Valgrind Documentation

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 AUTHORS

Permission isgranted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with
no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled The
GNU Free Documentation License.

This is the top level of Valgrind's documentation tree. The documentation is contained in six logically separate
documents, as listed in the following Table of Contents. To get started quickly, read the Valgrind Quick Start Guide.
For full documentation on Vagrind, read the Valgrind User Manual.

Valgrind Documentation

Table of Contents

The Valgrind QUICK SEIT GUITEuiiiiii ettt e e et e e et e e e et e eenes iii
ValgriNd USEr IMBNUALcoeeiiieii ettt et e et r e et e e et et e e et et e e e e rba s iv
VAN FAQ ettt ettt cIxxviii
Valgrind Technical DOCUMENTAIONu.iiiiiti ettt e e et e e e e e eeaa s viii
Valgrind DistribDUtion DOCUMENESc.uuuiiiiti ettt e e e et e e e et e e e e et eeeab e e e eneaas XVii
GINU LICEINSES ..ottt ettt ettt ettt ettt e ettt e et ettt oo e et bt et e e be e e et ettt e e eete e e e ee bt e e e eebeaeaenn clxiv

The Valgrind Quick Start Guide

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

The Valgrind Quick Start Guide

Table of Contents

The Valgrind QUICK SEAIT GUITEuuiiiiii ettt ettt ettt e et e e e e eneans 1
O | gL oo (8 1o o RO TP PSPPSR 1
2. Preparing YOUE PIOGIAIMu.ueieeeteteett et eet et eet e r et et e et e et s et e ee e et e bb e et e bb e e e et e et e ba e e e ebaes 1
3. Running your program under MemChECKiiiiiiiiiii e 1
4. Interpreting MemChECK'S OUEPULeieetiie ettt et e e e e e e eenens 1
O V= £ PPN 3
6. MOIE INFOMMELION ...ttt ettt e e et e ettt e ettt r e ettt e et ent e e e e enbneeeenbnaeeees 3

The Valgrind Quick Start Guide

The Valgrind Quick Start Guide

1. Introduction

The Vagrind tool suite provides a number of debugging and profiling tools that help you make your programs faster
and more correct. The most popular of these toolsis called Memcheck. It can detect many memory-related errors that
are common in C and C++ programs and that can lead to crashes and unpredictable behaviour.

Therest of this guide gives the minimum information you need to start detecting memory errorsin your program with
Memcheck. For full documentation of Memcheck and the other tools, please read the User Manual .

2. Preparing your program

Compileyour programwith - g toinclude debugging information so that Memcheck's error messagesinclude exact line
numbers. Using - Q0 is also agood idea, if you can tolerate the Slowdown. With - OL line numbersin error messages
can be inaccurate, although generally speaking running Memcheck on code compiled at - Ol works fairly well, and
the speed improvement compared to running - Q0 is quite significant. Use of - O2 and above is not recommended as
Memcheck occasionally reports uninitialised-value errors which don't really exist.

3. Running your program under Memcheck

If you normally run your program like this:
nyprog argl arg2
Use this command line:
val grind --I|eak-check=yes nyprog argl arg2
Memcheck is the default tool. The - - | eak- check option turns on the detailed memory leak detector.

Your program will run much slower (eg. 20 to 30 times) than normal, and use a lot more memory. Memcheck will
issue messages about memory errors and leaks that it detects.

4. Interpreting Memcheck's output

Here's an example C program, in afile called a.c, with amemory error and a memory leak.

#i ncl ude <stdlib. h>

void f(void)
{
int* x = malloc(10 * sizeof(int));
x[10] = O; /1 problem 1: heap bl ock overrun
} /1 problem2: menory leak -- x not freed

i nt mai n(voi d)
{
FO);

return O;

The Valgrind Quick Start Guide

}

Most error messages look like the following, which describes problem 1, the heap block overrun:

==19182== |Invalid wite of size 4

==19182== at 0x804838F: f (exanple.c:6)

==19182== by Ox80483AB: nmmin (exanple.c:11)

==19182== Address 0x1BA45050 is O bytes after a bl ock of size 40 alloc'd
==19182== at Ox1B8FF5CD:. mall oc (vg_replace_malloc.c: 130)

==19182== by 0x8048385: f (exanple.c:5)

==19182== by Ox80483AB: nmin (exanple.c:11)

Things to notice:
» Thereisalot of information in each error message; read it carefully.
e The 19182 isthe process ID; it's usually unimportant.

o Thefirstline ("Invalid write...") tellsyou what kind of error it is. Here, the program wrote to some memory it should
not have due to a heap block overrun.

» Below thefirst lineisastack trace telling you where the problem occurred. Stack traces can get quite large, and be
confusing, especially if you are using the C++ STL. Reading them from the bottom up can help. If the stack trace
isnot big enough, usethe - - num cal | er s option to make it bigger.

» The code addresses (eg. 0x804838F) are usually unimportant, but occasionally crucial for tracking down weirder
bugs.

* Some error messages have a second component which describes the memory addressinvolved. This one shows that
the written memory isjust past the end of ablock allocated with malloc() on line 5 of example.c.

It'sworth fixing errors in the order they are reported, as later errors can be caused by earlier errors. Failing to do this
isacommon cause of difficulty with Memcheck.

Memory leak messages look like this:

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

The stack trace tells you where the leaked memory was all ocated. Memcheck cannot tell you why the memory leaked,
unfortunately. (Ignore the "vg_replace_malloc.c", that's an implementation detail .)

There are several kinds of leaks; the two most important categories are:
 "definitely lost": your program is leaking memory -- fix it!

 "probably lost": your program is leaking memory, unless you're doing funny things with pointers (such as moving
them to point to the middle of a heap block).

Memcheck also reports uses of uninitialised values, most commonly with the message "Conditional jump or move
depends on uninitialised valug(s)". It can be difficult to determine the root cause of these errors. Try using the - -

track- ori gi ns=yes to get extrainformation. This makes Memcheck run slower, but the extra information you
get often saves alot of time figuring out where the uninitialised values are coming from.

The Valgrind Quick Start Guide

If you don't understand an error message, please consult Explanation of error messages from Memcheck inthe Valgrind
User Manual which has examples of all the error messages Memcheck produces.

5. Caveats

Memcheck is not perfect; it occasionally producesfalse positives, and there are mechanisms for suppressing these (see
Suppressing errors in the Valgrind User Manual). However, it is typically right 99% of the time, so you should be
wary of ignoring its error messages. After all, you wouldn't ignore warning messages produced by a compiler, right?
The suppression mechanismis also useful if Memcheck isreporting errorsin library code that you cannot change. The
default suppression set hides alot of these, but you may come across more.

Memcheck cannot detect every memory error your program has. For example, it can't detect out-of-range reads or
writes to arrays that are allocated statically or on the stack. But it should detect many errors that could crash your
program (eg. cause a segmentation fault).

Try to make your program so clean that Memcheck reports no errors. Once you achieve this state, it is much easier to
see when changes to the program cause Memcheck to report new errors. Experience from several years of Memcheck
use shows that it is possible to make even huge programs run Memcheck-clean. For example, large parts of KDE,
OpenOffice.org and Firefox are Memcheck-clean, or very closeto it.

6. More information

Please consult the Valgrind FAQ and the Valgrind User Manual, which have much more information. Note that the
other toolsin the Valgrind distribution can be invoked with the - - t ool option.

Valgrind User Manual

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind User Manual

Table of Contents

[gL oo (8 1o o RO PSP SPPPTTR 1
1.1 AN OVEVIEW OF VAIGNNG ...ttt e e e e e e e e naen s 1
1.2. HOw tO navigate thiS ManUalccooiuiiiiiiii et et e e e e e eeees 1

2. Using and understanding the Valgrind COMEc.uuuiiiiii it 3
2.1. What Valgrind does With YOUF PrOGQIaIMcieuuueiiii ettt e et e et e e 3
2.2, GEIING STAMTEA ... ettt et ettt et enaaas 4
2.3, THE COMIMENTAIY ...eeetieieiii ettt ettt ettt ettt et e et e et e et e e b e et e ebe e et e nbeaeeenae e e eenenns 4
2.4, REPOIING OF BITOIS ...ttt ettt ettt e e et e et et e et et e e et et e e e e aaa s 6
2.5, SUPPIESSING EITOFS ...eeeett e eetete e e e eet e e et et e e et et e e et et e e et et e e et et e e et e b e e et e ba e e e e ebe e e e e et e eeeebanaes 6
2.6, DEDUGINTOM ...ttt ettt e et e e et e e et e e et e e e e e e 9
2.7. Core CommaNd-liNE OPLIONSceeetieeeeiti ettt e e et e e e et eeenaa s 9

2.7.1. TOOI-SEIECHION OPLION ..eeiieiiii ettt ettt et e e et e e e aaa s 9
2.7.2. BBSIC OPUIONS ..ttt ettt ettt ettt ettt et e ettt r e 10
2.7.3. Error-related OPLiONSuieiiiiiieeiii ettt 13
2.7.4, MallOC-TElated OPLIONSuuiiiiii ettt ettt e et e e e e e e e e ene e eeees 19
2.7.5. UNCOMMON OPLIONS ..ttt ettt ettt ettt ettt e et e e e e e e e enan s 20
2.7.6. DEDUGGING OPLIONS ...ttt ettt ettt ettt e e et e e e et e e e e eb e e e enan s 28
2.7.7. Setting DEfaUlt OPLIONSuieiiii ettt e e et e e et e eena e eees 28
2.7.8. Dynamically Changing OptiONScc.uuuieiiitiieeiitiie ettt e e e e 29
2.8. SUPPOIT FOF THMEAASceeeee ettt ettt et e e e e e e enaans 30
2.8.1. Scheduling and Multi-Thread Performancec.uoviiiiiiiiiciii e 30
2.9. Handling Of SIGNaISeuuiiiiiiiee ettt et 31
2.10. EXECULION TIEES ...tetti ettt ettt ettt ettt ettt e ettt e ettt e e et et e e et e bt e e e eeba s e e ettt aeeeenbnaaeeee 31
2.11. Building and INstalling Valgrindcooeuuniiiiieie e 34
212, 1f YOU HAVE PrODIEIMS ...ttt e e 35
P I I 00T = o] SO PP PP PO PUPPPPTRRPPIN 35
214, AN EXGMPIE RUN <.ttt ettt e e et et e 37
2.15. Warning Messages YOU Might SEEcoouiiiiiii e 38

3. Using and understanding the Valgrind core: AdVanCed TOPICSccuuuueieriuieiiiiee et e et e e e e 40
3.1. The Client ReqUESE MECNENISITieiiie ittt ettt e e n e e enaans 40
3.2. Debugging your program using Valgrind gdbserver and GDBcccoiviiiiiiiieiiiii e 42

3.2.1. Quick Start: debugging iN 3 SEEPSuuieeei et 42
3.2.2. Valgrind gdbserver overall organiSationcoeuuuieeiiriieeiii e 43
3.2.3. Connecting GDB to a Valgrind gabSEIVEYcc.uuiiiiiiiiieiii e e 43
3.2.4. Connecting to an ANAroid GADSEIVEYcoouuiiiiiiiii e 45
3.2.5. Monitor command handling by the Valgrind gdbserver ... 46
3.2.6. Valgrind gdbserver thread infOrmMationocoeuuuiieiiiie e 47
3.2.7. Examining and modifying Valgrind shadow registersooovvviiieiiiiiiieeiieeee e 47
3.2.8. Limitations of the Valgrind gabhSErVErcc.uuuiiiiiiiiiiei e 48
3.2.9. vgdb command [iN€ OPLIONSuuiiiiiii ettt e et e e e e e eees 52
3.2.10. Valgrind monitor COMMENGSccuuuniierineeeitii e eeti et e e et e e e e e e ena e e e eni e e ennens 53
3.3, FUNCLION WIBPPING ...ttt ettt ettt ettt et e ettt e et et e ettt e e e et e e e et e e e e be s 56
331 A SIMPIE EXAMPIE ...t 56
3.3.2. Wrapping SPECITICALIONScceurueeiiiti e et ettt e et e et e e et e e e e et e e e enae e eene 57
3.3.3. WIapPiNg SEMANTICSeeeeiieeeeiti ettt e e et e et e et eeeeaa s 58
334 DEDUGING . eeetieeeett ettt ettt ettt e et e e et e et 59
3.3.5. Limitations - CONIOl FIOWuiiiiiieiiii e e 59
3.3.6. Limitations - origina fuNCtioN SIGNBEUIEScceeutiieiiii et e eai e e 60
337 EXAMPIES .. 60

4. Memcheck: & MeMOrY €TOF QELECTONciieuee i eeeeti ettt ettt e e ettt e et et et et e et e e e rae e eeanans 61

A1, OVEIVIBW ..ottt ettt e e ettt 4ottt e et E et b et et e e e e e et 61

Valgrind User Manual

4.2. Explanation of error messages from MemMChECKc.uiiiiiiiiiiiin e e 61
4.2.1. lllegal read / 111egal WIItE EITOIS i e e e s 61
4.2.2. Use of UninitialiSEd VEIUESiiiiiiieiiie et 62
4.2.3. Use of uninitialised or unaddressable valuesin system callsccoocviiiiiiiiiiiiiinccs 63
A 1= o = (== PPN 63
4.2.5. When a heap block is freed with an inappropriate deallocation functioncoeeeeenniis 64
4.2.6. Overlapping source and destination BlOCKSccuiiiiiiiiiiicii e, 64
4.2.7. FiShy argUMENt VBIUESc.uuiiiiieii e ce e e e e e e e e e e e e e et e et e e et e e ean e eaa s 65
4.2.8. MemOry 1€aK AELECHIONciii i e e e e e e e et e e e e e et e e aanees 65

4.3. Memcheck Command-Ling OPtiONSciuuiiiiiiiii e e e e e e e e e eaes 68

4.4, Writing SUPPIESSION FIlES ..ouuiiiiiei e e e e e e e e e e 73

4.5. Details of Memcheck's checking MaChineryccoooviiii i 75
A5. 1. Vaid-value (V) DItS ..uuuiiiiiiieiii e 75
4.5.2. Valid-address (A) DTS .ooeeuuieiiiiiiee e 76
4.5.3. PULting it all tOgEINEr ... oeeii e 77

4.6. Memcheck MONItOr COMMENGSccuuueriiiie et e ettt e e et e e et e e e et e e e e et e e e eaan e eennnns 78

B O 1= o Q= o (U1 83

4.8. Memory Pools. describing and working with custom alloCatorscoeevviieiiiieiiii e 84

4.9. Debugging MPI Parallel Programs with Valgrindccooouiiiiiiiiiiiii e 86
4.9.1. Building and installing the WIapPerSc.uiiiiiiiii e 87
F e B €1 111 o TR - (= 87
4.9.3. Controlling the Wrapper lHBrarycooiiiiii e e 88
e B ¥ o1 o] PPN 88
e T 1Yo = ST 89
4.9.6. WIILING NEW WIBPPELS .vuueiiteiii et e ettt e e e e e e et e e et e e et e e et e e et e e et e e et e e et e e et e eaneeenss 89
4.9.7. What to expect When using the WIaPPEI'S ... cvvuiiii e e e e e e e e 90

5. Cachegrind: a cache and branch-prediction profilercooiiiiiii i, 91

LI I O = g 1 PP 91

5.2. Using Cachegrind, cg_annotate and CO_ MEIgEcvvuniiiieiii e e e e e e e e et e e e e e eens 91
5.2.1. RUNNING CaChegringouiiiiiii e e e e e e e e e e eaes 92
LI © 0 1 o 18| T = PP 92
5.2.3. RUNNING CO_ANMNOLAEEuuiiiiieiii i ee e ee e e e e e e e e e e e e e e et e e e e e an e e et e e eaneeeenss 93
5.2.4. The OULPUL Preambleiiiiiii e e e e e e e e e e e e e e eees 93
5.2.5. The Global and FUNction-1evel COUNLSiiiiiiiiiiiiii e 94
5.2.6. LiNe-by-liN@ COUNESiiiiii e e e et eeaaes 94
5.2.7. Annotating Assembly Code Programseeiiuiiiiiiieiii e e e e e e e e e e 96
I T o (] o 0 = o 1 P 96
5.2.9. CO_aNNOtate WaITINGSivviiiii e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e e e eeannas 96
5.2.10. Unusual ANNOLALION CASESeeeerieeeeiiiieetiiis e ettt e e e eet e e eat e e e st e e eeat e e eeatnaeeesennns 96
5.2.11. Merging Profiles With C_ MErgE ... covvn i 97
5.2.12. Differencing Profiles with cg_diff ..o, 98

5.3. Cachegrind Command-ling OPtiONScciuuiiiiiiiiii e e e e e e e e eaans 98

5.4. cg_annotate Command-liNg OPLIONScc.uiiiiiiiii e e e e e e e e e e e eenas 99

5.5. cg_merge Command-ling€ OPtiONScciuiiiiiii e 100

5.6. cg_diff Command-line OPLiONSiiiiiiiiii e e e e e e 100

5.7. Acting on Cachegrind's INfFOrMELIONuiiiiiiiiiie e e e e e e e e eees 100

R A 001U = o g T B = 11 PR 101
5.8.1. Cache SImUlation SPECITICSivvuiiiii e e e e e e 102
5.8.2. Branch SImulation SPECITICSvvvuiiii i e e e e e 102
L R I oo U - os Y PPN 103

5.9. Implementation DELailSoiiiiiii e e 104
5.9.1. HOW Cachegrind WOTKScuuuiiiiieii e e e e e e e e e e e e e e ana s 104
5.9.2. Cachegrind Output File FOIMELccvuiiiiiiiiei e e e e e e eaes 104

6. Callgrind: a call-graph generating cache and branch prediction profilerccooviiiiiiiiiiii e, 106

Vi

Valgrind User Manual

B.1. OVEIVIEW ... ieeiti ettt e ettt e e ettt e e e ettt e e ettt e e e e e et s e e et et s e e et e bt e e ettt e e e e e bt n e e e et neeeeat e eaees 106
200 e I g Tox) 1 7= | Y 106
B.1.2. BASIC USAJE ..ovvueeiiii ettt ettt e et e a e 107

O N0 V7 g o= U o N 108
6.2.1. Multiple profiling dumps from 0Ne Program FUNceeiuuieeriieeeinreeiee e e e eenneeaens 108
6.2.2. Limiting the range of collected VENESociieiiii e 109
6.2.3. Counting global BUS BVENEScovuiii e 109
B.2.4. AVOIAING CYCIES ...uiiiiii ittt e e e e e e et e e et e e e e et e e e e eaaeees 110
O o] o 0o = 1 S 111

6.3. Callgrind Command-1ing OPLiONSccuuuiiiiiiiiii e e e e e e e e e e e e aaa s 111
6.3.1. DUMP Creation OPLIONSivuuiiieeei i ee e e e e e e e e e e e e e e et e e et e e st e e et r e e e eeaneeeen 111
(S Ao (Y71 Ao o) 0] 112
(SRCRCHN BT - Wero] 1= vt 1ol o] o1 To 0SS 112
6.3.4. Cost entity Separation OPLIONSuiiuiieiii i e e e e e e e e e e et e eaaaees 113
6.3.5. SIMUIBLION OPLIONS .. eevuieiiieii e e e e e e e e e e e e e e e e et e e et e e st e e et e eaneeannns 114
6.3.6. Cache SIMUIAiON OPLIONSciieeiii e e e e e e e e e e e e e e e et e e e e e aaeeaanaaes 114

