next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000087019 seconds elapsed
 -- 0.000862019 seconds elapsed
 -- 0.000249993 seconds elapsed
 -- 0.000082361 seconds elapsed
 -- 0.000740002 seconds elapsed
 -- 0.000208572 seconds elapsed
 -- 0.000058717 seconds elapsed
 -- 0.00006014 seconds elapsed
 -- 0.000152836 seconds elapsed
 -- 0.000095852 seconds elapsed
 -- 0.000704148 seconds elapsed
 -- 0.000215689 seconds elapsed
 -- 0.000095557 seconds elapsed
 -- 0.00065908 seconds elapsed
 -- 0.00021451 seconds elapsed
 -- 0.000080642 seconds elapsed
 -- 0.00064952 seconds elapsed
 -- 0.000218214 seconds elapsed
 -- 0.0000808 seconds elapsed
 -- 0.000683903 seconds elapsed
 -- 0.000232333 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000078968 seconds elapsed
 -- 0.00080516 seconds elapsed
 -- 0.000201838 seconds elapsed
 -- 0.000076725 seconds elapsed
 -- 0.000713826 seconds elapsed
 -- 0.000200362 seconds elapsed
 -- 0.000160721 seconds elapsed
 -- 0.000744979 seconds elapsed
 -- 0.000265245 seconds elapsed
 -- 0.000119881 seconds elapsed
 -- 0.000673979 seconds elapsed
 -- 0.000220975 seconds elapsed
 -- 0.000086322 seconds elapsed
 -- 0.000647599 seconds elapsed
 -- 0.000223372 seconds elapsed
 -- 0.000086917 seconds elapsed
 -- 0.000729053 seconds elapsed
 -- 0.000218479 seconds elapsed
 -- 0.000082174 seconds elapsed
 -- 0.000825084 seconds elapsed
 -- 0.000214833 seconds elapsed
 -- 0.000082732 seconds elapsed
 -- 0.000761374 seconds elapsed
 -- 0.000208258 seconds elapsed
 -- 0.000085324 seconds elapsed
 -- 0.000683452 seconds elapsed
 -- 0.000213361 seconds elapsed
 -- 0.000086797 seconds elapsed
 -- 0.000698456 seconds elapsed
 -- 0.000210067 seconds elapsed
 -- 0.000085798 seconds elapsed
 -- 0.000687612 seconds elapsed
 -- 0.000211714 seconds elapsed
 -- 0.000082805 seconds elapsed
 -- 0.000733184 seconds elapsed
 -- 0.000207357 seconds elapsed
 -- 0.000090064 seconds elapsed
 -- 0.00100804 seconds elapsed
 -- 0.000308154 seconds elapsed
 -- 0.000095833 seconds elapsed
 -- 0.00101866 seconds elapsed
 -- 0.000329765 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.