540{
541 smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
542}
543
544template<typename T> struct smart_memmove_helper<T,true> {
545 static inline void run(const T* start, const T* end, T* target)
546 {
547 IntPtr size = IntPtr(end)-IntPtr(start);
548 if(size==0) return;
549 eigen_internal_assert(start!=0 && end!=0 && target!=0);
550 std::memmove(target, start, size);
551 }
552};
553
554template<typename T> struct smart_memmove_helper<T,false> {
555 static inline void run(const T* start, const T* end, T* target)
556 {
557 if (UIntPtr(target) < UIntPtr(start))
558 {
559 std::copy(start, end, target);
560 }
561 else
562 {
563 std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
564 std::copy_backward(start, end, target + count);
565 }
566 }
567};
568
569#if EIGEN_HAS_RVALUE_REFERENCES
570template<typename T> EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target)
571{
572 return std::move(start, end, target);
573}
574#else
575template<typename T> EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target)
576{
577 return std::copy(start, end, target);
578}
579#endif
580
581/*****************************************************************************
582*** Implementation of runtime stack allocation (falling back to malloc) ***
583*****************************************************************************/
584
585// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
586// to the appropriate stack allocation function
587#if ! defined EIGEN_ALLOCA && ! defined EIGEN_GPU_COMPILE_PHASE
588 #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
589 #define EIGEN_ALLOCA alloca
590 #elif EIGEN_COMP_MSVC
591 #define EIGEN_ALLOCA _alloca
592 #endif
593#endif
594
595// With clang -Oz -mthumb, alloca changes the stack pointer in a way that is
596// not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because
597// the compiler still emits bad code because stack allocation checks use "<=".
598// TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772
599// is fixed.
600#if defined(__clang__) && defined(__thumb__)
601 #undef EIGEN_ALLOCA
602#endif
603
604// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
605// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
606template<typename T> class aligned_stack_memory_handler : noncopyable
607{
608 public:
609 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
610 * Note that \a ptr can be 0 regardless of the other parameters.
611 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
612 * In this case, the buffer elements will also be destructed when this handler will be destructed.
613 * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
614 **/
615 EIGEN_DEVICE_FUNC
616 aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
617 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
618 {
619 if(NumTraits<T>::RequireInitialization && m_ptr)
620 Eigen::internal::construct_elements_of_array(m_ptr, size);
621 }
622 EIGEN_DEVICE_FUNC
623 ~aligned_stack_memory_handler()
624 {
625 if(NumTraits<T>::RequireInitialization && m_ptr)
626 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
627 if(m_deallocate)
628 Eigen::internal::aligned_free(m_ptr);
629 }
630 protected:
631 T* m_ptr;
632 std::size_t m_size;
633 bool m_deallocate;
634};
635
636#ifdef EIGEN_ALLOCA
637
638template<typename Xpr, int NbEvaluations,
639 bool MapExternalBuffer = nested_eval<Xpr,NbEvaluations>::Evaluate && Xpr::MaxSizeAtCompileTime==Dynamic
640 >
641struct local_nested_eval_wrapper
642{
643 static const bool NeedExternalBuffer = false;
644 typedef typename Xpr::Scalar Scalar;
645 typedef typename nested_eval<Xpr,NbEvaluations>::type ObjectType;
646 ObjectType object;
647
648 EIGEN_DEVICE_FUNC
649 local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr)
650 {
651 EIGEN_UNUSED_VARIABLE(ptr);
652 eigen_internal_assert(ptr==0);
653 }
654};
655
656template<typename Xpr, int NbEvaluations>
657struct local_nested_eval_wrapper<Xpr,NbEvaluations,true>
658{