6.4. Calgrind Monitor COMMANGSccvuuieiiieii et e e e e e e e e e et e s e e et e e et e e et e eaneeanns 115

6.5. Callgrind SPECITiC Client FEOUESEScivvi e e e e e e e aanas 115

6.6. callgrind_annotate Command-ling OPLIONScivuuiiiiiieii e e e e 116

6.7. callgrind_control Command-1ing OPLiONSciuuuiiiiieiiii e e eaaes 117

7. Helgrind: athread error QELECIOrciuuiiiii e e e e e e e e et e e e ean s 119

8 T @ = 4= 1 PR SPTRTSPPIN 119

7.2. Detected errors: Misuses of the POSIX pthreadS APlcooviiiiiiiiii e 119

7.3. Detected errors: Inconsistent LOCK Orderingsovvvuieiiiiiiii e e e e e e e e e e 120

7.4. Detected erors: Dat@ RACES .. .covvve ittt 122
741 A SIMPIE DA RACE ... ciiiiciiii et e e e e e 122
7.4.2. Helgrind's Race Detection AIQOrithm ..o 123
7.4.3. Interpreting RaCe ErTOr MESSAZESuuuiiiieiiiieeeiee e ee e e e e e e e e e e et e et e e e e aenns 126

7.5. Hints and Tips for Effective Use of HEIGINNGcoiiiiiiiiiii e 127

7.6. Helgrind Command-ling OPLiONSciiiuiiiiiii e e e e e e e e aeaas 131

7.7. Helgrind Monitor COMMEANASuuiiiieiiieiii e e e e e e e e e e et e e et e e et e e et e e et e e et esanaeenes 133

7.8. HElGriNd CHENt REGUESEScuuiiiiieiii et e e e e e e e e e e et e e e e s et e e et e eean s 134

7.9. A TO-DO List fOr HEIGINGeeeni e e e e e e e eeen 134

8. DRD: @ thread €rTOr UELECLOTiiiiii ettt e e e e e e et e e e et e e e e et e e e eaen s 136

ST O = o= 1 PRSPPI 136
8.1.1. Multithreaded Programming Paradigmscc.uiiiiiiiiiiiiciii e e 136
8.1.2. POSIX Threads Programming MOdelccoouiiiiiiiiiiii e 136
8.1.3. Multithreaded Programming Problemscoooiiiiiii e, 137
8.1.4. Data RACE DELECHION ...uiiiiii ettt e et e et e e e et e e e et e e e e et 137

S22 U L= oo I 0 PSPPI 138
8.2.1. DRD Command-1iNg OPLIONSceuuiiiiiieiiieti et ee e e s e et e e e e et e e et e e st e e e e aaanaes 138
8.2.2. Detected ErTors: Data RACESuiiiiiiieeiiii ettt 140
8.2.3. Detected Errors: LOCK CONLENIONuuuiiiiiiiee e 142
8.2.4. Detected Errors: Misuse of the POSIX threadS APloviiiiiiiiiiiiiii e 142
B.2.5, ClIENT REGUESES ...evvtieeiiii ettt ettt e ettt e e e et r e e e e et r e e e e atnraeeeatn s eeeeatnaeeeees 143
8.2.6. DEbUQQING CH+1L PrOQramSuueiiiiieiiieiieeei e e et e e e e s s e st e et e e st e e san e e st e eaanaeaanaes 145
8.2.7. Debugging GNOME Programsveiiiiiii e e e e e e e e e eaa s 146
8.2.8. Debugging BOOSt. Thread Programsccuuuieiuiieeiieeiieeee e e e e e e e e e e et e e eaeeeaneeee 146
8.2.9. Debugging OPENMP PrOgramSccuuuiiiiieiieee e ee e e e e e e e e e e e e e et e e e eaaaees 146
8.2.10. DRD and Custom Memory AlIOCAIOrScciuuieiiiieiiie e ea e 147
8.2.11. DRD Versus MEMCHECKuuuiiiiiiiiei et e e e e e eaa e e e 148
8.2.12. RESOUICE REGUITEMENLS ... evuuiiiieiiieeei e e e et e e et e e et e e et e e e et e e et e e et e ean e san e eanneaannaees 148
8.2.13. Hints and Tips for Effective USe of DRDc..oiiiiiiiiiii e 148

8.3. Using the POSIX Threads APl EffeCtiVEYooiiiiii e 149

Vii

Valgrind User Manual

8.3, L. MIULEX YIS .ttt iete ettt e e e e e e 149
8.3.2. ConditioN VANADIES ... 149
8.3.3. pthread _cond _timedwait and tiMEOULSviiiiiiiiiii e e 149

S S I 411 = 0] PP 150
ST = o [0 o PN 150
9. MaSSIT: @ hEAD PIOFIIEN ..t e 151
N O = o 1 PR PTRTSPPPIN 151
9.2. UsiNg MasSIf @and MS PriNtcouuiiiiiiii e e e e e e e e e e e e e et e e e e et e e et e e eanaees 151
0.2.1. AN EXaMPIE PrOGram .. .cue i e e e e e e e et e e 151
0.2.2. RUNNING MaSSif ..uuiiiiiiii e e e e e e e e e et e e e e et 152
9.2.3. RUNNING MS _PIiNE .ouuiiiiiii e e e e e e e e e e e e e et e e e et e e et e e st e e e e eeeneeaen 152
9.2.4. The OULPUL Preambleoiuiiiiii e e e e e e e e e e e 152
L 1 S X @ U1 01U = o PPN 153
9.2.6. The SNaPSNOL DELAIISuuiiiiiiii e e e e e e e e e e et e e et e e eaneee 155

S A A o] o 0 = 1 S 158
9.2.8. Measuring All MemOry iN @ PrOCESSciuueiiie e e e e e e e e e e e e eaas 158
9.2.9. Acting on Massif's INFOrMELIONccuuiiiiiieii e e e 159

9.3. USING MSSIT-VISUAIIZEN . .cevuiiiieii et e e e e e e e et e et e e ea e eaas 159
9.4. Massif Command-liNE OPLiONSiiiiiiii it e e e e e e e e eees 159
9.5. Ma@sSif MONItOr COMMEBNGSeeieiiieeiiiie et e e e et e e et e e et e e e e et e e e e et e e e e eae e e e eeaenes 161
9.6. MESSIT ClIENT REGUESES ...evvtieiiiii et sttt ettt e e et e e e et e e e e et t e e e eate s e e e eatnneeeestnaaeeenes 161
9.7. ms_print Command-line OPLIONSiiiiiiiiiiiei e e e 161
9.8. MasSif's OULPUL FITE FOIMALuiii i e e e e e e e e e e e e e e e een 161
10. DHAT: adynamic heap analySIS t0O0]iiiuiiiiiiiii e e e e e e e e e aaeees 162
L0 @ = 4T PP 162
02 U £ T oo I N PP 162
10.2.1. RUNNING DHAT Lot e e et e e et e e e et e e e e eann s 162
L0 @ 11 o | T = PSP 163

LR o NN IR T Y O 163
10.3.1. The OULPUE HEBAENccveviiieeiii e e e e e et e e e eaa s 163
O 2 I I i I (= PP 164
10.3.3. The OULPUL FOOLENiitieeiii e e e e e e e e e e e e e e et e e st e e st e e e aaeeannaees 167
10.3.4. SO MELTICS vttt ettt et e e e et e e e et e e e et e e e et e e e eran s 167

10.4. Treatment OF FEAIIOCiiiiii e e e e e e et e e e et 169
O @ o) VA o o) 11 1151 [PPN 169
O S 2o I oo Yot ol (o)1 1 1o [170
10.7. DHAT Command-lin€ OPLIONScuuuiiiiiiiiei e e e e e e e e e e eaeaas 170
11. Lackey: an eXxample tOO]iiiiiii e 172
0 @ = 4T PP 172
11.2. Lackey Command-ling OPLIONSccuuiiiiiiiiiiee e et e e e e e e e e s e e e e e e e e e e e st e e sanaeeanaees 172
12. Nulgrind: the minimal Valgrind t0O0]couuiiiiiiii e 173
@ = 4T PP 173
13. BBV: an experimental basic block vector generation t00lccoeviiiiiiiiiiiii i 174
T @ = 4T PP 174
13.2. Using Basic Block Vectors to create SIMPOINEScovuiiiiiieiii e eee e e e e e e e 174
13.3. BBV Command-ling OPtiONSciiuiiiii it e e e e e e e e et e et e e e e eaas 175
13.4. BasiC BIOCK VECIOr Fil@ FOMMELevvvieieiiii et e et e e e et n e e e anaaeeeees 175
TR 1 o= 4= o PPN 176
13.6. Threaded EXECULaDIE SUPPOITcuuiiiie et e e e e e e e e e e e e e st e e et e eaneeenes 176
AT £ T 7= o] o PSP 177
13,8, PEITOIMMANCE ...ttt et ettt e e e et et et et et et et a e e ea e 177

viii

1. Introduction
1.1. An Overview of Valgrind

Vagrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools each of
which performs some kind of debugging, profiling, or similar task that helps you improve your programs. Valgrind's
architecture is modular, so new tools can be created easily and without disturbing the existing structure.

A number of useful tools are supplied as standard.

1. Memcheck is a memory error detector. It helps you make your programs, particularly those written in C and C
++, more correct.

2. Cachegrind isacache and branch-prediction profiler. It helps you make your programs run faster.

3. Callgrind is a call-graph generating cache profiler. It has some overlap with Cachegrind, but also gathers some
information that Cachegrind does not.

4. Helgrind isathread error detector. It helps you make your multi-threaded programs more correct.

5. DRD isalso athread error detector. It issimilar to Helgrind but uses different analysis techniques and so may find
different problems.

6. Massif isaheap profiler. It helps you make your programs use less memory.

7. DHAT isadifferent kind of heap profiler. It helps you understand issues of block lifetimes, block utilisation, and
layout inefficiencies.

8. BBV isan experimental SimPoint basic block vector generator. It is useful to people doing computer architecture
research and development.

There are also a couple of minor toolsthat aren't useful to most users: L ackey is an example tool that illustrates some
instrumentation basics; and Nulgrind is the minimal Valgrind tool that does no analysis or instrumentation, and is
only useful for testing purposes.

Vagrind is closely tied to details of the CPU and operating system, and to a lesser extent, the compiler and basic C
libraries. Nonetheless, it supports a number of widely-used platforms, listed in full at http://www.valgrind.org/.

Vagrind is built via the standard Unix . / confi gur e, make, nake instal |l process, full details are given in
the README filein the distribution.

Valgrind is licensed under the The GNU General Public License, version 2. Theval gri nd/ *. h headersthat you
may wish to include in your code (eg. val gri nd. h, mencheck. h, hel gri nd. h, etc.) are distributed under
a BSD-style license, so you may include them in your code without worrying about license conflicts. Some of
the PThreads test cases, pt h_*. c, are taken from "Pthreads Programming" by Bradford Nichols, Dick Buttlar &
Jacqueline Proulx Farrell, ISBN 1-56592-115-1, published by O'Reilly & Associates, Inc.

If you contribute code to Valgrind, please ensure your contributions are licensed as "GPLV2, or (at your option) any
later version.” Thisis so asto allow the possibility of easily upgrading the license to GPLv3 in future. If you want to
modify code in the VEX subdirectory, please also see the file VEX/HACKING.README in the distribution.

1.2. How to navigate this manual

This manual's structure reflects the structure of Valgrind itself. First, we describe the VValgrind core, how to useit, and
the options it supports. Then, each tool has its own chapter in this manual. Y ou only need to read the documentation

http://www.valgrind.org/

Introduction

for the core and for the tool(s) you actually use, although you may find it helpful to be at least alittle bit familiar with
what all tools do. If you're new to al this, you probably want to run the Memcheck tool and you might find the The
Valgrind Quick Start Guide useful.

Be aware that the core understands some command line options, and the tools have their own options which they know
about. This meansthereis no central place describing all the options that are accepted -- you have to read the options
documentation both for VVagrind's core and for the tool you want to use.

2. Using and understanding the
Valgrind core

This chapter describes the Valgrind core services, command-line options and behaviours. That means it is relevant
regardless of what particular tool you are using. The information should be sufficient for you to make effective day-to-
day use of Valgrind. Advanced topics related to the Valgrind core are described in Valgrind's core: advanced topics.

A point of terminology: most referencesto "Valgrind" in this chapter refer to the Valgrind core services.

2.1. What Valgrind does with your program

Vagrind is designed to be as non-intrusive as possible. It works directly with existing executables. Y ou don't need to
recompile, relink, or otherwise modify the program to be checked.

You invoke Vagrind like this:

val grind [val grind-options] your-prog [your-prog-options]

The most important option is - - t ool which dictates which Valgrind tool to run. For example, if want to run the
command| s -1 using the memory-checking tool Memcheck, issue this command:

val grind --tool =nencheck I's -I
However, Memcheck is the default, so if you want to use it you can omit the - - t ool option.

Regardless of which tool isin use, Valgrind takes control of your program before it starts. Debugging information is
read from the executable and associated libraries, so that error messages and other outputs can be phrased in terms
of source code locations, when appropriate.

Your program is then run on a synthetic CPU provided by the Valgrind core. As new code is executed for the first
time, the core hands the code to the selected tool. The tool adds its own instrumentation code to this and hands the
result back to the core, which coordinates the continued execution of this instrumented code.

The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck adds
code to check every memory access and every value computed, making it run 10-50 times slower than natively. At
the other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causes in total
"only" about a4 times slowdown.

Vagrind simulates every single instruction your program executes. Because of this, the active tool checks, or profiles,
not only the code in your application but also in all supporting dynamically-linked libraries, including the C library,
graphical libraries, and so on.

If you're using an error-detection tool, Valgrind may detect errorsin system libraries, for example the GNU C or X11
libraries, which you have to use. Y ou might not be interested in these errors, since you probably have no control over
that code. Therefore, Valgrind allowsyou to selectively suppresserrors, by recording them in asuppressionsfilewhich
is read when Valgrind starts up. The build mechanism selects default suppressions which give reasonable behaviour
for the OS and libraries detected on your machine. To make it easier to write suppressions, you can usethe - - gen-
suppr essi ons=yes option. Thistells Valgrind to print out a suppression for each reported error, which you can
then copy into a suppressionsfile.

Different error-checking tools report different kinds of errors. The suppression mechanism therefore allows you to say
which tool or tool(s) each suppression applies to.

Using and understanding the VValgrind core

2.2. Getting started

First off, consider whether it might be beneficial to recompileyour application and supporting libraries with debugging
info enabled (the- g option). Without debugging info, the best VValgrind toolswill be ableto do isguesswhich function
aparticular piece of code belongs to, which makes both error messages and profiling output nearly useless. With - g,
you'll get messages which point directly to the relevant source code lines.

Another option you might like to consider, if you are working with C++, is- f no-i nl i ne. That makes it easier to
see the function-call chain, which can help reduce confusion when navigating around large C++ apps. For example,
debugging OpenOffice.org with Memcheck isabit easier when using this option. Y ou don't have to do this, but doing
so helps Valgrind produce more accurate and less confusing error reports. Chances are you're set up likethisalready, if
you intended to debug your program with GNU GDB, or some other debugger. Alternatively, the Valgrind option - -
read- i nl i ne-i nfo=yes instructs Valgrind to read the debug information describing inlining information. With
this, function call chain will be properly shown, even when your application is compiled with inlining.

If you are planning to use Memcheck: On rare occasions, compiler optimisations (at - O2 and above, and sometimes -
O1) have been observed to generate code which fools Memcheck into wrongly reporting uninitialised value errors, or
missing uninitialised value errors. We have looked in detail into fixing this, and unfortunately the result isthat doing so
would give afurther significant slowdown inwhat isalready aslow tool. So the best solution isto turn off optimisation
altogether. Since this often makes things unmanageably slow, areasonable compromiseisto use- O. Thisgetsyou the
majority of the benefits of higher optimisation levels whilst keeping relatively small the chances of false positives or
fal se negatives from Memcheck. Also, you should compile your code with - WAl | because it can identify some or all
of the problemsthat VValgrind can miss at the higher optimisation levels. (Using - Val | isalso agood ideain general.)
All other tools (as far as we know) are unaffected by optimisation level, and for profiling tools like Cachegrind it is
better to compile your program at its normal optimisation level.

Va grind understands the DWARF2/3/4 formats used by GCC 3.1 and later. The reader for "stabs" debugging format
(used by GCC versions prior to 3.1) has been disabled in Valgrind 3.9.0.

When you're ready to roll, run Valgrind as described above. Note that you should run the rea (machine-code)
executable here. If your application is started by, for example, a shell or Perl script, you'll need to modify it to invoke
Valgrind on the real executables. Running such scripts directly under Valgrind will result in you getting error reports
pertaining to / bi n/ sh, / usr/ bi n/ per| , or whatever interpreter you're using. This may not be what you want
and can be confusing. You can force the issue by giving the option - - t race- chi | dr en=yes, but confusion is
still likely.

2.3. The Commentary

Vagrind tools write a commentary, a stream of text, detailing error reports and other significant events. All linesin
the commentary have following form:

==12345== sone- nessage-from Val gri nd

The 12345 isthe process ID. This scheme makes it easy to distinguish program output from Valgrind commentary,
and al so easy to differentiate commentariesfrom different processes which have become merged together, for whatever
reason.

By default, Valgrind tools write only essential messages to the commentary, so as to avoid flooding you with
information of secondary importance. If you want more information about what is happening, re-run, passing the - v
option to Valgrind. A second - v gives yet more detail.

Y ou can direct the commentary to three different places:

Using and understanding the VValgrind core

1. The default: send it to a file descriptor, which is by default 2 (stderr). So, if you give the core no options, it will
write commentary to the standard error stream. If you want to send it to some other file descriptor, for example
number 9, you can specify - - | og- f d=9.

This is the simplest and most common arrangement, but can cause problems when Valgrinding entire trees of
processes which expect specific file descriptors, particularly stdin/stdout/stderr, to be available for their own use.

2. A lessintrusive option is to write the commentary to a file, which you specify by - -1 og-fi |l e=fi | enane.
There are special format specifiersthat can be used to use a process |D or an environment variable namein the log
file name. These are useful/necessary if your program invokes multiple processes (especially for MPI programs).
See the basic options section for more details.

3. Theleast intrusive option is to send the commentary to a network socket. The socket is specified as an IP address
and port number pair, likethis: - - | og- socket =192. 168. 0. 1: 12345 if you want to send the output to host
IP192.168.0.1 port 12345 (note: we have no ideaif 12345 isa port of pre-existing significance). Y ou can also omit
the port number: - - 1 0og- socket =192. 168. 0. 1, in which case a default port of 1500 is used. Thisdefault is
defined by the constant VG_CLO DEFAULT _LOGPORT in the sources.

Note, unfortunately, that you have to use an |P address here, rather than a hostname.

Writing to a network socket is pointlessif you don't have something listening at the other end. We provide asimple
listener program, val gri nd-1i st ener , which accepts connections on the specified port and copies whatever
it issent to stdout. Probably someone will tell usthisisahorrible security risk. It seemslikely that people will write
more sophisticated listenersin the fullness of time.

val gri nd-1i st ener canaccept simultaneous connectionsfrom up to 50 Valgrinded processes. In front of each
line of output it prints the current number of active connections in round brackets.

val grind-1i st ener acceptsthree command-line options:
-e --exit-at-zero

When the number of connected processes falls back to zero, exit. Without this, it will run forever, that is, until
you send it Control-C.

