next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000092112 seconds elapsed
 -- 0.000826234 seconds elapsed
 -- 0.000232365 seconds elapsed
 -- 0.000085077 seconds elapsed
 -- 0.000751175 seconds elapsed
 -- 0.000221626 seconds elapsed
 -- 0.000073268 seconds elapsed
 -- 0.000063502 seconds elapsed
 -- 0.000177942 seconds elapsed
 -- 0.000085705 seconds elapsed
 -- 0.00068696 seconds elapsed
 -- 0.000206248 seconds elapsed
 -- 0.000082668 seconds elapsed
 -- 0.000643335 seconds elapsed
 -- 0.00020194 seconds elapsed
 -- 0.00008715 seconds elapsed
 -- 0.000652459 seconds elapsed
 -- 0.000212965 seconds elapsed
 -- 0.000090598 seconds elapsed
 -- 0.000676681 seconds elapsed
 -- 0.000217744 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000096286 seconds elapsed
 -- 0.000757175 seconds elapsed
 -- 0.00022899 seconds elapsed
 -- 0.000096882 seconds elapsed
 -- 0.000690808 seconds elapsed
 -- 0.000217087 seconds elapsed
 -- 0.000087255 seconds elapsed
 -- 0.000664639 seconds elapsed
 -- 0.000237209 seconds elapsed
 -- 0.000083812 seconds elapsed
 -- 0.000638401 seconds elapsed
 -- 0.00019643 seconds elapsed
 -- 0.000078547 seconds elapsed
 -- 0.000679052 seconds elapsed
 -- 0.000202927 seconds elapsed
 -- 0.000080706 seconds elapsed
 -- 0.000752849 seconds elapsed
 -- 0.000272898 seconds elapsed
 -- 0.000102457 seconds elapsed
 -- 0.000805995 seconds elapsed
 -- 0.000223653 seconds elapsed
 -- 0.000087416 seconds elapsed
 -- 0.000703185 seconds elapsed
 -- 0.000204018 seconds elapsed
 -- 0.00010817 seconds elapsed
 -- 0.000677196 seconds elapsed
 -- 0.000221134 seconds elapsed
 -- 0.000081197 seconds elapsed
 -- 0.000607598 seconds elapsed
 -- 0.000212739 seconds elapsed
 -- 0.00008432 seconds elapsed
 -- 0.000613542 seconds elapsed
 -- 0.000221441 seconds elapsed
 -- 0.000079992 seconds elapsed
 -- 0.000658985 seconds elapsed
 -- 0.000211704 seconds elapsed
 -- 0.000086293 seconds elapsed
 -- 0.000951324 seconds elapsed
 -- 0.000321528 seconds elapsed
 -- 0.000081646 seconds elapsed
 -- 0.000992049 seconds elapsed
 -- 0.000324376 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.