659 static const bool NeedExternalBuffer = true;
660 typedef typename Xpr::Scalar Scalar;
661 typedef typename plain_object_eval<Xpr>::type PlainObject;
662 typedef Map<PlainObject,EIGEN_DEFAULT_ALIGN_BYTES> ObjectType;
663 ObjectType object;
664
665 EIGEN_DEVICE_FUNC
666 local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr)
667 : object(ptr==0 ? reinterpret_cast<Scalar*>(Eigen::internal::aligned_malloc(sizeof(Scalar)*xpr.size())) : ptr, xpr.rows(), xpr.cols()),
668 m_deallocate(ptr==0)
669 {
670 if(NumTraits<Scalar>::RequireInitialization && object.data())
671 Eigen::internal::construct_elements_of_array(object.data(), object.size());
672 object = xpr;
673 }
674
675 EIGEN_DEVICE_FUNC
676 ~local_nested_eval_wrapper()
677 {
678 if(NumTraits<Scalar>::RequireInitialization && object.data())
679 Eigen::internal::destruct_elements_of_array(object.data(), object.size());
680 if(m_deallocate)
681 Eigen::internal::aligned_free(object.data());
682 }
683
684private:
685 bool m_deallocate;
686};
687
688#endif // EIGEN_ALLOCA
689
690template<typename T> class scoped_array : noncopyable
691{
692 T* m_ptr;
693public:
694 explicit scoped_array(std::ptrdiff_t size)
695 {
696 m_ptr = new T[size];
697 }
698 ~scoped_array()
699 {
700 delete[] m_ptr;
701 }
702 T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
703 const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
704 T* &ptr() { return m_ptr; }
705 const T* ptr() const { return m_ptr; }
706 operator const T*() const { return m_ptr; }
707};
708
709template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
710{
711 std::swap(a.ptr(),b.ptr());
712}
713
714} // end namespace internal
715
741#ifdef EIGEN_ALLOCA
742
743 #if EIGEN_DEFAULT_ALIGN_BYTES>0
744 // We always manually re-align the result of EIGEN_ALLOCA.
745 // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
746 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
747 #else
748 #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
749 #endif
750
751 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
752 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
753 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
754 : reinterpret_cast<TYPE*>( \
755 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
756 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
757 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
758
759
760 #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) \
761 Eigen::internal::local_nested_eval_wrapper<XPR_T,N> EIGEN_CAT(NAME,_wrapper)(XPR, reinterpret_cast<typename XPR_T::Scalar*>( \
762 ( (Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::NeedExternalBuffer) && ((sizeof(typename XPR_T::Scalar)*XPR.size())<=EIGEN_STACK_ALLOCATION_LIMIT) ) \
763 ? EIGEN_ALIGNED_ALLOCA( sizeof(typename XPR_T::Scalar)*XPR.size() ) : 0 ) ) ; \
764 typename Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::ObjectType NAME(EIGEN_CAT(NAME,_wrapper).object)
765
766#else
767
768 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
769 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
770 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
771 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
772
773
774#define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) typename Eigen::internal::nested_eval<XPR_T,N>::type NAME(XPR)
775
776#endif
777
778
779/*****************************************************************************
780*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
781*****************************************************************************/
782
783#if EIGEN_HAS_CXX17_OVERALIGN
784
785// C++17 -> no need to bother about alignment anymore :)
786
787#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign)
788#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
789#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
790#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size)
791
792#else
793
794// HIP does not support new/delete on device.