- - max- connect =I NTEGER

By default, the listener can connect to up to 50 processes. Occasionally, that number is too small. Use this
option to provide a different limit. E.g. - - max- connect =100.

port nunber

Changes the port it listens on from the default (1500). The specified port must be in the range 1024 to 65535.
The same restriction applies to port numbers specified by a- - | 0og- socket to Valgrind itself.

If a Valgrinded process fails to connect to a listener, for whatever reason (the listener isn't running, invalid or
unreachable host or port, etc), Valgrind switches back to writing the commentary to stderr. The same goes for
any process which loses an established connection to a listener. In other words, killing the listener doesn't kill the
processes sending data to it.

Here is an important point about the relationship between the commentary and profiling output from tools. The
commentary contains a mix of messages from the Valgrind core and the selected tool. If the tool reports errors, it will
report them to the commentary. However, if the tool does profiling, the profile data will be written to afile of some
kind, depending on the tool, and independent of what - - | og- * options are in force. The commentary is intended
to be a low-bandwidth, human-readable channel. Profiling data, on the other hand, is usually voluminous and not
meaningful without further processing, which is why we have chosen this arrangement.

5

Using and understanding the VValgrind core

2.4. Reporting of errors

When an error-checking tool detects something bad happening in the program, an error message is written to the
commentary. Here's an example from Memcheck:

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatri x::ReSize(int, int, int) (bogon.cpp: 45)
==25832== by 0x80487AF. mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, malloc'd or free'd

Thismessage saysthat the program did anillegal 4-byte read of address OXBFFFF74C, which, asfar asMemcheck can
tell, isnot avalid stack address, nor corresponds to any current heap blocks or recently freed heap blocks. Theread is
happening at line 45 of bogon. cpp, called from line 66 of the samefile, etc. For errors associated with an identified
(current or freed) heap block, for example reading freed memory, Valgrind reports not only the location where the
error happened, but also where the associated heap block was all ocated/freed.

Vagrind remembers al error reports. When an error is detected, it is compared against old reports, to see if it is
a duplicate. If so, the error is noted, but no further commentary is emitted. This avoids you being swamped with
bazillions of duplicate error reports.

If you want to know how many times each error occurred, run with the - v option. When execution finishes, al the
reports are printed out, along with, and sorted by, their occurrence counts. This makesit easy to see which errors have
occurred most frequently.

Errors are reported before the associated operation actually happens. For example, if you're using Memcheck and your
program attempts to read from address zero, Memcheck will emit amessage to this effect, and your program will then
likely die with a segmentation fault.

Ingeneral, you should try and fix errorsin the order that they are reported. Not doing so can be confusing. For example,
a program which copies uninitialised values to several memory locations, and later uses them, will generate several
error messages, when run on Memcheck. The first such error message may well give the most direct clue to the root
cause of the problem.

The process of detecting duplicate errorsis quite an expensive one and can become a significant performance overhead
if your program generates huge quantities of errors. To avoid serious problems, Valgrind will simply stop collecting
errors after 1,000 different errors have been seen, or 10,000,000 errors in total have been seen. In this situation you
might as well stop your program and fix it, because Valgrind won't tell you anything else useful after this. Note that
the 1,000/10,000,000 limits apply after suppressed errors are removed. These limits are defined inm_error ngr .. ¢
and can be increased if necessary.

Toavoid thiscutoff you canusethe- - error -1 i mi t =no option. Then Valgrind will always show errors, regardless
of how many there are. Use this option carefully, since it may have a bad effect on performance.

2.5. Suppressing errors

The error-checking tools detect numerous problems in the system libraries, such as the C library, which come pre-
installed with your OS. You can't easily fix these, but you don't want to see these errors (and yes, there are many!)
So Valgrind reads alist of errors to suppress at startup. A default suppression fileis created by the . / conf i gur e
script when the system is built.

Y ou can modify and add to the suppressionsfile at your leisure, or, better, write your own. Multiple suppression files
are allowed. Thisis useful if part of your project contains errors you can't or don't want to fix, yet you don't want to
continuously be reminded of them.

Using and understanding the VValgrind core

Note: By far the easiest way to add suppressions is to use the - - gen- suppr essi ons=yes option described
in Core Command-line Options. This generates suppressions automatically. For best results, though, you may want
to edit the output of - - gen- suppr essi ons=yes by hand, in which case it would be advisable to read through
this section.

Each error to be suppressed is described very specificaly, to minimise the possibility that a suppression-directive
inadvertently suppresses a bunch of similar errors which you did want to see. The suppression mechanism is designed
to allow precise yet flexible specification of errors to suppress.

If you use the - v option, at the end of execution, Valgrind prints out one line for each used suppression, giving the
number of timesit got used, its name and the filename and line number where the suppression is defined. Depending
on the suppression kind, the filename and line number are optionally followed by additional information (such as the
number of blocks and bytes suppressed by a Memcheck leak suppression). Here's the suppressions used by a run of
valgrind -v --tool =mentheck |s -1I:

--1610-- used_suppression: 2 dl -hack3-cond-1 /usr/Ilib/val grind/default.supp: 1234
--1610-- used_suppression: 2 glibc-2.5.x-0n-SUSE-10. 2- (PPC) - 2a /usr/1ib/val grind/ defa

Multiple suppressions files are alowed. Valgrind loads suppression patterns from $PREFI X/ | i b/ val gri nd/
def aul t. supp unless- - def aul t - suppr essi ons=no has been specified. You can ask to add suppressions
from additional files by specifying - - suppr essi ons=/ path/to/fil e. supp oneor moretimes.

If you want to understand more about suppressions, look at an existing suppressions file whilst reading the following
documentation. Thefilegl i bc- 2. 3. supp, in the source distribution, provides some good examples.

Blank and comment lines in a suppression file are ignored. Comment lines are made of O or more blanks followed
by a# character followed by some text.

Each suppression has the following components:

* Firstline: itsname. This merely gives ahandy nameto the suppression, by which it isreferred to in the summary of
used suppressions printed out when a program finishes. It's not important what the name is; any identifying string
will do.

» Second line: name of the tool(s) that the suppression is for (if more than one, comma-separated), and the name of
the suppression itself, separated by a colon (n.b.: no spaces are allowed), eg:

t ool _nanel, t ool _name2: suppr essi on_nane

Recall that Valgrind isamodular system, in which different instrumentation tools can observe your program whilst
itisrunning. Since different tools detect different kinds of errors, it is necessary to say which tool(s) the suppression
is meaningful to.

Toolswill complain, at startup, if atool does not understand any suppression directed to it. Toolsignore suppressions
which are not directed to them. As a result, it is quite practical to put suppressions for all tools into the same
suppression file.

» Next line: a small number of suppression types have extra information after the second line (eg. the Par am
suppression for Memcheck)

» Remaining lines: This is the calling context for the error -- the chain of function calls that led to it. There can be
up to 24 of these lines.

L ocations may be names of either shared objects, functions, or source lines. They beginwithobj : ,fun: ,orsrc:
respectively. Function, object, and file names to match against may use the wildcard characters * and ?. Source
lines are specified using theformf i | enane[: 1 i neNunber] .

Using and understanding the VValgrind core

Important note: C++ function names must be mangled. If you are writing suppressions by hand, use the - -
demangl e=no option to get the mangled names in your error messages. An example of amangled C++ nameis
_ZNI(QLi st Vi ewdshowEv. Thisisthe form that the GNU C++ compiler usesinternally, and the form that must
be used in suppression files. The equivalent demangled name, QLi st Vi ew: : show(), iswhat you see at the C
++ source code level.

A location linemay also besimply ". . . " (three dots). Thisisaframe-level wildcard, which matches zero or more
frames. Frame level wildcards are useful because they make it easy to ignore varying numbers of uninteresting
frames in between frames of interest. That is often important when writing suppressions which are intended to be
robust against variations in the amount of function inlining done by compilers.

 Finally, the entire suppression must be between curly braces. Each brace must be the first character on its own line.

A suppression only suppresses an error when the error matches al the details in the suppression. Here's an example:

{
__geconv_transform ascii_internal/__nbrtowc/ nbt owc
Mencheck: Val ue4
fun: __gconv_transform ascii _internal

fun: __nbr*toc
fun: nbt owc

}

What it means is: for Memcheck only, suppress a use-of-uninitialised-value error, when the data size is 4, when it
occursinthefunction __gconv_transform ascii _i nt ernal ,whenthatiscalled from any function of name
matching ___nbr *t oc, when that is called from bt owc. It doesn't apply under any other circumstances. The string
by which this suppression isidentified to theuseris__gconv_transform ascii _i nternal /__nbrt owc/

nbt owc.

(See Writing suppression files for more details on the specifics of Memcheck's suppression kinds.)

Another example, again for the Memcheck tool:

{
li bX11.s0.6.2/1ibX11.s0.6.2/1ibXaw.so.7.0

Mentheck: Val ue4d

obj:/usr/ X11R6/1ib/1ibX11. so0.6.2
obj:/usr/ X11R6/1ib/1ibX11. so0.6.2
obj :/usr/ X11R6/1ib/1ibXaw. so. 7.0

}

This suppresses any size 4 uninitialised-value error which occurs anywherein | i bX11. so. 6. 2, when called from
anywhereinthe samelibrary, when called from anywhereinl i bXaw. so. 7. 0. Theinexact specification of locations
isregrettable, but is about all you can hope for, given that the X 11 libraries shipped on the Linux distro on which this
example was made have had their symbol tables removed.

An example of the src: specification, again for the Memcheck tool:

{
i bX11.s0.6.2/1ibX11.s0.6.2/1ibXaw.so.7.0

Mentheck: Val ue4
src:valid.c:321

Using and understanding the VValgrind core

}

This suppresses any size-4 uninitialised-value error which occursat line321inval i d. c.

Although the above two examples do not make this clear, you can freely mix obj :, fun:, and src: linesina
suppression.

Finaly, here's an example using three frame-level wildcards:

{
a-contrived- exanpl e
Mentheck: Leak
fun: mal | oc
fun: ddd
fun:ccc
fun: mai n

}

This suppresses Memcheck memory-leak errors, in the case where the allocation was done by mai n calling (though
any number of intermediaries, including zero) ccc, caling onwards viaddd and eventually tomal | oc. .

2.6. Debuginfod

Va grind supports the downloading of debuginfo files via debuginfod, an HTTP server for distributing ELF/DWARF
debugging information. When a debuginfo file cannot be found locally, Valgrind is able to query debuginfod servers
for the file using the file's build-id.

In order to use this feature debugi nf od- f i nd must be installed and the $DEBUGA NFCOD_URLS environment
variable must contain space-separated URL s of debuginfod servers. Valgrind does not support debugi nf od- fi nd
verbose output that is normally enabled with $DEBUG NFOD_PROGRESS and $DEBUG NFOD_VERBGCSE. These
environment variables will beignored. This feature is supported on Linux only.

For more information regarding debuginfod, see Elfutils Debuginfod .

2.7. Core Command-line Options

As mentioned above, Valgrind's core accepts a common set of options. The tools also accept tool-specific options,
which are documented separately for each tool.

Valgrind's default settings succeed in giving reasonable behaviour in most cases. We group the available options by
rough categories.

2.7.1. Tool-selection Option

The single most important option.
--t ool =<t ool nane> [defaul t: nentheck]

Run the Valgrind tool called t ool nane, e.g. memcheck, cachegrind, callgrind, helgrind, drd, massif, dhat,
lackey, none, exp-bbv, etc.

https://sourceware.org/elfutils/Debuginfod.html

Using and understanding the VValgrind core

2.7.2. Basic Options

These options work with al tools.
-h --help

Show help for all options, both for the core and for the selected tool. If the option is repeated it is equivalent to
giving - - hel p- debug.

- - hel p- debug
Same as- - hel p, but aso lists debugging options which usually are only of useto Valgrind's devel opers.
--version
Show the version number of the Valgrind core. Tools can have their own version numbers. Thereis a schemein
place to ensure that tools only execute when the core version is one they are known to work with. Thiswas done
to minimise the chances of strange problems arising from tool-vs-core version incompatibilities.
-(,--qui et

Runsilently, and only print error messages. Useful if you arerunning regression tests or have some other automated
test machinery.

-V,--verbose

Be more verbose. Gives extrainformation on various aspects of your program, such as: the shared objects|oaded,
the suppressions used, the progress of the instrumentation and execution engines, and warnings about unusual
behaviour. Repeating the option increases the verbosity level.

--trace-chil dren=<yes| no> [defaul t: no]

When enabled, Valgrind will trace into sub-processes initiated via the exec system call. This is necessary for
multi-process programs.

Notethat Valgrind doestraceinto the child of af or k (it would be difficult not to, sincef or k makesanidentical
copy of aprocess), so this option is arguably badly named. However, most children of f or k callsimmediately
call exec anyway.

--trace-chil dren-skip=pattl, patt2,...

This option only has an effect when - - t r ace- chi | dr en=yes is specified. It allows for some children to be
skipped. The option takes a comma separated list of patterns for the names of child executables that Valgrind
should not trace into. Patterns may include the metacharacters ? and * , which have the usual meaning.

This can be useful for pruning uninteresting branches from a tree of processes being run on Valgrind. But you
should be careful when using it. When Valgrind skips tracing into an executable, it doesn't just skip tracing that
executable, it also skips tracing any of that executable's child processes. In other words, the flag doesn't merely
cause tracing to stop at the specified executables -- it skips tracing of entire process subtrees rooted at any of the
specified executables.

--trace-chil dren-skip-by-arg=pattl, patt2,...

Thisisthesameas- -t race- chi | dr en- ski p, with one difference: the decision as to whether to trace into
achild process is made by examining the arguments to the child process, rather than the name of its executable.

10

Using and understanding the VValgrind core

--child-silent-after-fork=<yes|no> [default: no]

When enabled, Valgrind will not show any debugging or logging output for the child process resulting from a
f or k call. This can make the output less confusing (although more misleading) when dealing with processes that
create children. It is particularly useful in conjunction with - - t race- chi | dr en=. Use of this option is aso
strongly recommended if you are requesting XML output (- - xm =yes), since otherwise the XML from child
and parent may become mixed up, which usually makes it useless.

--vgdb=<no| yes|ful | > [defaul t: yes]

Valgrind will provide "gdbserver" functionality when - - vgdb=yes or - - vgdb=f ul | isspecified. Thisalows
an external GNU GDB debugger to control and debug your program when it runs on Valgrind. - - vgdb=f ul |
incurs significant performance overheads, but provides more precise breakpoints and watchpoints. See Debugging
your program using Valgrind's gdbserver and GDB for a detailed description.

If the embedded gdbserver is enabled but no gdb is currently being used, the vgdb command line utility can send
"monitor commands" to Valgrind from a shell. The Valgrind core provides a set of Valgrind monitor commands.
A tool can optionally provide tool specific monitor commands, which are documented in the tool specific chapter.

--vgdb- error=<nunber> [default: 999999999]
Use this option when the Valgrind gdbserver isenabled with - - vgdb=yes or - - vgdb=f ul | . Toolsthat report
errors will wait for "numnber " errors to be reported before freezing the program and waiting for you to connect
with GDB. It follows that a value of zero will cause the gdbserver to be started before your program is executed.
Thisis typically used to insert GDB breakpoints before execution, and also works with tools that do not report
errors, such as Massif.

--vgdb- st op- at =<set > [defaul t: none]
Use this option when the Valgrind gdbserver is enabled with - - vgdb=yes or - - vgdb=f ul | . The Valgrind
gdbserver will beinvoked for each error after - - vgdb- er r or have been reported. Y ou can additionally ask the
Vagrind gdbserver to be invoked for other events, specified in one of the following ways:

» acommaseparated list of oneor moreof startup exit abexit val gri ndabexit.

The values startup exit val gri ndabexit respectively indicate to invoke gdbserver before your
program is executed, after the last instruction of your program, on Valgrind abnormal exit (e.g. internal error,
out of memory, ...).

The option abexit is similar to exit but tells to invoke gdbserver only when your application exits
abnormally (i.e. with an exit code different of 0).

Note: startup and - - vgdb- err or =0 will both cause Valgrind gdbserver to be invoked before your
program is executed. The - - vgdb- er r or =0 will in addition cause your program to stop on all subsequent
errors.

e all to specify the complete set. It is equivaent to - -vgdb- st op-
at =startup, exi t, abexit, val gri ndabexit.

* none for the empty set.
--track-fds=<yes|no|all> [default: no]

When enabled, Valgrind will print out alist of open file descriptors on exit or on request, viathe gdbserver monitor
commandv. i nf o open_f ds. Along with each file descriptor is printed astack backtrace of wherethefilewas

11

Using and understanding the VValgrind core

opened and any details relating to the file descriptor such as the file name or socket details. Use al | to include
reporting on st di n, st dout andst derr.

--tinme-stanp=<yes| no> [default: no]

When enabled, each message is preceded with an indication of the elapsed wallclock time since startup, expressed
as days, hours, minutes, seconds and milliseconds.

og-fd=<nunber> [default: 2, stderr]

Specifiesthat Valgrind should send all of its messagesto the specified file descriptor. Thedefault, 2, isthe standard
error channel (stderr). Note that this may interfere with the client's own use of stderr, as Valgrind's output will be
interleaved with any output that the client sends to stderr.

og-fil e=<fil enane>

Specifiesthat Valgrind should send al of its messagesto the specified file. If the file nameis empty, it causes an
abort. There are three special format specifiers that can be used in the file name.

%p is replaced with the current process ID. This is very useful for program that invoke multiple processes.
WARNING: If you use - -t race- chi | dr en=yes and your program invokes multiple processes OR your
program forks without calling exec afterwards, and you don't use this specifier (or the %g specifier below), the
Valgrind output from all those processeswill go into onefile, possibly jumbled up, and possibly incomplete. Note:
If the program forks and calls exec afterwards, Valgrind output of the child from the period between fork and
exec will belost. Fortunately thisgap isreally tiny for most programs; and modern programs use posi x_spawn

% is replaced with a file sequence number unique for this process. This is useful for processes that produces
several files from the same filename template.

%q{ FOO} is replaced with the contents of the environment variable FOO. If the { FOO} part is maformed, it
causes an abort. This specifier is rarely needed, but very useful in certain circumstances (eg. when running MPI
programs). The ideais that you specify a variable which will be set differently for each processin the job, for
example BPROC_RANK or whatever is applicable in your MPI setup. If the named environment variable is not
set, it causes an abort. Note that in some shells, the{ and} characters may need to be escaped with a backslash.

9®%is replaced with %
If an %is followed by any other character, it causes an abort.

If the file name specifiesarelative file name, it is put in the program'sinitial working directory: thisisthe current
directory when the program started its execution after the fork or after the exec. If it specifies an absolute file
name (ie. starts with '/*) then it is put there.

0g- socket =<i p- addr ess: port - nunber >

Specifies that Valgrind should send all of its messages to the specified port at the specified |P address. The port
may be omitted, in which case port 1500 is used. If a connection cannot be made to the specified socket, Valgrind
falls back to writing output to the standard error (stderr). This option is intended to be used in conjunction with
theval gri nd-1i st ener program. For further details, see the commentary in the manual.

- - enabl e- debugi nf od=<no| yes> [defaul t: yes]

When enabled Valgrind will attempt to download missing debuginfo from debuginfod serversif space-separated
server URLs are present in the $SDEBUG NFOD_URLS environment variable. This option is supported on Linux
only.

