next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000083161 seconds elapsed
 -- 0.000698006 seconds elapsed
 -- 0.000214921 seconds elapsed
 -- 0.000080001 seconds elapsed
 -- 0.000617285 seconds elapsed
 -- 0.000199761 seconds elapsed
 -- 0.000050961 seconds elapsed
 -- 0.00004892 seconds elapsed
 -- 0.000157321 seconds elapsed
 -- 0.000077281 seconds elapsed
 -- 0.000561405 seconds elapsed
 -- 0.000193402 seconds elapsed
 -- 0.000078761 seconds elapsed
 -- 0.000533325 seconds elapsed
 -- 0.000180082 seconds elapsed
 -- 0.000076441 seconds elapsed
 -- 0.000518244 seconds elapsed
 -- 0.000184682 seconds elapsed
 -- 0.000076121 seconds elapsed
 -- 0.000569845 seconds elapsed
 -- 0.000185522 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000080521 seconds elapsed
 -- 0.000642605 seconds elapsed
 -- 0.000185841 seconds elapsed
 -- 0.000080121 seconds elapsed
 -- 0.000565565 seconds elapsed
 -- 0.000180122 seconds elapsed
 -- 0.000076961 seconds elapsed
 -- 0.000515644 seconds elapsed
 -- 0.000177841 seconds elapsed
 -- 0.000078361 seconds elapsed
 -- 0.000504964 seconds elapsed
 -- 0.000174161 seconds elapsed
 -- 0.000077681 seconds elapsed
 -- 0.000530844 seconds elapsed
 -- 0.000177841 seconds elapsed
 -- 0.000076401 seconds elapsed
 -- 0.000534364 seconds elapsed
 -- 0.000169361 seconds elapsed
 -- 0.00008244 seconds elapsed
 -- 0.000642325 seconds elapsed
 -- 0.000192282 seconds elapsed
 -- 0.000088721 seconds elapsed
 -- 0.000586205 seconds elapsed
 -- 0.000194282 seconds elapsed
 -- 0.000081 seconds elapsed
 -- 0.000532324 seconds elapsed
 -- 0.000185162 seconds elapsed
 -- 0.000077841 seconds elapsed
 -- 0.000527844 seconds elapsed
 -- 0.000216041 seconds elapsed
 -- 0.000080721 seconds elapsed
 -- 0.000506804 seconds elapsed
 -- 0.000184641 seconds elapsed
 -- 0.00008 seconds elapsed
 -- 0.000559044 seconds elapsed
 -- 0.000245322 seconds elapsed
 -- 0.000079761 seconds elapsed
 -- 0.000796646 seconds elapsed
 -- 0.000296282 seconds elapsed
 -- 0.0000814 seconds elapsed
 -- 0.000785886 seconds elapsed
 -- 0.000299642 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.