795#if EIGEN_MAX_ALIGN_BYTES!=0 && !defined(EIGEN_HIP_DEVICE_COMPILE)
796 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
797 EIGEN_DEVICE_FUNC \
798 void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
799 EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
800 EIGEN_CATCH (...) { return 0; } \
801 }
802 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
803 EIGEN_DEVICE_FUNC \
804 void *operator new(std::size_t size) { \
805 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
806 } \
807 EIGEN_DEVICE_FUNC \
808 void *operator new[](std::size_t size) { \
809 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
810 } \
811 EIGEN_DEVICE_FUNC \
812 void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
813 EIGEN_DEVICE_FUNC \
814 void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
815 EIGEN_DEVICE_FUNC \
816 void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
817 EIGEN_DEVICE_FUNC \
818 void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
819 /* in-place new and delete. since (at least afaik) there is no actual */ \
820 /* memory allocated we can safely let the default implementation handle */ \
821 /* this particular case. */ \
822 EIGEN_DEVICE_FUNC \
823 static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
824 EIGEN_DEVICE_FUNC \
825 static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
826 EIGEN_DEVICE_FUNC \
827 void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
828 EIGEN_DEVICE_FUNC \
829 void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
830 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
831 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
832 EIGEN_DEVICE_FUNC \
833 void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
834 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
835 } \
836 typedef void eigen_aligned_operator_new_marker_type;
837#else
838 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
839#endif
840
841#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
842#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
843 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool( \
844 ((Size)!=Eigen::Dynamic) && \
845 (((EIGEN_MAX_ALIGN_BYTES>=16) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES )==0)) || \
846 ((EIGEN_MAX_ALIGN_BYTES>=32) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/2)==0)) || \
847 ((EIGEN_MAX_ALIGN_BYTES>=64) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/4)==0)) )))
848
849#endif
850
851/****************************************************************************/
852
877template<class T>
878class aligned_allocator : public std::allocator<T>
879{
880public:
881 typedef std::size_t size_type;
882 typedef std::ptrdiff_t difference_type;
883 typedef T* pointer;
884 typedef const T* const_pointer;
885 typedef T& reference;
886 typedef const T& const_reference;
887 typedef T value_type;
888
889 template<class U>
890 struct rebind
891 {
892 typedef aligned_allocator<U> other;
893 };
894
895 aligned_allocator() : std::allocator<T>() {}
896
897 aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
898
899 template<class U>
900 aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
901
903
904 #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0)
905 // In gcc std::allocator::max_size() is bugged making gcc triggers a warning:
906 // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807
907 // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
908 size_type max_size() const {
909 return (std::numeric_limits<std::ptrdiff_t>::max)()/sizeof(T);
910 }
911 #endif
912
913 pointer allocate(size_type num, const void* /*hint*/ = 0)
914 {
915 internal::check_size_for_overflow<T>(num);
916 return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
917 }
918
919 void deallocate(pointer p, size_type /*num*/)
920 {
921 internal::aligned_free(p);
922 }
923};
924
925//---------- Cache sizes ----------
926
927#if !defined(EIGEN_NO_CPUID)
928# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
929# if defined(__PIC__) && EIGEN_ARCH_i386
930 // Case for x86 with PIC
931# define EIGEN_CPUID(abcd,func,id) \
932 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
933# elif defined(__PIC__) && EIGEN_ARCH_x86_64
934 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
935 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
936# define EIGEN_CPUID(abcd,func,id) \
937 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
938# else
939 // Case for x86_64 or x86 w/o PIC
940# define EIGEN_CPUID(abcd,func,id) \
941 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
942# endif
943# elif EIGEN_COMP_MSVC
944# if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
945# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
946# endif
947# endif
948#endif
949
950namespace internal {
951
952#ifdef EIGEN_CPUID
953
954inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
955{
956 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
957}
958
959inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
960{
961 int abcd[4];
962 l1 = l2 = l3 = 0;
963 int cache_id = 0;
964 int cache_type = 0;
965 do {
966 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
967 EIGEN_CPUID(abcd,0x4,cache_id);
968 cache_type = (abcd[0] & 0x0F) >> 0;
969 if(cache_type==1||cache_type==3) // data or unified cache
970 {
971 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
972 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
973 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
974 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
975 int sets = (abcd[2]); // C[31:0]
976
977 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
978
979 switch(cache_level)
980 {
981 case 1: l1 = cache_size; break;
982 case 2: l2 = cache_size; break;
983 case 3: l3 = cache_size; break;
984 default: break;
985 }
986 }
987 cache_id++;
988 } while(cache_type>0 && cache_id<16);
989}
990
991inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
992{
993 int abcd[4];
994 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
995 l1 = l2 = l3 = 0;
996 EIGEN_CPUID(abcd,0x00000002,0);
997 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
998 bool check_for_p2_core2 = false;
999 for(int i=0; i<14; ++i)
1000 {
1001 switch(bytes[i])
1002 {
1003 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
1004 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