12

Using and understanding the VValgrind core

2.7.3. Error-related Options

These options are used by all tools that can report errors, e.g. Memcheck, but not Cachegrind.
--xm =<yes| no> [default: no]

When enabled, theimportant parts of the output (e.g. tool error messages) will bein XML format rather than plain
text. Furthermore, the XML output will be sent to a different output channel than the plain text output. Therefore,
you alsomust useoneof - - xm -fd,--xm -fil eor--xm - socket tospecify wherethe XML isto be sent.

L ess important messages will still be printed in plain text, but because the XML output and plain text output are
sent to different output channels (the destination of the plain text output is still controlled by - -1 og-f d, - -
| og-fileand--1o0g-socket) thisshould not cause problems.

This option is aimed at making life easier for tools that consume Valgrind's output as input, such as GUI front
ends. Currently this option works with Memcheck, Helgrind and DRD. The output format is specified in the file
docs/ i nt ernal s/ xm - out put - pr ot ocol 4. t xt inthe sourcetreefor Valgrind 3.5.0 or later.

The recommended options for a GUI to pass, when requesting XML output, are: - - ximl =yes to enable XML
output, - - xm - fi | e to send the XML output to a (presumably GUI-selected) file, - - | og-fi | e to send the
plain text output to asecond GUI-selected file, - - chi | d- si | ent - af t er - f or k=yes, and - g to restrict the
plain text output to critical error messages created by Valgrind itself. For example, failure to read a specified
suppressions file counts as a critical error message. In this way, for a successful run the text output file will be
empty. Butif itisn't empty, thenit will containimportant information which the GUI user should be made aware of .

--xm - fd=<number> [default: -1, disabled]

Specifiesthat Valgrind should send its XML output to the specified file descriptor. It must be used in conjunction
with - - xnml =yes.

--xm -file=<fil enane>

Specifies that Valgrind should send its XML output to the specified file. It must be used in conjunction with - -
xm =yes. Any %p or % sequences appearing in the filename are expanded in exactly the same way asthey are
for--10g-fil e.Seethedescription of --log-file for details.

--xm - socket =<i p- addr ess: port - nunber >

Specifiesthat Valgrind should send its XML output the specified port at the specified | P address. It must be used
in conjunction with - - xm =yes. The form of the argument is the same as that used by - - | 0g- socket . See
the description of - - | 0g- socket for further details.

--xm -user-conment =<stri ng>

Embeds an extra user comment string at the start of the XML output. Only workswhen - - xrm =y es is specified;
ignored otherwise.

- -demangl e=<yes| no> [default: yes]

Enable/disable automatic demangling (decoding) of C++ names. Enabled by default. When enabled, Valgrind
will attempt to translate encoded C++ names back to something approaching the original. The demangler handles
symbols mangled by g++ versions 2.X, 3.X and 4.X.

An important fact about demangling is that function names mentioned in suppressions files should be in their
mangled form. Valgrind does not demangle function names when searching for applicable suppressions, because
to do otherwise would make suppression file contents dependent on the state of Valgrind's demangling machinery,
and also slow down suppression matching.

13

Using and understanding the VValgrind core

--numcal | ers=<nunber> [defaul t: 12]

Specifies the maximum number of entries shown in stack traces that identify program locations. Note that errors
are commoned up using only the top four function locations (the place in the current function, and that of itsthree
immediate callers). So this doesn't affect the total number of errors reported.

The maximum value for thisis 500. Note that higher settings will make Valgrind run a bit more slowly and take
abit more memory, but can be useful when working with programs with deeply-nested call chains.

- -unw- st ack- scan-t hr esh=<nunber > [defaul t: 0] , - -unw- st ack- scan-
frames=<nunber> [default: 5]

Stack-scanning support is available only on ARM targets.

Theseflags enable and control stack unwinding by stack scanning. When the normal stack unwinding mechanisms
-- usage of Dwarf CFI records, and frame-pointer following -- fail, stack scanning may be able to recover a stack
trace.

Note that stack scanning is an imprecise, heuristic mechanism that may give very misleading results, or none at
all. It should be used only in emergencies, when normal unwinding fails, and it isimportant to nevertheless have
stack traces.

Stack scanning is asimple technique: the unwinder reads words from the stack, and tries to guess which of them
might be return addresses, by checking to see if they point just after ARM or Thumb call instructions. If so, the
word is added to the backtrace.

The main danger occurs when a function call returns, leaving its return address exposed, and a new function is
called, but the new function does not overwrite the old address. Theresult of thisisthat the backtrace may contain
entries for functions which have already returned, and so be very confusing.

A second limitation of thisimplementationisthat it will scan only the page (4K B, normally) containing the starting
stack pointer. If the stack frames are large, this may result in only afew (or not even any) being present in the
trace. Also, if you are unlucky and have an initial stack pointer near the end of its containing page, the scan may
miss all interesting frames.

By default stack scanning is disabled. The normal use caseisto ask for it when a stack trace would otherwise be
very short. So, to enableit, use - - unw st ack- scan-t hr esh=nunber . Thisrequests Valgrind to try using
stack scanning to "extend" stack traces which contain fewer than nunber frames.

If stack scanning doestake place, it will only generate at most the number of frames specified by - - unw st ack-
scan- frames. Typicaly, stack scanning generates so many garbage entries that thisvalueis set to alow value
(5) by default. In no case will a stack trace larger than the value specified by - - num cal | er s be created.

--error-limt=<yes|no> [default: yes]

When enabled, Valgrind stops reporting errors after 10,000,000 in total, or 1,000 different ones, have been seen.
Thisisto stop the error tracking machinery from becoming a huge performance overhead in programs with many
errors.

--error-exitcode=<nunber> [defaul t: 0]

Specifies an aternative exit codeto return if Valgrind reported any errorsin the run. When set to the default value
(zero), the return value from Valgrind will always be the return value of the process being simulated. When set to
anonzero value, that valueisreturned instead, if Valgrind detects any errors. Thisis useful for using Valgrind as
part of an automated test suite, since it makes it easy to detect test cases for which Valgrind has reported errors,
just by inspecting return codes. When set to a nonzero value and Valgrind detects no error, the return value of
Vagrind will be the return value of the program being simulated.

14

Using and understanding the VValgrind core

--exit-on-first-error=<yes|no> [default: no]

If this option isenabled, Valgrind exits on thefirst error. A nonzero exit value must be defined using - - er r or -
exi t code option. Useful if you are running regression tests or have some other automated test machinery.

--error-nmar ker s=<begi n>, <end> [defaul t: none]

When errors are output as plain text (i.e. XML not used), - - error - mar ker s instructs to output a line
containing the begi n (end) string before (after) each error.

Such marker lines facilitate searching for errors and/or extracting errors in an output file that contain valgrind
errors mixed with the program output.

Note that empty markers are accepted. So, only using a begin (or an end) marker is possible.

--showerror-1list=no|yes [default: no]

If this option is enabled, for tools that report errors, valgrind will show the list of detected errors and the list of
used suppressions at exit.

Note that at verbosity 2 and above, valgrind automatically shows the list of detected errors and the list of used
suppressions at exit, unless - - show error-1i st=no isseected.

Specifying - s isequivalentto- - show error-1i st =yes.

--sigill-diagnostics=<yes|no> [default: yes]

Enable/disable printing of illegal instruction diagnostics. Enabled by default, but defaults to disabled when - -
qui et isgiven. The default can always be explicitly overridden by giving this option.

When enabled, a warning message will be printed, along with some diagnostics, whenever an instruction is
encountered that Valgrind cannot decode or translate, before the program is given a SIGILL signal. Often an
illegal instruction indicates a bug in the program or missing support for the particular instruction in VValgrind. But
some programs do deliberately try to execute an instruction that might be missing and trap the SIGILL signal to
detect processor features. Using thisflag makesit possibleto avoid the diagnostic output that you would otherwise
get in such cases.

- - keep- debugi nf o=<yes| no> [defaul t: no]

When enabled, keep ("archive") symbolsand all other debuginfo for unloaded code. Thisallows saved stack traces
to include file/line info for code that has been diclose'd (or similar). Be careful with this, since it can lead to
unbounded memory use for programs which repeatedly load and unload shared objects.

Some tools and some functionalities have only limited support for archived debug info. Memcheck fully supports
it. Generally, tools that report errors can use archived debug info to show the error stack traces. The known
limitations are: Helgrind's past access stack trace of arace condition is does not use archived debug info. Massif
(and more generally the xtree Massif output format) does not make use of archived debug info. Only Memcheck
has been (somewhat) tested with - - keep- debugi nf o=yes, so other tools may have unknown limitations.

- - show bel ow mai n=<yes| no> [default: no]

By default, stack traces for errors do not show any functions that appear beneath mai n because most of the time
it's uninteresting C library stuff and/or gobbledygook. Alternatively, if mai n is not present in the stack trace,
stack traces will not show any functions below mai n-like functions such as glibc's __ | i bc_start _nai n.

15

Using and understanding the VValgrind core

Furthermore, if mai n-like functions are present in the trace, they are normalised as (bel ow nmi n) , in order
to make the output more deterministic.

If this option is enabled, all stack trace entries will be shown and mai n-like functions will not be normalised.
--full path-after=<string> [default: don't show source paths]

By default Valgrind only shows the filenames in stack traces, but not full paths to source files. When using
Vagrind in large projects where the sources reside in multiple different directories, this can be inconvenient. - -
ful | pat h-af t er provides aflexible solution to this problem. When this option is present, the path to each
source file is shown, with the following all-important caveat: if st ri ng isfound in the path, then the path up
to and including st ri ng is omitted, else the path is shown unmodified. Note that st ri ng is not required to
be a prefix of the path.

For example, consider a file named / hone/ j anedoe/ bl ah/ src/ f oo/ bar/ xyzzy. c. Specifying - -
ful | pat h-after=/hone/janedoe/ bl ah/ src/ will cause Valgrind to show the name as f oo/ bar/
Xyzzy. c.

Becausethestringisnot required to beaprefix, - - f ul | pat h- af t er =sr ¢/ will producethe sameoutput. This
is useful when the path contains arbitrary machine-generated characters. For example, the path / my/ bui | d/
di r/ C32A1B47/ bl ah/ src/ f oo/ xyzzy can be pruned to f oo/ xyzzy using - - f ul | pat h-aft er =/
bl ah/ src/.

If you simply want to see the full path, just specify an empty string: - - f ul | pat h- af t er =. Thisisn't aspecial
case, merely alogical consequence of the above rules.

Finally, you can use - - f ul | pat h- af t er multiple times. Any appearance of it causes Valgrind to switch
to producing full paths and applying the above filtering rule. Each produced path is compared against al the
--ful |l pat h- af t er -specified strings, in the order specified. The first string to match causes the path to be
truncated as described above. If none match, the full path is shown. This facilitates chopping off prefixes when
the sources are drawn from a number of unrelated directories.

- - extra-debugi nf o- pat h=<pat h> [defaul t: undefined and unused]
By default Valgrind searches in severa well-known paths for debug objects, suchas/ usr/ | i b/ debug/ .

However, there may be scenarios where you may wish to put debug objects at an arbitrary location, such as
external storage when running Valgrind on a mobile device with limited local storage. Another example might
be a situation where you do not have permission to install debug object packages on the system where you are
running Valgrind.

In these scenarios, you may provide an absolute path as an extra, final place for Vagrind to search for debug
objects by specifying - - ext r a- debugi nf o- pat h=/ pat h/ t o/ debug/ obj ect s. The given path will
be prepended to the absolute path name of the searched-for object. For example, if Valgrind is looking for the

debuginfo for / W x/ y/ zz. so and - - ext r a- debugi nf o- pat h=/ a/ b/ c is specified, it will look for a
debug object at/ a/ b/ ¢/ w x/y/ zz. so.

Thisflag should only be specified once. If it is specified multiple times, only the last instance is honoured.
- - debugi nf o- server =i paddr: port [default: undefined and unused]
Thisisanew, experimental, feature introduced in version 3.9.0.
In some scenarios it may be convenient to read debuginfo from objects stored on a different machine. With this

flag, Valgrind will query a debuginfo server running on i paddr and listening on port port, if it cannot find
the debuginfo object in the local filesystem.

16

Using and understanding the VValgrind core

The debuginfo server must accept TCP connectionson port por t . The debuginfo server is contained in the source
fileauxpr ogs/ val gri nd-di - server. c.Itwill only servefromthedirectory itisstartedin. por t defaults
to 1500 in both client and server if not specified.

If Valgrind looksfor the debuginfofor / w/ x/ y/ zz. so by using the debuginfo server, it will strip the pathname
components and merely request zz. so on the server. That in turn will look only in its current working directory
for amatching debuginfo object.

The debuginfo datais transmitted in small fragments (8 KB) as requested by Valgrind. Each block is compressed
using LZO to reduce transmission time. The implementation has been tuned for best performance over asingle-
stage 802.11g (WiFi) network link.

Note that checksfor matching primary vs debug objects, using GNU debuglink CRC scheme, are performed even
when using the debuginfo server. To disable such checking, you need to also specify - - al | ow m snat ched-
debugi nf o=yes.

By default the Valgrind build systemwill buildval gri nd- di - ser ver for thetarget platform, whichisamost
certainly not what you want. So far we have been unable to find out how to get automake/autoconf to build it for
the build platform. If you want to use it, you will have to recompile it by hand using the command shown at the
top of auxpr ogs/ val gri nd-di - server. c.

Valgrind can also download debuginfo via debuginfod. See the DEBUGINFOD section for more information.
--al | ow m smat ched- debugi nf o=no| yes [no]

When reading debuginfo from separate debuginfo objects, Valgrind will by default check that the main and
debuginfo objects match, using the GNU debuglink mechanism. This guarantees that it does not read debuginfo
from out of date debuginfo objects, and also ensures that Valgrind can't crash as a result of mismatches.

Thischeck canbeoverriddenusing - - al | ow m smat ched- debugi nf o=yes. Thismay beuseful whenthe
debuginfo and main objects have not been split in the proper way. Be careful when using this, though: it disablesall
consistency checking, and Valgrind has been observed to crash when the main and debuginfo objects don't match.

--suppressi ons=<fil enane> [defaul t: $PREFI X/|ib/val grind/default.supp]

Specifies an extra file from which to read descriptions of errors to suppress. You may use up to 100 extra
suppression files.

--gen-suppressi ons=<yes| nojal |l > [default: no]
When set toyes, Valgrind will pause after every error shown and print the line;
---- Print suppression ? --- [Return/Nn/Y/y/Cc] ----

PressingRet ,or N Ret orn Ret, causes Valgrind continue execution without printing a suppression for this
error.

PressingY Ret ory Ret causesValgrind to write a suppression for this error. Y ou can then cut and paste it
into a suppression file if you don't want to hear about the error in the future.

When setto al |, Valgrind will print a suppression for every reported error, without querying the user.

This option is particularly useful with C++ programs, as it prints out the suppressions with mangled names, as
required.

Note that the suppressions printed are as specific as possible. You may want to common up similar ones, by
adding wildcards to function names, and by using frame-level wildcards. The wildcarding facilities are powerful

17

Using and understanding the VValgrind core

yet flexible, and with a bit of careful editing, you may be able to suppress a whole family of related errors with
only afew suppressions.

Sometimes two different errors are suppressed by the same suppression, in which case Vagrind will output the
suppression more than once, but you only need to have one copy in your suppression file (but having more than
onewon't cause problems). Also, the suppression nameisgivenas<i nsert a suppressi on nane her e>;
the name doesn't really matter, it's only used with the - v option which prints out all used suppression records.

nput - f d=<nunber> [default: 0, stdin]

When using - - gen- suppr essi ons=yes, Valgrind will stop so as to read keyboard input from you when
each error occurs. By default it reads from the standard input (stdin), which is problematic for programs which
close stdin. This option allows you to specify an alternative file descriptor from which to read input.

--dsymutil =no| yes [yes]
This option is only relevant when running Valgrind on Mac OS X.

Mac OS X usesadeferred debug information (debuginfo) linking scheme. When object files containing debuginfo
arelinked into a. dyl i b or an executable, the debuginfo is not copied into the final file. Instead, the debuginfo
must be linked manually by running dsynmut i | , a system-provided utility, on the executable or . dyl i b. The
resulting combined debuginfo is placed in adirectory alongside the executableor . dyl i b, but with the extension
. dSYM

With - - dsynut i | =no, Valgrind will detect cases where the . dSYMdirectory is either missing, or is present
but does not appear to match the associated executable or . dyl i b, most likely because it is out of date. In these
cases, Valgrind will print awarning message but take no further action.

With - - dsynut i | =yes, Vagrind will, in such cases, automatically run dsynut i | as necessary to bring the
debuginfo up to date. For all practical purposes, if you always use - - dsymut i | =yes, then there is never any
need to run dsynut i | manualy or as part of your applications's build system, since Valgrind will run it as
necessary.

Vagrind will not attempt torundsynut i | on any executableor library in/ usr/ ,/ bin/,/ sbin/,/opt/,
/sw,/Systenl,/Library/ or/Applications/ sncedsynutil will always fail in such situations.
It fails both because the debuginfo for such pre-installed system components is not available anywhere, and also
because it would require write privileges in those directories.

Be careful when using - - dsynut i | =yes, since it will cause pre-existing . dSYM directories to be silently
deleted and re-created. Also note that dsymut i | isquite slow, sometimes excessively so.

- - max- st ackf rame=<nunber > [defaul t: 2000000]

The maximum size of a stack frame. If the stack pointer moves by more than this amount then Valgrind will
assume that the program is switching to a different stack.

You may need to use this option if your program has large stack-allocated arrays. Valgrind keeps track of your
program's stack pointer. If it changes by more than the threshold amount, Valgrind assumes your program is
switching to a different stack, and Memcheck behaves differently than it would for a stack pointer change smaller
than the threshold. Usually this heuristic works well. However, if your program allocates large structures on
the stack, this heuristic will be fooled, and Memcheck will subsequently report large numbers of invalid stack
accesses. This option allows you to change the threshold to a different value.

Y ou should only consider use of this option if Valgrind's debug output directs you to do so. In that case it will
tell you the new threshold you should specify.

18

Using and understanding the VValgrind core

In general, allocating large structures on the stack is a bad idea, because you can easily run out of stack space,
especially on systems with limited memory or which expect to support large numbers of threads each with asmall
stack, and also because the error checking performed by Memcheck is more effective for heap-allocated data than
for stack-allocated data. If you have to use this option, you may wish to consider rewriting your code to allocate
on the heap rather than on the stack.

--mai n-stacksi ze=<nunber > [default: use current 'ulimt' val ue]
Specifies the size of the main thread's stack.

To simplify its memory management, Valgrind reserves all required space for the main thread's stack at startup.
That means it needs to know the required stack size at startup.

By default, Valgrind uses the current "ulimit” value for the stack size, or 16 MB, whichever is lower. In many
cases this gives a stack sizein the range 8 to 16 M B, which almost never overflows for most applications.

If you need a larger total stack size, use - - mai n- st acksi ze to specify it. Only set it as high as you need,
since reserving far more space than you need (that is, hundreds of megabytes more than you need) constrains
Vagrind's memory alocators and may reduce the total amount of memory that Valgrind can use. Thisis only
really of significance on 32-bit machines.

On Linux, you may request a stack of size up to 2GB. Valgrind will stop with a diagnostic message if the stack
cannot be alocated.

- - mai n- st acksi ze only affects the stack size for the program's initial thread. It has no bearing on the size
of thread stacks, as Valgrind does not alocate those.

