next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000067993 seconds elapsed
 -- 0.000698504 seconds elapsed
 -- 0.000166796 seconds elapsed
 -- 0.000072433 seconds elapsed
 -- 0.000625411 seconds elapsed
 -- 0.000173635 seconds elapsed
 -- 0.000061784 seconds elapsed
 -- 0.000060113 seconds elapsed
 -- 0.000142047 seconds elapsed
 -- 0.000065499 seconds elapsed
 -- 0.000561065 seconds elapsed
 -- 0.000146632 seconds elapsed
 -- 0.000061951 seconds elapsed
 -- 0.00051641 seconds elapsed
 -- 0.000367989 seconds elapsed
 -- 0.000062988 seconds elapsed
 -- 0.000542626 seconds elapsed
 -- 0.000156001 seconds elapsed
 -- 0.000083624 seconds elapsed
 -- 0.000752194 seconds elapsed
 -- 0.000183314 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.00008122 seconds elapsed
 -- 0.000672157 seconds elapsed
 -- 0.000168253 seconds elapsed
 -- 0.000129039 seconds elapsed
 -- 0.000898865 seconds elapsed
 -- 0.000523388 seconds elapsed
 -- 0.000068594 seconds elapsed
 -- 0.000534971 seconds elapsed
 -- 0.000146049 seconds elapsed
 -- 0.000072256 seconds elapsed
 -- 0.000654453 seconds elapsed
 -- 0.000169374 seconds elapsed
 -- 0.000077076 seconds elapsed
 -- 0.000938328 seconds elapsed
 -- 0.000230027 seconds elapsed
 -- 0.000059213 seconds elapsed
 -- 0.000543735 seconds elapsed
 -- 0.000149097 seconds elapsed
 -- 0.000069372 seconds elapsed
 -- 0.000653544 seconds elapsed
 -- 0.000180578 seconds elapsed
 -- 0.000121074 seconds elapsed
 -- 0.000668699 seconds elapsed
 -- 0.000172408 seconds elapsed
 -- 0.000067001 seconds elapsed
 -- 0.00054444 seconds elapsed
 -- 0.000272218 seconds elapsed
 -- 0.000063633 seconds elapsed
 -- 0.00052835 seconds elapsed
 -- 0.000149545 seconds elapsed
 -- 0.000066911 seconds elapsed
 -- 0.000525263 seconds elapsed
 -- 0.000163344 seconds elapsed
 -- 0.00006379 seconds elapsed
 -- 0.000557814 seconds elapsed
 -- 0.000152647 seconds elapsed
 -- 0.000071294 seconds elapsed
 -- 0.000817193 seconds elapsed
 -- 0.000264462 seconds elapsed
 -- 0.0000749 seconds elapsed
 -- 0.000814693 seconds elapsed
 -- 0.000277284 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.