1005 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
1006 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1007 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1008 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
1009 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
1010 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
1011 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
1012 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
1013 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
1014 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
1015 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
1016 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1017 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
1018 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
1019 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
1020 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
1021 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
1022 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
1023 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
1024 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
1025 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
1026 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
1027 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
1028 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
1029 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
1030 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
1031 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
1032 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
1033 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
1034 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
1035 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
1036 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
1037 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
1038 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
1039 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
1040 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
1041 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
1042 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
1043 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
1044 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1045 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
1046 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
1047 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
1048 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
1049 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
1050 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
1051 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
1052 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
1053 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
1054 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
1055 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
1056 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
1057 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
1058 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
1059 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
1060
1061 default: break;
1062 }
1063 }
1064 if(check_for_p2_core2 && l2 == l3)
1065 l3 = 0;
1066 l1 *= 1024;
1067 l2 *= 1024;
1068 l3 *= 1024;
1069}
1070
1071inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
1072{
1073 if(max_std_funcs>=4)
1074 queryCacheSizes_intel_direct(l1,l2,l3);
1075 else if(max_std_funcs>=2)
1076 queryCacheSizes_intel_codes(l1,l2,l3);
1077 else
1078 l1 = l2 = l3 = 0;
1079}
1080
1081inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
1082{
1083 int abcd[4];
1084 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1085
1086 // First query the max supported function.
1087 EIGEN_CPUID(abcd,0x80000000,0);
1088 if(static_cast<numext::uint32_t>(abcd[0]) >= static_cast<numext::uint32_t>(0x80000006))
1089 {
1090 EIGEN_CPUID(abcd,0x80000005,0);
1091 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
1092 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1093 EIGEN_CPUID(abcd,0x80000006,0);
1094 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
1095 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
1096 }
1097 else
1098 {
1099 l1 = l2 = l3 = 0;
1100 }
1101}
1102#endif
1103
1106inline void queryCacheSizes(int& l1, int& l2, int& l3)
1107{
1108 #ifdef EIGEN_CPUID
1109 int abcd[4];
1110 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
1111 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
1112 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
1113
1114 // identify the CPU vendor
1115 EIGEN_CPUID(abcd,0x0,0);
1116 int max_std_funcs = abcd[0];
1117 if(cpuid_is_vendor(abcd,GenuineIntel))
1118 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1119 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
1120 queryCacheSizes_amd(l1,l2,l3);
1121 else
1122 // by default let's use Intel's API
1123 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1124
1125 // here is the list of other vendors:
1126// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
1127// ||cpuid_is_vendor(abcd,"CyrixInstead")
1128// ||cpuid_is_vendor(abcd,"CentaurHauls")
1129// ||cpuid_is_vendor(abcd,"GenuineTMx86")
1130// ||cpuid_is_vendor(abcd,"TransmetaCPU")
1131// ||cpuid_is_vendor(abcd,"RiseRiseRise")
1132// ||cpuid_is_vendor(abcd,"Geode by NSC")
1133// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
1134// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
1135// ||cpuid_is_vendor(abcd,"NexGenDriven")
1136 #else
1137 l1 = l2 = l3 = -1;
1138 #endif
1139}
1140
1143inline int queryL1CacheSize()
1144{
1145 int l1(-1), l2, l3;
1146 queryCacheSizes(l1,l2,l3);
1147 return l1;
1148}
1149
1152inline int queryTopLevelCacheSize()
1153{
1154 int l1, l2(-1), l3(-1);
1155 queryCacheSizes(l1,l2,l3);
1156 return (std::max)(l2,l3);
1157}
1158
1159} // end namespace internal
1160
1161} // end namespace Eigen
1162
1163#endif // EIGEN_MEMORY_H
STL compatible allocator to use with types requiring a non standrad alignment.
Definition: Memory.h:879
Namespace containing all symbols from the Eigen library.
Definition: Core:141
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
Definition: Constants.h:22