You may need to use both - - mai n- st acksi ze and - - nax- st ackf r ane together. It is important to
understand that - - mai n- st acksi ze sets the maximum total stack size, whilst - - max- st ackf r ame
specifiesthe largest size of any one stack frame. Y ou will have to work out the - - mai n- st acksi ze valuefor
yoursalf (usually, if your applications segfaults). But Valgrind will tell you the needed - - max- st ackf r ane
size, if necessary.

As discussed further in the description of - - max- st ackf r ane, arequirement for a large stack is a sign of
potential portability problems. Y ou are best advised to place all large datain heap-allocated memory.

--max-t hreads=<nunber> [defaul t: 500]

By default, Valgrind can handle to up to 500 threads. Occasionally, that number istoo small. Use this option to
provide a different limit. E.g. - - max-t hr eads=3000.

2.7.4. malloc-related Options

For toolsthat usetheir ownversion of mal | oc (e.g. Memcheck, Massif, Helgrind, DRD), the following options apply.
--al i gnnment =<nunber > [default: 8 or 16, depending on the platform

By default Valgrind'snal | oc, r eal | oc, etc, return ablock whose starting address is 8-byte aligned or 16-byte
aligned (the value depends on the platform and matches the platform default). This option allows you to specify
adifferent alignment. The supplied value must be greater than or equal to the default, less than or equal to 4096,
and must be a power of two.

--redzone- si ze=<nunber > [default: depends on the tool]

Vagrind's mal | oc, reall oc, etc, add padding blocks before and after each heap block allocated by the
program being run. Such padding blocks are called redzones. The default value for the redzone size depends on

19

Using and understanding the VValgrind core

the tool. For example, Memcheck adds and protects a minimum of 16 bytes before and after each block allocated
by the client. This allowsiit to detect block underruns or overruns of up to 16 bytes.

Increasing the redzone size makes it possible to detect overruns of larger distances, but increases the amount of
memory used by Valgrind. Decreasing the redzone size will reduce the memory needed by Vagrind but also
reduces the chances of detecting over/underruns, so is not recommended.

--xtree-menory=none| al | ocs|full [none]

Toolsreplacing Valgrindsal | oc, real |l oc, etc, can optionally produce an execution tree detailing which
piece of code is responsible for heap memory usage. See Execution Trees for a detailed explanation about
execution trees.

When set to none, no memory execution tree is produced.

When set to al | ocs, the memory execution tree gives the current number of allocated bytes and the current
number of allocated blocks.

When settof ul |, the memory execution tree gives 6 different measurements : the current number of allocated
bytes and blocks (same values asfor al | ocs), the total number of alocated bytes and blocks, the total number
of freed bytes and blocks.

Note that the overhead in cpu and memory to produce an xtree depends on the tool. The overhead in cpu is
small for the value al | ocs, as the information needed to produce this report is maintained in any case by the
tool. For massif and helgrind, specifying f ul | implies to capture a stack trace for each free operation, while
normally these tools only capture an allocation stack trace. For Memcheck, the cpu overhead for the value f ul |
is small, as this can only be used in combination with - - keep- st ackt races=al | oc-and-free or - -
keep- st ackt races=al | oc-t hen- f r ee, which already records a stack trace for each free operation. The
memory overhead varies between 5 and 10 words per unique stacktrace in the xtree, plus the memory needed to
record the stack trace for the free operations, if needed specifically for the xtree.

--xtree-menory-file=<filenane> [default: xtnenory.kcg. %p]
Specifies that Valgrind should produce the xtree memory report in the specified file. Any %p or %g sequences
appearing in the filename are expanded in exactly the sameway asthey arefor - - | og- f i | e. Seethedescription
of --log-file for details.
If the filename contains the extension . ns, then the produced file format will be amassif output fileformat. If the
filename contains the extension . kcg or no extension is provided or recognised, then the produced file format
will be acallgrind output format.

See Execution Trees for a detailed explanation about execution trees formats.

2.7.5. Uncommon Options

These options apply to all tools, asthey affect certain obscure workings of the VValgrind core. Most people won't need
to use them.

--snt-check=<none| stack|all|all-non-file>[default: all-non-file for x86/and64/
s390x, stack for other archs]

Thisoption controls Valgrind's detection of self-modifying code. If no checking isdone, when aprogram executes

some code, then overwrites it with new code, and executes the new code, Valgrind will continue to execute the
trandations it made for the old code. Thiswill likely lead to incorrect behaviour and/or crashes.

20

Using and understanding the VValgrind core

For "modern" architectures -- anything that's not x86, amd64 or s390x -- the default is st ack. Thisis because
a correct program must take explicit action to reestablish D-I cache coherence following code modification.
Vagrind observes and honours such actions, with the result that self-modifying code is transparently handled
with zero extra cost.

For x86, amd64 and s390x, the program is not required to notify the hardware of required D-I coherence syncing.
Hencethedefaultisal | - non-fi | e, which coversthe normal case of generating code into an anonymous (nhon-
file-backed) mmap'd area.

The meanings of the four available settings are as follows. No detection (none), detect self-modifying code on
the stack (whichisused by GCC to implement nested functions) (st ack), detect self-modifying code everywhere
(al 1), and detect self-modifying code everywhere except in file-backed mappings (al | - non-fi | e).

Running with al | will slow Valgrind down noticeably. Running with none will rarely speed things up, since
very little code gets dynamically generated in most programs. The VALGRI ND_DI SCARD_TRANSLATI ONS
client request is an alternative to - - snt- check=al I and - - snt-check=al | - non-fil e that requires
more programmer effort but allows Valgrind to run your program faster, by telling it precisely when trand ations
need to be re-made.

--snt-check=al | -non-fil e provides a cheaper but more limited version of - - snt-check=al | . It
adds checks to any tranglations that do not originate from file-backed memory mappings. Typical applications
that generate code, for example JITs in web browsers, generate code into anonymous mmaped areas, whereas
the "fixed" code of the browser always livesin file-backed mappings. - - snt- check=al | - non-fi | e takes
advantage of this observation, limiting the overhead of checking to code which islikely to be J T generated.

--read-inline-info=<yes|no> [default: see bel oy

When enabled, Valgrind will read information about inlined function callsfrom DWARF3 debug info. Thisslows
Valgrind startup and makes it use more memory (typically for each inlined piece of code, 6 words and space for
the function name), but it resultsin more descriptive stacktraces. Currently, thisfunctionality is enabled by default
only for Linux, Android and Solaris targets and only for the tools Memcheck, Massif, Helgrind and DRD. Here
isan example of some stacktraceswith - - r ead-i nl i ne- i nf o=no:

==15380== Condi tional junp or nobve depends on uninitialised val ue(s)

==15380== at Ox80484EA: main (inlinfo.c:6)

==15380==

==15380== Condi tional junp or nove depends on uninitialised val ue(s)
==15380== at 0x8048550: fun_noninline (inlinfo.c:6)

==15380== by 0x804850E: main (inlinfo.c:34)

==15380==

==15380== Condi tional junp or nove depends on uninitialised val ue(s)
==15380== at 0x8048520: main (inlinfo.c:6)

And here are the same errors with - - r ead- i nl i ne- i nf o=yes:

==15377== Condi tional junp or nove depends on uninitialised val ue(s)

==15377== at 0x80484EA: fun_d (inlinfo.c:6)
==15377== by O0x80484EA: fun_c (inlinfo.c:14)
==15377== by Ox80484EA: fun_b (inlinfo.c:20)
==15377== by Ox80484EA: fun_a (inlinfo.c:26)
==15377== by O0x80484EA: main (inlinfo.c:33)
==15377==

==15377== Condi tional junp or nove depends on uninitialised val ue(s)

21

Using and understanding the VValgrind core

==15377== at 0x8048550: fun_d (inlinfo.c:6)

==15377== by 0x8048550: fun_noninline (inlinfo.c:41)

==15377== by 0x804850E: main (inlinfo.c:34)

==15377==

==15377== Condi tional junp or nove depends on uninitialised val ue(s)
==15377== at 0x8048520: fun_d (inlinfo.c:6)

==15377== by 0x8048520: main (inlinfo.c: 35)

--read-var-info=<yes| no> [default: no]

When enabled, Valgrind will read information about variable types and | ocations from DWARF3 debug info. This
slows Valgrind startup significantly and makes it use significantly more memory, but for the tools that can take
advantage of it (Memcheck, Helgrind, DRD) it can result in more precise error messages. For example, here are
some standard errors issued by Memcheck:

==15363== Uninitialised byte(s) found during client check request

==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048544: main (varinfol.c:55)

==15363== Address 0x80497f7 is 7 bytes inside data synbol "gl obal _i2"
==15363==

==15363== Uninitialised byte(s) found during client check request
==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048550: mmin (varinfol.c:56)

==15363== Address OxbeaOdOcc is on thread 1's stack

==15363== in frane #1, created by main (varinfol.c:45)

And here are the same errors with - - r ead- var - i nf o=yes:

==15370== Uninitialised byte(s) found during client check request

==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048544: nmain (varinfol.c:55)

==15370== Locati on 0x80497f7 is 0 bytes inside global _i2[7],
==15370== a gl obal variable declared at varinfol.c:41

==15370==

==15370== Uninitialised byte(s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048550: mamin (varinfol.c:56)

==15370== Locati on Oxbeb4alOcc is O bytes inside |ocal var "local"

==15370== declared at varinfol.c:46, in frame #1 of thread 1
- -vgdb- pol | =<nunber > [default: 5000]

As part of its main loop, the Valgrind scheduler will poll to check if some activity (such as an external command
or some input from a gdb) has to be handled by gdbserver. This activity poll will be done after having run the
given number of basic blocks (or dlightly more than the given number of basic blocks). This poll is quite cheap
so the default value is set relatively low. Y ou might further decrease this value if vgdb cannot use ptrace system
call to interrupt Valgrind if all threads are (most of the time) blocked in a system call.

- -vgdb- shadow-r egi st ers=no| yes [default: no]
When activated, gdbserver will exposethe Valgrind shadow registersto GDB. With this, the value of the Valgrind

shadow registers can be examined or changed using GDB. Exposing shadow registers only works with GDB
version 7.1 or later.

22

Using and understanding the VValgrind core

--vgdb-prefix=<prefix> [default: /tnp/vgdb-pipe]

To communicate with gdb/vgdb, the Valgrind gdbserver creates 3 files (2 named FIFOs and a mmap shared
memory file). The prefix option controls the directory and prefix for the creation of thesefiles.

--run-libc-freeres=<yes|no> [default: yes]
This option is only relevant when running Valgrind on Linux.

The GNU Cllibrary (I i bc. so), which isused by all programs, may allocate memory for its own uses. Usually
it doesn't bother to free that memory when the program ends—there would be no point, since the Linux kernel
reclaims all process resources when a process exits anyway, so it would just slow things down.

The glibc authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report
leaks in glibc, when a leak check is done at exit. In order to avoid this, they provided a routine called
__libc_freeres specifically to make glibc release all memory it has allocated. Memcheck therefore tries to
run__libc_freeres a exit.

Unfortunately, in some very old versions of glibc, _ |i bc_freeres is sufficiently buggy to cause
segmentation faults. Thiswas particularly noticeable on Red Hat 7.1. So thisoption is provided in order to inhibit
therunof _ 1ibc_freeres. If your program seems to run fine on Valgrind, but segfaults at exit, you may
findthat - - run-1i bc-freer es=no fixesthat, although at the cost of possibly falsely reporting space leaks
inlibc.so.

--run-cxx-freeres=<yes| no> [default: yes]
Thisoption is only relevant when running Valgrind on Linux or Solaris C++ programs.

The GNU Standard C++ library (I i bst dc++. s0), whichisused by all C++ programs compiled with g++, may
allocate memory for its own uses. Usually it doesn't bother to free that memory when the program ends—there
would be no point, since the kernel reclaims all process resources when a process exits anyway, so it would just
slow things down.

The gcc authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report leaks
in libstdc++, when a leak check is done at exit. In order to avoid this, they provided a routine called

__gnu_cxx::__freeres gpecifically to make libstdc++ release al memory it has allocated. Memcheck
thereforetriestorun __gnu_cxx:: __ freeres at exit.
For the sake of flexibility and unforeseen problems with __gnu_cxx: : __freeres, option - - r un- cxx-

f r eer es=no exists, although at the cost of possibly falsely reporting space leaksin| i bst dc++. so.
--simhints=hintl, hint2,...

Pass miscellaneous hints to Valgrind which dightly modify the simulated behaviour in nonstandard or dangerous
ways, possibly to help the simulation of strange features. By default no hints are enabled. Use with caution!
Currently known hints are;

* lax-ioctls: Beverylaxaboutioctl handling; theonly assumptionisthat thesizeiscorrect. Doesn't require
the full buffer to be initialised when writing. Without this, using some device drivers with alarge number of
strange ioctl commands becomes very tiresome.

» fuse-conpati bl e: Enablespecia handling for certain system callsthat may block in aFUSE file-system.
This may be necessary when running Valgrind on a multi-threaded program that uses one thread to manage a
FUSE file-system and another thread to access that file-system.

e enabl e- out er: Enable some special magic needed when the program being run isitself Valgrind.

23

Using and understanding the VValgrind core

e no-inner-prefix: Disableprinting a prefix > in front of each stdout or stderr output line in an inner
Valgrind being run by an outer Valgrind. This is useful when running Valgrind regression tests in an outer/
inner setup. Note that the prefix > will always be printed in front of the inner debug logging lines.

* no-nptl - pt hr ead- st ackcache: This hint is only relevant when running Valgrind on Linux; it is
ignored on Solaris and Mac OS X.

The GNU dlibc pthread library (1 i bpt hr ead. so), which is used by pthread programs, maintains a cache
of pthread stacks. When a pthread terminates, the memory used for the pthread stack and some thread local
storage related data structure are not always directly released. This memory is kept in a cache (up to a certain
size), and isre-used if anew thread is started.

This cache causes the helgrind tool to report some false positive race condition errors on this cached memory,
as helgrind does not understand the internal glibc cache synchronisation primitives. So, when using helgrind,
disabling the cache helps to avoid false positive race conditions, in particular when using thread local storage
variables (e.g. variablesusing the __t hr ead qualifier).

When using the memcheck tool, disabling the cache ensures the memory used by glibc to handle __ thread
variablesis directly released when a thread terminates.

Note: Valgrind disables the cache using some internal knowledge of the glibc stack cache implementation and
by examining the debug information of the pthread library. This technique is thus somewhat fragile and might
not work for all glibc versions. This has been successfully tested with various glibc versions (e.g. 2.11, 2.186,
2.18) on various platforms.

» | ax-doors: (Solarisonly) Bevery lax about door syscall handling over unrecognised door file descriptors.
Does not require that full buffer is initialised when writing. Without this, programs using libdoor(3LI1B)
functionality with completely proprietary semantics may report large number of false positives.

o fall back-11sc: (MIPSand ARM64 only): Enables an aternative implementation of Load-Linked (LL)
and Store-Conditional (SC) instructions. The standard implementation gives more correct behaviour, but can
cause indefinite looping on certain processor implementations that are intolerant of extra memory references
between LL and SC. So far thisis known only to happen on Cavium 3 cores. Y ou should not need to use this
flag, sincetherelevant cores are detected at startup and the aternative implementation is automatically enabled
if necessary. There is no equivalent anti-flag: you cannot force-disable the alternative implementation, if it is
automatically enabled. The underlying problem exists because the "standard" implementation of LL and SC
is done by copying through LL and SC instructions into the instrumented code. However, tools may insert
extrainstrumentation memory referencesin between the LL and SC instructions. These memory references are
not present in the original uninstrumented code, and their presence in the instrumented code can cause the SC
instructions to persistently fail, leading to indefinite looping in LL-SC blocks. The alternative implementation
gives correct behaviour of LL and SC instructions between threads in a process, up to and including the ABA
scenario. It aso gives correct behaviour between a Valgrinded thread and a non-Valgrinded thread running in
adifferent process, that communicate via shared memory, but only up to and including correct CAS behaviour
-- in this case the ABA scenario may not be correctly handled.

--fair-sched=<no|yes|try> [default: no]

The- - f ai r - sched option controls the locking mechanism used by Valgrind to serialise thread execution. The
locking mechanism controls the way the threads are scheduled, and different settings give different trade-offs
between fairness and performance. For more details about the Valgrind thread serialisation scheme and itsimpact
on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

» Thevalue- - fair-sched=yes activatesafair scheduler. In short, if multiple threads are ready to run, the

threads will be scheduled in around robin fashion. This mechanism is not available on all platforms or Linux
versions. If not available, using - - f ai r - sched=yes will cause Valgrind to terminate with an error.

24

Using and understanding the VValgrind core

You may find this setting improves overall responsiveness if you are running an interactive multithreaded
program, for example aweb browser, on Valgrind.

* Thevalue - -fair-sched=try activates fair scheduling if available on the platform. Otherwise, it will
automatically fall back to - - f ai r - sched=no.

» Thevaue- - f ai r - sched=no activates a scheduler which does not guarantee fairness between threads ready
to run, but which in general gives the highest performance.

--kernel -variant=variantl, variant?2,...

Handle system calls and ioctls arising from minor variants of the default kernel for this platform. Thisis useful
for running on hacked kernels or with kernel modules which support nonstandard ioctls, for example. Use with
caution. If you don't understand what this option does then you almost certainly don't need it. Currently known
variants are;

» bproc: support thesys_br oc system call on x86. Thisisfor running on BProc, which isaminor variant of
standard Linux which is sometimes used for building clusters.

e andr oi d- no- hwt | s: some versions of the Android emulator for ARM do not provide a hardware TLS
(thread-local state) register, and Valgrind crashes at startup. Use this variant to select software support for TLS.

e andr oi d- gpu- sgx5xx: usethisto support handling of proprietary ioctlsfor the PowerVR SGX 5XX series
of GPUs on Android devices. Failure to select this does not cause stability problems, but may cause Memcheck
to report false errors after the program performs GPU-specific ioctls.

e andr oi d- gpu- adr eno3xx: similarly, use thisto support handling of proprietary ioctls for the Qualcomm
Adreno 3XX series of GPUs on Android devices.

--nerge-recursive-franmes=<nunber> [defaul t: 0]

Some recursive algorithms, for example balanced binary tree implementations, create many different stack traces,
each containing cycles of calls. A cycleis defined as two identical program counter values separated by zero or
more other program counter values. Valgrind may then use alot of memory to store all these stack traces. Thisis
apoor use of memory considering that such stack traces contain repeated uninteresting recursive calls instead of
more interesting information such as the function that has initiated the recursive call.

Theoption- - ner ge- r ecur si ve- f r ames=<nunber > instructs Valgrind to detect and mergerecursive call
cycles having a size of up to <nunber > frames. When such a cycle is detected, Vagrind records the cycle in
the stack trace as a unigque program counter.

Thevalue 0 (the default) causes no recursive call merging. A value of 1 will cause stack traces of simplerecursive
algorithms (for example, a factorial implementation) to be collapsed. A value of 2 will usually be needed to
collapse stack traces produced by recursive algorithms such as binary trees, quick sort, etc. Higher values might
be needed for more complex recursive algorithms.

Note: recursive calls are detected by analysis of program counter values. They are not detected by looking at
function names.

--numtranst ab- sect or s=<nunber> [default: 6 for Android platforms, 16 for all
ot her s]

Valgrind trandlates and instruments your program's machine code in small fragments (basic blocks). The
translations are stored in a translation cache that is divided into a number of sections (sectors). If the cache is
full, the sector containing the oldest trandlations is emptied and reused. If these old tranglations are needed again,
Valgrind must re-transl ate and re-instrument the corresponding machine code, whichisexpensive. If the"executed
instructions” working set of a program is big, increasing the number of sectors may improve performance by

25

Using and understanding the VValgrind core

reducing the number of re-trandlations needed. Sectors are allocated on demand. Once all ocated, a sector can never
be freed, and occupies considerabl e space, depending on thetool and thevalueof - - avg-t r anst ab-ent ry-
si ze (about 40 MB per sector for Memcheck). Use the option - - st at s=yes to obtain precise information
about the memory used by a sector and the allocation and recycling of sectors.

--avg-transtab-entry-si ze=<nunber> [default: 0, meaning use tool provided
def aul t]

Average size of trandated basic block. This average size is used to dimension the size of a sector. Each tool
provides a default value to be used. If this default value is too small, the translation sectors will become fulll
too quickly. If this default value is too big, a significant part of the translation sector memory will be unused.
Note that the average size of a basic block translation depends on the tool, and might depend on tool options.
For example, the memcheck option - - t r ack- or i gi ns=yes increasesthe size of the basic block trandations.
Use--avg-transt ab-entry-si ze to tune the size of the sectors, either to gain memory or to avoid too
many retrang ations.

- -aspace- i naddr =<addr ess> [defaul t: depends on the platforni

To avoid potential conflicts with some system libraries, Valgrind does not use the address space below - -

aspace- ni naddr value, keeping it reserved in case alibrary specifically requests memory in this region. So,
some "pessimistic” valueis guessed by Valgrind depending on the platform. On linux, by default, Valgrind avoids
using the first 64MB even if typically there is no conflict in this complete zone. You can use the option - -

aspace- ni naddr to have your memory hungry application benefitting from more of this lower memory. On
the other hand, if you encounter a conflict, increasing aspace-minaddr value might solveit. Conflictswill typically
manifest themselves with mmap failures in the low range of the address space. The provided addr ess must
be page aligned and must be equal or bigger to 0x1000 (4KB). To find the default value on your platform, do
something suchasval grind -d -d date 2>&1 | grep -i m naddr. Vaueslower than 0x10000
(64K B) are known to create problems on some distributions.

--val gri nd- st acksi ze=<nunber > [defaul t: 1MB]

For each thread, Valgrind needs its own 'private’ stack. The default size for these stacks is largely dimensioned,
and so should be sufficient in most cases. In case the sizeistoo small, Valgrind will segfault. Before segfaulting,
awarning might be produced by Valgrind when approaching the limit.

Usetheoption - - val gri nd- st acksi ze if such an (unlikely) warning is produced, or Valgrind diesdueto a
segmentation violation. Such segmentation violations have been seen when demangling huge C++ symbols.

If your application uses many threads and needs a lot of memory, you can gain some memory by reducing the
size of these Valgrind stacks using the option - - val gri nd- st acksi ze.

- -show emwar ns=<yes| no> [default: no]

When enabled, Valgrind will emit warnings about its CPU emulation in certain cases. These are usualy not
interesting.

--require-text-synbol =: sonanepatt: f nnanepat t

When a shared object whose soname matches sonanepat t is loaded into the process, examine all the text
symbolsit exports. If none of those match f nnamepat t , print an error message and abandon the run. Thismakes
it possibleto ensure that the run does not continue unless a given shared object contains aparticular function name.

Both sonanepatt and f nnanepatt can be written using the usua ? and * wildcards. For example:
":*libc.so*: foo?bar". Youmay use characters other than a colon to separate the two patterns. It is only
important that the first character and the separator character are the same. For example, the above example could
also be written " Q*l i bc. so* ¥ oo?bar". Multiple --require-text-synbol flagsare alowed, in
which case shared objects that are loaded into the process will be checked against al of them.

26

Using and understanding the VValgrind core

The purpose of this is to support reliable usage of marked-up libraries. For example, suppose we have a
version of GCC's | i bgonp. so which has been marked up with annotations to support Helgrind. It is only
too easy and confusing to load the wrong, un-annotated | i bgonp. so into the application. So the idea is: add
a text symbol in the marked-up library, for example annot at ed_f or _hel gri nd_3_6, and then give the
flag - - requi re-text - synbol =: *| i bgonp*so*: annot ated_for_hel grind_3_ 6 so that when
I i bgonp. so isloaded, Valgrind scansits symbol table, and if the symbol isn't present the run is aborted, rather
than continuing silently with the un-marked-up library. Note that you should put the entire flag in quotes to stop
shells expanding up the* and ? wildcards.

--soname- synonynms=synl=patternl, syn2=pattern2, ...

When a shared library is loaded, Valgrind checks for functions in the library that must be replaced or wrapped.
For example, Memcheck replaces some string and memory functions (strchr, strlen, strcpy, memchr, memcpy,
memmove, etc.) with its own versions. Such replacements are normally done only in shared libraries whose
soname matches a predefined soname pattern (e.g. | i bc. so* on linux). By default, no replacement is done
for astatically linked binary or for alternative libraries, except for the allocation functions (malloc, free, calloc,
memalign, realloc, operator new, operator delete, etc.) Such allocation functions are intercepted by default in
any shared library or in the executable if they are exported as global symbols. This means that if a replacement
allocation library such as tcmalloc is found, its functions are also intercepted by default. In some cases, the
replacements allow - - sonamne- synonyns to specify one additional synonym pattern, giving flexibility in the
replacement. Or to prevent interception of all public allocation symbols.

Currently, this flexibility is only allowed for the malloc related functions, using the synonym somal | oc. This
synonym is usable for all tools doing standard replacement of malloc related functions (e.g. memcheck, helgrind,
drd, massif, dhat).

» Alternate malloc library: to replace the malloc related functions in a specific alternate library
with soname nymalloclib.so (and not in any others), give the option --soname-
synonyns=sonal | oc=nmymal | ocl i b. so. A pattern can be used to match multiple libraries sonames.
For example, - - sonane- synonyns=sonal | oc=*t crmal | oc* will match the soname of all variants of
the tcmalloc library (native, debug, profiled, ... tcmalloc variants).

Note: the soname of a elf shared library can be retrieved using the readelf utility.

» Replacements in a statically linked library are done by using the NONE pattern. For example, if you link
with i bt crmal | oc. a, and only want to intercept the malloc related functions in the executable (and
standard libraries) themselves, but not any other shared libraries, you can give the option - - sonane-
synonyns=somal | oc=NONE. Note that a NONE pattern will match the main executable and any shared
library having no soname.

e To run a "default" Firefox build for Linux, in which JEMalloc is linked in to the main executable, use - -
sonane- synonyns=sonal | oc=NONE.

» To only intercept alocation symbols in the default system libraries, but not in any other shared library or the
executable defining public malloc or operator new related functions use a non-existing library name like - -
sonane- synonyns=sonal | oc=nouseri nt er cept s (wherenouser i nt er cept s can be any non-
existing library name).

» Shared library of the dynamic (runtime) linker is excluded from searching for global public symbols, such as
those for the malloc related functions (identified by somal | oc synonym).

--progress-interval =<nunber> [default: 0, meaning 'disabled]
Thisis an enhancement to Valgrind's debugging output. It is unlikely to be of interest to end users.

Whennunber issettoanon-zerovalue, Vagrind will print aone-line progress summary every nunber seconds.
Valid settingsfor nunber are between 0 and 3600 inclusive. Here's some example output with nunber setto 10:

27

Using and understanding the VValgrind core

PROGRESS: U 110s, W 113s, 97.3% CPU, EvC 414.79M TIn 616. 7k, TQut 0.5k, #thr
PROGRESS: U 120s, W 124s, 96.8% CPU, EvC 505.27M TIn 636. 6k, TQut 3.0k, #thr
PROGRESS: U 130s, W 134s, 97.0% CPU, EvC 574.90M TIn 657.5k, TQut 3.0k, #thr

Each line shows:

U: total user time
W total wallclock time
CPU: overall average cpu use

EvC. number of event checks. An event check is a backwards branch in the simulated program, so thisis a
measure of forward progress of the program

TI n: number of code blocks instrumented by the JIT
TQut : number of instrumented code blocks that have been thrown away

#t hr : number of threadsin the program

From the progress of these, it is possible to observe:

when the program is compute bound (T1 n rises dlowly, EvCrises rapidly)

when the program isin aspinloop (T1 n/TQut fixed, EvCrisesrapidly)

when the program is J T-bound (TI n rises rapidly)

when the program is rapidly discarding code (TQut rises rapidly)

when the program is about to achieve some expected state (Ev C arrives at some value you expect)

when the program isidling (U rises more slowly than W

2.7.6. Debugging Options

There are al so some options for debugging Valgrind itself. Y ou shouldn't need to use them in the normal run of things.
If you wish to seethelist, usethe - - hel p- debug option.

If you wish to debug your program rather than debugging Valgrind itself, then you should use the options - -
vgdb=yes or--vgdb=ful | .

2.7.7. Setting Default Options

Note that Valgrind also reads options from three places:

1. Thefile~/ . val grindrc

2. The environment variable $VALGRI ND_OPTS

3. Thefile./.val grindrc

These are processed in the given order, before the command-line options. Options processed later override those
processed earlier; for example, optionsin. /. val gri ndr ¢ will take precedence over thosein~/ . val gri ndrc.

Please note that the. / . val gri ndr c fileisignored if it isnot aregular file, or is marked as world writeable, or is
not owned by the current user. Thisisbecausethe. / . val gri ndr ¢ can contain optionsthat are potentially harmful
or can be used by alocal attacker to execute code under your user account.

28

67
64
63

Using and understanding the VValgrind core

Any tool-specific options put in $VALGRI ND_OPTS or the . val gri ndr c files should be prefixed with the tool
name and a colon. For example, if you want Memcheck to always do leak checking, you can put the following entry
in~/.val grindrc:

--mentheck: | eak- check=yes

Thiswill beignored if any tool other than Memcheck is run. Without the nencheck: part, thiswill cause problems
if you select other tools that don't understand - - | eak- check=yes.

2.7.8. Dynamically Changing Options

The value of some command line options can be changed dynamically while your program is running under Valgrind.

The dynamically changeable options of the valgrind core and a given tool can be listed using option - - hel p- dyn-
opt i ons, for example:

$ valgrind --tool =nentheck --hel p-dyn-options
dynam cal | y changeabl e opti ons:
-v -q -d --stats --vgdb=no --vgdb=yes --vgdb=full --vgdb-poll --vgdb-error
--vgdb-stop-at --error-markers --showerror-list -s --show bel ow nmain
--tinme-stanp --trace-children --child-silent-after-fork --trace-sched

--trace-signals --trace-syntab --trace-cfi --debug-dunp=syms
- - debug- dunmp=Ili ne --debug-dunp=franes --trace-redir --trace-syscalls
--symoffsets --progress-interval --merge-recursive-frames

--vex-iropt-verbosity --suppressions --trace-flags --trace-not bel ow
--trace-notabove --profile-flags --gen-suppressi ons=no

- -gen-suppr essi ons=yes --gen-suppressions=all --errors-for-I|eak-Kkinds
--show | eak- ki nds - -1 eak-check-heuristics --showreachabl e

--show possi bly-lost --freelist-vol --freelist-big-blocks --1eak-check=no
- -| eak- check=sunmary --I|eak-check=yes --1|eak-check=full --ignore-ranges

--ignore-range- bel owsp --show m smat ched-frees
valgrind: Use --help for nore information.
$

The dynamic options can be changed the following ways:

1. From the shell, using vgdb and the monitor command v. cl o:

$ vgdb "v.clo --trace-children=yes --child-silent-after-fork=no"
sendi ng command v.clo --trace-children=yes --child-silent-after-fork=no to pid 4404
$

Note: you must use double quotes around the monitor command to avoid vgdb interpreting the valgrind options
asitsown options.

2. From gdb, using the the monitor command v. cl o:
(gdb) nmonitor v.clo --trace-children=yes --child-silent-after-fork=no

(gdb)
3. From your program, using the client request VALGRI ND_CLO_CHANGE(opt i on) :

29

Using and understanding the VValgrind core

VALGRI ND_CLO CHANGE ("--trace-children=yes");
VALGRI ND_CLO CHANGE ("--child-silent-after-fork=no");

Dynamically changeabl e options can be used in vari ous circumstances, such as changing the valgrind behaviour during
execution, loading suppression files as part of shared library initialisation, change or set valgrind options in child
processes, ...

2.8. Support for Threads

Threaded programs are fully supported.

Themain thing to point out with respect to threaded programsisthat your program will use the native threading library,
but VValgrind serialises execution so that only one (kernel) thread isrunning at atime. Thisapproach avoidsthe horrible
implementation problems of implementing a truly multithreaded version of Valgrind, but it does mean that threaded
apps never use more than one CPU simultaneously, even if you have a multiprocessor or multicore machine.

Valgrind doesn't schedule the threadsitself. It merely ensuresthat only one thread runs at once, using asimplelocking
scheme. The actual thread scheduling remains under control of the OS kernel. What this does mean, though, is that
your program will see very different scheduling when run on Valgrind than it does when running normally. Thisis
both because Valgrind is serialising the threads, and because the code runs so much slower than normal.

This difference in scheduling may cause your program to behave differently, if you have some kind of concurrency,
critical race, locking, or similar, bugs. In that case you might consider using the tools Helgrind and/or DRD to track
them down.

On Linux, Valgrind al so supports direct use of the cl one system call, f ut ex and so on. cl one is supported where
either everything is shared (athread) or nothing is shared (fork-like); partial sharing will fail.

2.8.1. Scheduling and Multi-Thread Performance

A thread executes code only when it holds the abovementioned lock. After executing some number of instructions, the
running thread will release the lock. All threads ready to run will then compete to acquire the lock.

The- - f ai r - sched option controls the locking mechanism used to serialise thread execution.

The default pipe based locking mechanism (- - f ai r - sched=no) is available on al platforms. Pipe based locking
does not guarantee fairness between threads: it is quite likely that athread that has just released the lock reacquires it
immediately, even though other threads are ready to run. When using pipe based locking, different runs of the same
multithreaded application might give very different thread scheduling.

An alternative locking mechanism, based on futexes, is available on some platforms. If available, it is activated by
--fair-sched=yes or --fair-sched=try. Futex based locking ensures fairness (round-robin scheduling)
between threads: if multiple threads are ready to run, the lock will be given to the thread which first requested the lock.
Note that a thread which is blocked in a system call (e.g. in ablocking read system call) has not (yet) requested the
lock: such athread requests the lock only after the system call is finished.

The fairness of the futex based locking produces better reproducibility of thread scheduling for different executions
of amultithreaded application. This better reproducibility is particularly helpful when using Helgrind or DRD.

Valgrind's use of thread serialisation implies that only one thread at a time may run. On a multiprocessor/multicore
system, the running thread is assigned to one of the CPUs by the OS kernel scheduler. When athread acquiresthelock,
sometimes the thread will be assigned to the same CPU asthe thread that just released the lock. Sometimes, the thread
will be assigned to another CPU. When using pipe based locking, the thread that just acquired the lock will usually be
scheduled on the same CPU as the thread that just released the lock. With the futex based mechanism, the thread that
just acquired the lock will more often be scheduled on another CPU.

30

Using and understanding the VValgrind core

Valgrind's thread serialisation and CPU assignment by the OS kernel scheduler can interact badly with the CPU
frequency scaling available on many modern CPUs. To decrease power consumption, the frequency of a CPU or core
isautomatically decreased if the CPU/core has not been used recently. If the OS kernel often assigns the thread which
just acquired the lock to another CPU/core, it is quite likely that this CPU/core is currently at a low frequency. The
frequency of this CPU will beincreased after sometime. However, during thistime, the (only) running thread will have
run at the low frequency. Once this thread has run for some time, it will release the lock. Another thread will acquire
thislock, and might be scheduled again on another CPU whose clock frequency was decreased in the meantime.

The futex based locking causes threads to change CPUs/cores more often. So, if CPU frequency scaling is activated,
the futex based locking might decrease significantly the performance of a multithreaded app running under Valgrind.
Performancelosses of up to 50% degradation have been observed, as compared to running on amachine for which CPU
frequency scaling has been disabled. The pipe based locking locking scheme also interacts badly with CPU frequency
scaling, with performance losses in the range 10..20% having been observed.

To avoid such performance degradation, you should indicate to the kernel that all CPUs/cores should always run
at maximum clock speed. Depending on your Linux distribution, CPU frequency scaling may be controlled using a
graphical interface or using command line such as cpuf r eq- sel ect or or cpufreq- set.

Analternativeway to avoid these problemsistotell the OS scheduler totieaValgrind processto aspecific (fixed) CPU
usingthet askset command. This should ensure that the selected CPU does not fall below its maximum frequency
setting so long as any thread of the program has work to do.

2.9. Handling of Signals

Vagrind has a fairly complete signal implementation. It should be able to cope with any POSIX-compliant use of
signals.

If you're using signals in clever ways (for example, catching SIGSEGV, modifying page state and restarting the
instruction), you're probably relying on precise exceptions. In this case, you will need to use - - vex-i ropt -
regi st er-updat es=al | regs-at - nmem access or --vex-iropt-register-updates=allregs-
at - each-insn.

If your program dies as a result of a fatal core-dumping signal, Valgrind will generate its own core file
(vgcor e. NNNNN) containing your program's state. Y ou may use this corefile for post-mortem debugging with GDB
or similar. (Note: it will not generate a core if your core dump size limit is 0.) At the time of writing the core dumps
do not include all the floating point register information.

In the unlikely event that VValgrind itself crashes, the operating system will create a core dump in the usua way.

2.10. Execution Trees

An execution tree (xtree) ismade of aset of stack traces, each stack traceisassociated with someresource consumptions
or event counts. Depending on the xtree, different event counts/resource consumptions can be recorded in the xtree.
Multiple tools can produce memory use xtree. Memcheck can output the leak search resultsin an xtree.

A typical usage for an xtreeisto show agraphical or textual representation of the heap usage of aprogram. The below
figure is a heap usage xtree graphical representation produced by kcachegrind. In the kcachegrind output, you can see
that main current heap usage (allocated indirectly) is 528 bytes : 388 bytes allocated indirectly viaacall to function f1
and 140 bytesindirectly allocated viaacall to function f2. f2 has allocated memory by calling g2, whilef1 has allocated
memory by calling g11 and g12. g11, g12 and g1 have directly called a memory allocation function (malloc), and so
have anon zero 'Self' value. Note that when kcachegrind shows an xtree, the 'Called' column and call nr indicationsin
the Call Graph are not significant (always set to 0 or 1, independently of thereal nr of calls. The kcachegrind versions
>=0.8.0 do not show anymore such irrelevant xtree call number information.

31

Using and understanding the VValgrind core

An xtree heap memory report is produced at the end of the execution when required using the option - - xt r ee-
nmenory. It can aso be produced on demand using the xt nenory monitor command (see Valgrind monitor
commands). Currently, an xtree heap memory report can be produced by the nencheck, hel gri nd and nmassi f
toals.

The xtrees produced by the option --xtree-memory or the xt menor y monitor command are showing the following
events/resource consumption describing heap usage:

cur B current number of Bytes allocated. The number of allocated bytes is added to the cur B value of a stack
trace for each allocation. It is decreased when a block allocated by this stack traceis released (by another "freeing”
stack trace)

cur Bk current number of Blocks allocated, maintained similary to curB : +1 for each allocation, -1 when the block
isfreed.

t ot B total allocated Bytes. Thisisincreased for each alocation with the number of allocated bytes.
t ot Bk total allocated Blocks, maintained similary to totB : +1 for each allocation.

t ot FdB total Freed Bytes, increased each time ablock isreleased by this ("freeing") stack trace : + nr freed bytes
for each free operation.

t ot FdBk total Freed Blocks, maintained similarly to totFdB : +1 for each free operation.

Note that the last 4 counts are produced only when the - - xt r ee- menor y=f ul | was given at startup.

Xtrees can be saved in 2 file formats, the "Callgrind Format" and the "Massif Format".

Callgrind Format

Anxtreefileinthe Callgrind Format containsasingle callgraph, associating each stack tracewith the valuesrecorded
in the xtree.

Different Callgrind Format file visualisers are available;

Valgrind distribution includesthe cal | gri nd_annot at e command line utility that readsin the xtree data, and
prints a sorted lists of functions, optionally with source annotation. Note that due to xtree specificities, you must
givetheoption- - i ncl usi ve=yes to calgrind_annotate.

For graphical visualization of the data, you can use KCachegrind, which isa KDE/Qt based GUI that makesit easy
to navigate the large amount of datathat an xtree can contain.

Note that xtree Callgrind Format does not make use of the inline information even when specifying - - r ead-
i nline-info=yes.

Massif Format

An xtree file in the Massif Format contains one detailed tree callgraph data for each type of event recorded in the
xtree. So, for - - xt r ee- menor y=al | oc, the output file will contain 2 detailed trees (for the counts cur B and
cur Bk), while- - xt r ee- menor y=f ul | will giveafilewith 6 detailed trees.

Different Massif Format file visualisers are available. Valgrind distribution includestherms_pr i nt command line
utility that produces an easy to read reprentation of a massif output file. See Using Massif and ms_print and Using
massif-visualizer for more details about visualising Massif Format output files.

Note that xtree Massif Format makes use of the inline information when specifying - -read-i nl i ne-
i nf o=yes.

32

https://kcachegrind.github.io/html/Home.html

Using and understanding the VValgrind core

Note that for equivalent information, the Callgrind Format is more compact than the Massif Format. However, the
Callgrind Format always contains the full data: there is no filtering done during file production, filtering is done by
visualisers such as kcachegrind. kcachegrind is particularly easy to use to analyse big xtree data containing multiple
events counts or resources consumption. The Massif Format (optionally) only contains a part of the data. For example,
the Massif tool might filter some of the data, according to the- - t hr eshol d option.

To clarify the xtree concept, the below gives several extracts of the output produced by the following commands:
val grind --xtree-nenory=full --xtree-nenory-fil e=xtmenory.kcg nfg
cal I grind_annotate --auto=yes --inclusive=yes --sort=curB: 100, cur Bk: 100, t ot B: 100, t ot Bk: 100

The below extract shows that the program mfg has allocated in total 770 bytes in 60 different blocks. Of these 60
blocks, 19 were freed, releasing atotal of 242 bytes. The heap currently contains 528 bytesin 41 blocks.

528 41 770 60 242 19 PROGRAM TCOTALS
The below gives more details about which functions have allocated or released memory. As an example, we see that
main has (directly or indirectly) alocated 770 bytes of memory and freed (directly or indirectly) 242 bytes of memory.

The function f1 has (directly or indirectly) allocated 570 bytes of memory, and has not (directly or indirectly) freed
memory. Of the 570 bytes allocated by function f1, 388 bytes (34 blocks) have not been released.

528 41 770 60 242 19 nfg.c:main
388 34 570 50 0 0 nfg.c:fl
220 20 330 30 0 0 nfg.c:gl1
168 14 240 20 0 0 nfg.c:gl2
140 7 200 10 0 0 nfg.c:g2
140 7 200 10 0 0 nfg.c:f2

0 0 0 0 131 10 nfg.c:freeYy

0 0 0 0 111 9 nfg.c:freeX

The below gives a more detailed information about the callgraph and which source lines/calls have (directly or
indirectly) allocated or released memory. The below shows that the 770 bytes allocated by main have been indirectly
allocated by callsto f1 and f2. Similarly, we see that the 570 bytes allocated by f1 have been indirectly allocated by
callsto g11 and g12. Of the 330 bytes alocated by the 30 calls to g11, 168 bytes have not been freed. The function
freeY (called once by main) has released in total 10 blocks and 131 bytes.

-- Aut o-annot ated source: /home/philippe/valgrind/littleprogs/ + nfg.c

curB curBk totB totBk tot FdB t ot FdBk

static void freeY(void)

{
int i;
for (i = 0; I < next_ptr; i++)

33

Using and understanding the VValgrind core

if(i %5 ==0 & ptrs[i] != NULL)

0 0 0 0 131 10 free(ptrs[i]);
}
static void f1(void)
{ . .
int i;
. for (i =0; i < 30; i++)
220 20 330 30 0 0 g11();
. for (i =0; i < 20; i++)
168 14 240 20 0 0 012();
}
int main()
. o
388 34 570 50 0 0 f1();
140 7 200 10 0 0 f2();
0 0 0 0 111 9 freeX();
0 0 0 0 131 10 freeY();
return O;
}

Heap memory xtrees are helping to understand how your (big) program is using the heap. A full heap memory xtree
helps to pin point some code that allocates alot of small objects : alocating such small objects might be replaced by
more efficient technique, such as allocating abig block using malloc, and then diviving this block into smaller blocks
in order to decrease the cpu and/or memory overhead of allocating alot of small blocks. Such full xtree information
complements e.g. what callgrind can show: callgrind can show the number of calls to a function (such as malloc) but
does not indicate the volume of memory allocated (or freed).

A full heap memory xtree also can identify the code that allocates and frees alot of blocks : the total foot print of the
program might not reflect the fact that the same memory was over and over allocated then released.

Finally, Xtree visualisers such as kcachegrind are helping to identify big memory consumers, in order to possibly
optimise the amount of memory needed by your program.

2.11. Building and Installing Valgrind

We use the standard Unix . / confi gur e, make, make i nstal | mechanism. Once you have completed make
i nstal | youmay then want to run the regression tests with make regt est.

In addition to the usua - - prefix=/path/to/install/tree, there are three options which affect how
Valgrind is built:

e --enabl e-i nner

Thisbuilds Valgrind with some special magic hacks which make it possibleto runit on astandard build of Valgrind
(what the devel opers call "self-hosting"). Ordinarily you should not use this option as various kinds of safety checks
are disabled.

* --enabl e-onl y64bi t
--enabl e-onl y32bi t

On 64-bit platforms (amd64-linux, ppc64-linux, and64-darwin), Valgrind is by default built in such away that both
32-bit and 64-bit executables can be run. Sometimesthis clevernessis aproblem for avariety of reasons. These two
options alow for single-target builds in this situation. If you issue both, the configure script will complain. Note
they areignored on 32-bit-only platforms (x86-linux, ppc32-linux, arm-linux, x86-darwin).

Using and understanding the VValgrind core

The conf i gur e script tests the version of the X server currently indicated by the current $DI SPLAY. Thisis a
known bug. Theintention was to detect the version of the current X client libraries, so that correct suppressions could
be selected for them, but instead the test checks the server version. Thisisjust plain wrong.

If you are building a binary package of Valgrind for distribution, please read README_PACKACGERS Readme
Packagers. It contains some important information.

Apart from that, there's not much excitement here. Let us know if you have build problems.

2.12. If You Have Problems

Contact us at http://www.valgrind.org/.

See Limitations for the known limitations of Valgrind, and for alist of programs which are known not to work on it.

All parts of the system make heavy use of assertions and internal self-checks. They are permanently enabled, and we
have no plans to disable them. If one of them breaks, please mail us!

If you get an assertion failurein m_mal | ocf r ee. ¢, this may have happened because your program wrote off the
end of a heap block, or before its beginning, thus corrupting heap metadata. VValgrind hopefully will have emitted a
message to that effect before dying in this way.

Read the Valgrind FAQ for more advice about common problems, crashes, etc.

2.13. Limitations

Thefollowing list of limitations seems long. However, most programs actually work fine.

Valgrind will run programs on the supported platforms subject to the following constraints:

On Linux, Valgrind determines at startup the size of the 'brk segment' using the RLIMIT_DATA rlim_cur, with
aminimum of 1 MB and a maximum of 8 MB. Valgrind outputs a message each time a program tries to extend
the brk segment beyond the size determined at startup. Most programs will work properly with this limit, typically
by switching to the use of mmap to get more memory. If your program really needs a big brk segment, you must
change the 8 MB hardcoded limit and recompile Valgrind.

On x86 and amd64, there is no support for 3DNow! instructions. If the tranglator encounters these, Valgrind will
generate a SIGILL when the instruction is executed. Apart from that, on x86 and amd64, essentially all instructions
are supported, up to and including AV X and AES in 64-bit mode and SSSE3 in 32-bit mode. 32-bit mode does in
fact support the bare minimum SSE4 instructions needed to run programs on MacOSX 10.6 on 32-hit targets.

On ppc32 and ppc64, almost all integer, floating point and Altivec instructions are supported. Specifically: integer
and FP insns that are mandatory for PowerPC, the "General-purpose optional" group (fsort, fsgrts, stfiwx), the
"Graphics optional" group (fre, fres, frsgrte, frsgrtes), and the Altivec (also known as VMX) SIMD instruction
set, are supported. Also, instructions from the Power 1SA 2.05 specification, as present in POWER6 CPUs, are
supported.

On ARM, essentially the entire ARMV7-A instruction set is supported, in both ARM and Thumb mode. ThumbEE
and Jazelle are not supported. NEON, VFPv3 and ARMv6 media support isfairly complete.

If your program does its own memory management, rather than using malloc/new/free/delete, it should still work,
but Memcheck's error checking won't be so effective. If you describe your program's memory management scheme
using "client requests’ (see The Client Reguest mechanism), Memcheck can do better. Nevertheless, using malloc/
new and free/delete is still the best approach.

35

http://www.valgrind.org/

Using and understanding the VValgrind core

Valgrind's signal simulation is not as robust as it could be. Basic POSIX-compliant sigaction and sigprocmask
functionality is supplied, but it's conceivable that things could go badly awry if you do weird things with signals.
Workaround: don't. Programs that do non-POSI X signal tricks are in any case inherently unportable, so should be
avoided if possible.

Machineinstructions, and system calls, have been implemented on demand. So it's possible, although unlikely, that
a program will fall over with a message to that effect. If this happens, please report al the details printed out, so
we can try and implement the missing feature.

Memory consumption of your program ismajorly increased whilst running under Valgrind's Memcheck tool. Thisis
due to the large amount of administrative information maintained behind the scenes. Another cause isthat Valgrind
dynamically trandatesthe original executable. Tranglated, instrumented code is 12-18 times larger than the original
so you can easily end up with 150+ MB of translations when running (eg) aweb browser.

Valgrind can handle dynamically-generated code just fine. If you regenerate code over the top of old code (ie. at the
same memory addresses), if the codeis on the stack Valgrind will realise the code has changed, and work correctly.
This is necessary to handle the trampolines GCC uses to implemented nested functions. If you regenerate code
somewhere other than the stack, and you are running on an 32- or 64-bit x86 CPU, you will need to use the - -

snt- check=al | option, and Valgrind will run more slowly than normal. Or you can add client requests that tell
Valgrind when your program has overwritten code.

On other platforms (ARM, PowerPC) Valgrind observes and honours the cache invalidation hints that programs
are obliged to emit to notify new code, and so self-modifying-code support should work automatically, without the
need for - - snt- check=al | .

Valgrind has the following limitations in its implementation of x86/AM D64 floating point relative to IEEE754.

Precision: Thereis no support for 80 hit arithmetic. Internally, Valgrind represents all such "long double" numbers
in 64 bits, and so there may be some differences in results. Whether or not thisis critical remains to be seen. Note,
the x86/amd64 fldt/fstpt instructions (read/write 80-bit numbers) are correctly simulated, using conversionsto/from
64 hits, so that in-memory images of 80-hit numbers look correct if anyone wants to see.

Theimpression observed from many FP regression testsis that the accuracy differences aren't significant. Generally
speaking, if a program relies on 80-bit precision, there may be difficulties porting it to non x86/amd6é4 platforms
which only support 64-bit FP precision. Even on x86/amd64, the program may get different results depending on
whether it iscompiled to use SSE2 instructions (64-bits only), or x87 instructions (80-hit). The net effect isto make
FP programs behave asif they had been run on amachine with 64-bit | EEE floats, for example PowerPC. On amd64
FP arithmetic is done by default on SSE2, so amd64 Iooks more like PowerPC than x86 from an FP perspective,
and there are far fewer noticeable accuracy differences than with x86.

Rounding: Valgrind does observe the 4 |EEE-mandated rounding modes (to nearest, to +infinity, to -infinity, to
zero) for the following conversions: float to integer, integer to float where there is a possibility of loss of precision,
and float-to-float rounding. For all other FP operations, only the |EEE default mode (round to nearest) is supported.

Numeric exceptionsin FP code: | EEE754 definesfive types of numeric exception that can happen: invalid operation
(sgrt of negative number, etc), division by zero, overflow, underflow, inexact (loss of precision).

For each exception, two courses of action are defined by |[EEE754: either (1) a user-defined exception handler may
be called, or (2) adefault action is defined, which "fixes things up" and allows the computation to proceed without
throwing an exception.

Currently Valgrind only supports the default fixup actions. Again, feedback on the importance of exception support
would be appreciated.

When Valgrind detects that the program is trying to exceed any of these limitations (setting exception handlers,
rounding mode, or precision control), it can print a message giving a traceback of where this has happened, and

36

Using and understanding the VValgrind core

continue execution. This behaviour used to be the default, but the messages are annoying and so showing them is
now disabled by default. Use - - show emwar ns=yes to see them.

The above limitations define precisely the IEEE754 'default’ behaviour: default fixup on all exceptions, round-to-
nearest operations, and 64-bit precision.

» Valgrind has the following limitations in its implementation of x86/AMD64 SSE2 FP arithmetic, relative to
|IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, SSE2 has control bits which
make it treat denormalised numbers as zero (DAZ) and a related action, flush denormals to zero (FTZ). Both of
these cause SSE2 arithmetic to be less accurate than IEEE requires. Valgrind detects, ignores, and can warn about,
attempts to enable either mode.

» Valgrind has the following limitations in itsimplementation of ARM VFPv3 arithmetic, relative to |IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, switching the VFP unit into
vector mode will cause VValgrind to abort the program -- it has no way to emulate vector uses of VFP at areasonable
performance level. Thisis no big deal given that non-scalar uses of VFP instructions are in any case deprecated.

 Valgrind hasthe following limitationsin itsimplementation of PPC32 and PPC64 floating point arithmetic, relative
to IEEE754.

Scalar (non-Altivec): Valgrind provides a bit-exact emulation of all floating point instructions, except for "fre" and
"fres’, which are done more precisely than required by the PowerPC architecture specification. All floating point
operations observe the current rounding mode.

However, fpscr[FPRF] is not set after each operation. That could be done but would give measurable performance
overheads, and so far no need for it has been found.

As on x86/AMD64, |IEEE754 exceptions are not supported: all floating point exceptions are handled using the
default 1EEE fixup actions. Valgrind detects, ignores, and can warn about, attempts to unmask the 5 IEEE FP
exception kinds by writing to the floating-point status and control register (fpscr).

Vector (Altivec, VMX): essentially as with x86/AMD64 SSE/SSE2: no exceptions, and limited observance of
rounding mode. For Altivec, FP arithmetic isdonein |EEE/Javamode, which ismore accurate than the Linux default
setting. "More accurate” means that denormals are handled properly, rather than simply being flushed to zero.

Programs which are known not to work are:

» emacsstartsup but immediately concludesit isout of memory and aborts. It may bethat Memcheck doesnot provide
agood enough emulation of themal | i nf o function. Emacs works fine if you build it to use the standard malloc/
free routines.

2.14. An Example Run

Thisisthe log for arun of asmall program using Memcheck. The program isin fact correct, and the reported error is
asthe result of a potentially serious code generation bug in GNU g++ (snapshot 20010527).

sewar dj @hoeni x: ~/ newrat 10$ ~/ Val gri nd-6/val grind -v ./bogon
==25832== Val grind 0.10, a nenory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000-2001, and GNU GPL'd, by Julian Seward.
==25832== Startup, with flags:

==25832== - - suppr essi ons=/ hone/ sewar dj / Val gri nd/ redhat 71. supp

37

Using and understanding the VValgrind core

==25832== readi ng syns from/lib/ld-Iinux.so.2

==25832== reading syns from/lib/libc.so.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libgcc_s.so.0
==25832== reading syns from/lib/libmso.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libstdc++.s0.3
==25832== readi ng syns from /home/ sewardj/Val gri nd/ val gri nd. so
==25832== readi ng syns from/proc/self/exe

==25832==

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize(int,int,int) (bogon.cpp: 45)
==25832== by 0x80487AF: mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, nalloc'd or free'd
==25832==

==25832== ERROR SUMVARY: 1 errors from1l contexts (suppressed: 0 from 0)
==25832== mal |l oc/free: in use at exit: O bytes in O bl ocks.

==25832== mal l oc/free: 0 allocs, O frees, 0 bytes all ocated.

==25832== For a detailed |eak analysis, rerun with: --I|eak-check=yes

The GCC folks fixed this about aweek before GCC 3.0 shipped.

2.15. Warning Messages You Might See

Some of these only appear if you run in verbose mode (enabled by - v):

* More than 100 errors detected. Subsequent errors will still be recorded, but
in less detail than before.

After 100 different errors have been shown, Valgrind becomes more conservative about collecting them. It then
requires only the program counters in the top two stack frames to match when deciding whether or not two errors
are really the same one. Prior to this point, the PCs in the top four frames are required to match. This hack has
the effect of slowing down the appearance of new errors after the first 100. The 100 constant can be changed by
recompiling Valgrind.

* More than 1000 errors detected. |'mnot reporting any nore. Final error counts
may be inaccurate. Go fix your program

After 1000 different errors have been detected, Vagrind ignores any more. It seems unlikely that collecting even
more different ones would be of practical help to anybody, and it avoids the danger that Valgrind spends more and
more of itstime comparing new errors against an ever-growing collection. As above, the 1000 number isacompile-
time constant.

« Warning: client switching stacks?

Valgrind spotted such alarge change in the stack pointer that it guesses the client is switching to a different stack.
At thispoint it makes akludgey guess where the base of the new stack is, and sets memory permissions accordingly.
At the moment "large change" is defined as a change of more that 2000000 in the value of the stack pointer register.
If Valgrind guesses wrong, you may get many bogus error messages following this and/or have crashes in the
stack trace recording code. Y ou might avoid these problems by informing Valgrind about the stack bounds using
VALGRIND_STACK_REGISTER client request.

« Warning: client attenpted to close Valgrind' s logfile fd <nunber>

Valgrind doesn't allow the client to close the logfile, because you'd never see any diagnostic information after that
point. If you see thismessage, you may want to usethe- - | og- f d=<numnber > option to specify adifferent logfile
file-descriptor number.

38

Using and understanding the VValgrind core

e Warni ng: noted but unhandl ed ioctl <nunber>
Valgrind observed acall to one of the vast family of i oct | system calls, but did not modify its memory statusinfo
(because nobody has yet written a suitable wrapper). The call will still have gone through, but you may get spurious
errors after this as aresult of the non-update of the memory info.

« WArni ng: set address range perns: |arge range <nunber>

Diagnostic message, mostly for benefit of the Valgrind devel opers, to do with memory permissions.

39

3. Using and understanding the
Valgrind core: Advanced Topics

This chapter describes advanced aspects of the Valgrind core services, which are mostly of interest to power users
who wish to customise and modify Valgrind's default behavioursin certain useful ways. The subjects covered are:

» The"Client Request" mechanism
» Debugging your program using Valgrind's gdbserver and GDB

» Function Wrapping

3.1. The Client Request mechanism

Valgrind has a trapdoor mechanism via which the client program can pass all manner of requests and queries to
Valgrind and the current tool. Internally, this is used extensively to make various things work, although that's not
visible from the outside.

For your convenience, a subset of these so-called client requestsis provided to allow you to tell Valgrind facts about
the behaviour of your program, and also to make queries. In particular, your program can tell Vagrind about things
that it otherwise would not know, leading to better results.

Clients need to include a header file to make this work. Which header file depends on which client requests you use.
Some client requests are handled by the core, and are defined in the header file val gri nd/ val gri nd. h. Tool-
specific header files are named after thetool, e.g. val gri nd/ mencheck. h. Each tool-specific header fileincludes
val gri nd/ val gri nd. h so you don't need to include it in your client if you include a tool-specific header. All
header files can befound inthei ncl ude/ val gri nd directory of wherever Valgrind was installed.

The macros in these header files have the magical property that they generate code in-line which Valgrind can spot.
However, the code does nothing when not run on Valgrind, so you are not forced to run your program under Vagrind
just because you use the macrosin thisfile. Also, you are not required to link your program with any extra supporting
libraries.

The code added to your binary has negligible performance impact: on x86, amd64, ppc32, ppc64 and ARM, the
overhead is 6 simple integer instructions and is probably undetectable except in tight loops. However, if you really
wish to compile out the client requests, you can compile with - DNVALGRI ND (analogous to - DNDEBUGS effect on
assert).

You are encouraged to copy the val gri nd/ *. h headers into your project's include directory, so your program
doesn't have a compile-time dependency on Valgrind being installed. The Valgrind headers, unlike most of the rest of
the code, are under a BSD-style license so you may include them without worrying about license incompatibility.

Hereis a brief description of the macros available in val gri nd. h, which work with more than one tool (see the
tool-specific documentation for explanations of the tool-specific macros).

RUNNI NG_ON_VALGRI ND:

Returns 1 if running on Valgrind, O if running on the real CPU. If you are running Valgrind on itself, returns the
number of layers of Valgrind emulation you're running on.

VALGRI ND_DI SCARD_TRANSLATI ONS:

Discards tranglations of code in the specified address range. Useful if you are debugging a JIT compiler or some
other dynamic code generation system. After this call, attempts to execute code in the invalidated address range

40

Using and understanding the VValgrind core: Advanced Topics

will cause Valgrind to make new trandations of that code, which is probably the semantics you want. Note that
code invalidations are expensive because finding all the relevant trandlations quickly is very difficult, so try not
to cal it often. Note that you can be clever about this: you only need to call it when an area which previoudy
contained code is overwritten with new code. Y ou can choose to write code into fresh memory, and just call this
occasionally to discard large chunks of old code all at once.

Alternatively, for transparent self-modifying-code support, use- - snt- check=al | , or run on ppc32/Linux,
ppc64/Linux or ARM/Linux.

VALGRI ND_COUNT_ERRCRS:

Returns the number of errors found so far by Valgrind. Can be useful in test harness code when combined with
the- - | og- f d=- 1 option; thisrunsValgrind silently, but the client program can detect when errors occur. Only
useful for tools that report errors, e.g. it's useful for Memcheck, but for Cachegrind it will always return zero
because Cachegrind doesn't report errors.

VALGRI ND_MALLOCLI KE_BLOCK:

If your program manages its own memory instead of using the standard mal | oc / new/ new], toolsthat track
information about heap blocks will not do nearly as good a job. For example, Memcheck won't detect nearly as
many errors, and the error messages won't be as informative. To improve this situation, use this macro just after
your custom allocator allocates some new memory. See the commentsinval gri nd. h for information on how
to useit.

VALGRI ND_FREELI KE_BLOCK:

This should be used in conjunction with VALGRI ND_MALLOCLI KE_BLOCK. Again, see val gri nd. h for
information on how to useit.

VALGRI ND_RESI ZEI NPLACE_BLOCK:

InformsaValgrindtool that the size of an all ocated block has been modified but notitsaddress. Seeval gri nd. h
for more information on how to useit.

VALGRI ND_CREATE_MEMPOQL, VALGRI ND_DESTROY_MEMPOQL, VALGRI ND_MEMPOOL_ALLCC,
VALGRI ND_MEMPOOL _FREE, VALGRI ND_MOVE_MEMPOQL, VALGRI ND_MEMPOOL _ CHANGE,
VALGRI ND_MEMPOOL_EXI STS:

These are similar to VALGRI ND_MALLOCLI KE_BLOCK and VALCGRI ND_FREEL| KE_BLOCK but are tailored
towards code that uses memory pools. See Memory Pools for a detailed description.

VALGRI ND_NON_SI MD_CALL[0123] :

Executes afunction in the client program on the real CPU, not the virtual CPU that Vagrind normally runs code
on. The function must take an integer (holding a thread ID) as the first argument and then O, 1, 2 or 3 more
arguments (depending on which client request is used). These are used in various ways internally to Valgrind.
They might be useful to client programs.

Warning: Only use these if you really know what you are doing. They aren't entirely reliable, and can cause
Valgrind to crash. Seeval gri nd. h for more details.

VALGRI ND_PRI NTF(format, ...):

Print a printf-style message to the Valgrind log file. The message is prefixed with the PID between a pair of * *
markers. (Like all client requests, nothing is output if the client program is not running under Valgrind.) Output
is not produced until a newline is encountered, or subsequent Valgrind output is printed; this allows you to build
up asingle line of output over multiple calls. Returns the number of characters output, excluding the PID prefix.

41

Using and understanding the VValgrind core: Advanced Topics

VALGRI ND_PRI NTF_BACKTRACE(f or mat, ...):

Like VALGRI ND_PRI NTF (in particular, the return value isidentical), but prints a stack backtrace immediately
afterwards.

VALGRI ND_MONI TOR_COVIVAND(command) :

Execute the given monitor command (a string). Returns 0 if command is recognised. Returns 1 if command
is not recognised. Note that some monitor commands provide access to a functionality also accessible via a
specific client request. For example, memcheck leak search can be requested from the client program using
VALGRIND DO _LEAK_CHECK or via the monitor command "leak_search”. Note that the syntax of the
command string is only verified at run-time. So, if it exists, it is preferable to use a specific client request to have
better compile time verifications of the arguments.

VALGRI ND_CLO CHANGE(opti on):
Changes the value of a dynamically changeable option (a string). See Dynamically Change Options.
VALGRI ND_STACK REG STER(start, end):

Registers a new stack. Informs Valgrind that the memory range between start and end is a unique stack. Returns
astack identifier that can be used with other VALGRI ND_STACK * calls.

Valgrind will use this information to determine if a change to the stack pointer is an item pushed onto the stack
or a change over to a new stack. Use thisif you're using a user-level thread package and are noticing crashesin
stack trace recording or spurious errors from Vagrind about uninitialized memory reads.

War ning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_DEREQ STER(i d) :

Deregisters a previously registered stack. Informs Valgrind that previously registered memory range with stack
idi d isno longer a stack.

War ning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_CHANGE(i d, start, end):

Changes a previoudly registered stack. Informs Valgrind that the previously registered stack with stack id i d has
changed its start and end values. Use thisif your user-level thread package implements stack growth.

Warning: Unfortunately, this client request is unreliable and best avoided.

3.2. Debugging your program using Valgrind
gdbserver and GDB

A program running under Valgrind is not executed directly by the CPU. Instead it runs on a synthetic CPU provided
by Valgrind. Thisiswhy adebugger cannot debug your program when it runs on Valgrind.

This section describes how GDB can interact with the Valgrind gdbserver to provide afully debuggable program under
Vagrind. Used in thisway, GDB also provides an interactive usage of Valgrind core or tool functionalities, including
incremental leak search under Memcheck and on-demand Massif snapshot production.

3.2.1. Quick Start: debugging in 3 steps

The simplest way to get started is to run Valgrind with the flag - - vgdb- er r or =0. Then follow the on-screen
directions, which give you the precise commands needed to start GDB and connect it to your program.

42

Using and understanding the VValgrind core: Advanced Topics

Otherwise, here's a dlightly more verbose overview.

If you want to debug a program with GDB when using the Memcheck tool, start Vagrind like this:

val grind --vgdb=yes --vgdb-error=0 prog
In another shell, start GDB:

gdb prog

Then give the following command to GDB:

(gdb) target renote | vgdb
Y ou can now debug your program e.g. by inserting a breakpoint and then using the GDB cont i hue command.

This quick start information is enough for basic usage of the Valgrind gdbserver. The sections below describe more
advanced functionality provided by the combination of Valgrind and GDB. Note that the command line flag - -
vgdb=yes can be omitted, asthisisthe default value.

3.2.2. Valgrind gdbserver overall organisation

The GNU GDB debugger is typically used to debug a process running on the same machine. In this mode, GDB uses
system calls to control and query the program being debugged. This works well, but only allows GDB to debug a
program running on the same computer.

GDB can also debug processes running on a different computer. To achieve this, GDB defines a protocol (that is, a
set of query and reply packets) that facilitates fetching the value of memory or registers, setting breakpoints, etc. A
gdbserver is an implementation of this "GDB remote debugging" protocol. To debug a process running on a remote
computer, a gdbserver (sometimes called a GDB stub) must run at the remote computer side.

The Valgrind core provides a built-in gdbserver implementation, which is activated using - - vgdb=yes or - -
vgdb=f ul | . Thisgdbserver allows the process running on VValgrind's synthetic CPU to be debugged remotely. GDB
sends protocol query packets (such as "get register contents') to the Vagrind embedded gdbserver. The gdbserver
executesthe queries (for example, it will get the register valuesof the synthetic CPU) and givestheresultsback to GDB.

GDB can use various kinds of channels (TCP/IP, serial line, etc) to communicate with the gdbserver. In the case of
Valgrind's gdbserver, communication is done via a pipe and a small helper program caled vgdb, which acts as an
intermediary. If no GDB isin use, vgdb can also be used to send monitor commands to the Valgrind gdbserver from
ashell command line.

3.2.3. Connecting GDB to a Valgrind gdbserver

To debug a program "pr 0g" running under Valgrind, you must ensure that the Valgrind gdbserver is activated by
specifying either - - vgdb=yes or - - vgdb=f ul | . A secondary command lineoption, - - vgdb- er r or =nunber,
can be used to tell the gdbserver only to become active once the specified number of errors have been shown. A value
of zero will therefore cause the gdbserver to become active at startup, which allows you to insert breakpoints before
starting the run. For example:

val grind --tool =nentheck --vgdb=yes --vgdb-error=0 ./prog

The Valgrind gdbserver isinvoked at startup and indicatesit is waiting for a connection from a GDB:

43

Using and understanding the VValgrind core: Advanced Topics

==2418== Mentheck, a nmenory error detector

==2418== Copyright (C 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2418== Using Valgrind-3.14.0.3 T and Li bVEX; rerun with -h for copyright info
==2418== Command: ./prog

==2418==

==2418== (action at startup) vgdb nme ...

GDB (in another shell) can then be connected to the Valgrind gdbserver. For this, GDB must be started on the program
prog:

gdb ./ prog

Y ou then indicate to GDB that you want to debug a remote target:

(gdb) target renote | vgdb

GDB then starts a vgdb relay application to communicate with the Valgrind embedded gdbserver:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

rel ayi ng data between gdb and process 2418

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so.debug...done.
Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2418]

0x001f 2850 in _start () from/lib/ld-1inux.so.2

(gdb)
Note that vgdb is provided as part of the Valgrind distribution. Y ou do not need to install it separately.

If vgdb detects that there are multiple Valgrind gdbservers that can be connected to, it will list al such servers and
their PIDs, and then exit. You can then reissue the GDB "target” command, but specifying the PID of the process
you want to debug:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

no --pid= arg given and nmultiple valgrind pids found:

use --pid=2479 for valgrind --tool =menctheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2481 for valgrind --tool =mencheck --vgdb=yes --vgdb-error=0 ./prog
use --pi d=2483 for valgrind --vgdb=yes --vgdb-error=0 ./anot her_prog

Renot e comuni cation error: Resource tenporarily unavail abl e.

(gdb) target rempte | vgdb --pid=2479

Renot e debuggi ng using | vgdb --pid=2479

rel ayi ng data between gdb and process 2479

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Iib/debug/lib/ld-2.11.2.so.debug...done.

Loaded synmbols for /lib/ld-Iinux.so.2

[Switching to Thread 2479]

0x001f 2850 in _start () from/lib/ld-1inux.so.2

(gdb)

Once GDB is connected to the Valgrind gdbserver, it can be used in the same way as if you were debugging the
program natively:

Using and understanding the VValgrind core: Advanced Topics

 Breakpoints can be inserted or deleted.

Variables and register values can be examined or modified.

Signal handling can be configured (printing, ignoring).
» Execution can be controlled (continue, step, next, stepi, etc).
» Program execution can be interrupted using Control-C.

And so on. Refer to the GDB user manual for a complete description of GDB's functionality.

3.2.4. Connecting to an Android gdbserver

When devel opping applicationsfor Android, you will typically use adevelopment system (on which the Android NDK
isinstalled) to compile your application. An Android target system or emulator will be used to run the application. In
this setup, Vagrind and vgdb will run on the Android system, while GDB will run on the development system. GDB
will connect to the vgdb running on the Android system using the Android NDK '"adb forward' application.

Example: on the Android system, execute the following:

val grind --vgdb-error=0 --vgdb=yes prog
and then in another shell, run:
vgdb --port=1234

On the devel opment system, execute the following commands:

adb forward tcp: 1234 tcp: 1234
gdb prog
(gdb) target renote : 1234

GDB will usealocal tcp/ip connection to connect to the Android adb forwarder. Adb will establish arelay connection
between the host system and the Android target system. Be sureto use the GDB delivered in the Android NDK system
(typically, arm-linux-androideabi-gdb), asthe host GDB is probably not able to debug Android arm applications. Note
that the local port nr (used by GDB) must not necessarily be equal to the port number used by vgdb: adb can forward
tep/ip between different port numbers.

In the current release, the GDB server is not enabled by default for Android, dueto problemsin establishing a suitable
directory in which Valgrind can create the necessary FIFOs (named pipes) for communication purposes. Y ou can stil
try to use the GDB server, but you will need to explicitly enableit using the flag - - vgdb=yes or - - vgdb=f ul | .

Additionally, you will need to select atemporary directory which is (@) writable by Valgrind, and (b) supports FIFOs.
Thisisthe main difficult point. Often, / sdcar d satisfies requirement (@), but fails for (b) becauseitisaVFAT file
system and VFAT does not support pipes. Possibilitiesyou could try are/ dat a/ | ocal ,/ dat a/l ocal / | nst (if
you installed Valgrind there), or / dat a/ dat a/ name. of . my. app, if you are running a specific application and it
has its own directory of that form. This last possibility may have the highest probability of success.

Y ou can specify the temporary directory to use either viathe - - wi t h- t npdi r = configure time flag, or by setting
environment variable TMPDIR when running Valgrind (on the Android device, not on the Android NDK devel opment
host). Another alternative isto specify the directory for the FIFOs using the - - vgdb- pr ef i x= Valgrind command
line option.

We hope to have a better story for temporary directory handling on Android in the future. The difficulty isthat, unlike
in standard Unixes, there is no single temporary file directory that reliably works across all devices and scenarios.

45

Using and understanding the VValgrind core: Advanced Topics

3.2.5. Monitor command handling by the Valgrind
gdbserver

The Valgrind gdbserver provides additional Valgrind-specific functionality via "monitor commands®. Such monitor
commands can be sent from the GDB command line or from the shell command line or requested by the client program
using the VALGRIND_MONITOR_COMMAND client request. See Valgrind monitor commands for the list of the
Valgrind core monitor commands available regardless of the Valgrind tool selected.

The following tools provide tool-specific monitor commands:
* Memcheck Monitor Commands

» Cdlgrind Monitor Commands

* Massif Monitor Commands

» Helgrind Monitor Commands

An example of a tool specific monitor command is the Memcheck monitor command | eak_check full
reachabl e any. Thisrequestsafull reporting of the allocated memory blocks. To have this leak check executed,
use the GDB command:

(gdb) rnonitor |eak _check full reachabl e any

GDB will send the | eak_check command to the Valgrind gdbserver. The Valgrind gdbserver will execute the
monitor command itself, if it recognisesit to be a Vagrind core monitor command. If it is not recognised as such, it
is assumed to be tool-specific and is handed to the tool for execution. For example:

(gdb) rnonitor |eak_check full reachabl e any

==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1
==2418== at Ox4006E9E: mal |l oc (vg_replace_nall oc. c: 236)
==2418== by 0x804884F: main (prog.c: 88)

==2418==

==2418== LEAK SUMWARY

==2418== definitely lost: O bytes in O bl ocks

==2418== indirectly lost: 0 bytes in O bl ocks

==2418== possibly lost: O bytes in O bl ocks

==2418== still reachable: 100 bytes in 1 bl ocks
==2418== suppressed: 0 bytes in 0 bl ocks

==2418==

(gdb)

As with other GDB commands, the Valgrind gdbserver will accept abbreviated monitor command names and
arguments, as long as the given abbreviation is unambiguous. For example, the above | eak _check command can
also be typed as:

(gdb) mo | f r a

Theletters o are recognised by GDB as being an abbreviation for noni t or . So GDB sendsthestringl f r ato
the Valgrind gdbserver. The letters provided in this string are unambiguous for the Valgrind gdbserver. Thistherefore
gives the same output as the unabbreviated command and arguments. If the provided abbreviation is ambiguous, the
Vagrind gdbserver will report the list of commands (or argument values) that can match:

46

Using and understanding the VValgrind core: Advanced Topics

(gdb) mo v. n

v. can match v.set v.info v.wait v.kill v.translate v.do
(gdb) mo v.i n

n_errs _found 0 n_errs_shown O (vgdb-error 0)

(gdb)

Instead of sending a monitor command from GDB, you can also send these from a shell command line. For example,
thefollowing command lines, when giveninashell, will cause the sameleak search to be executed by the process 3145:

vgdb --pid=3145 | eak_check full reachabl e any
vgdb --pid=31451 f r a

Note that the Valgrind gdbserver automatically continues the execution of the program after a standal one invocation
of vgdb. Monitor commands sent from GDB do not cause the program to continue: the program execution is controlled
explicitly using GDB commands such as "continue" or "next".

Many monitor commands (e.g. v.info location, memcheck who_points at, ...) require an address argument and an
optiona length: <addr > [<l en>] . Thearguments can also be provided by using a'C array like syntax' by providing
the address followed by the length between square brackets.

For example, the following two monitor commands provide the same information:

(gdb) nmo xb 0x804a2f0 10

(gdb) nmo xb 0x804a2f 0[10]

3.2.6. Valgrind gdbserver thread information

Vagrind's gdbserver enriches the output of the GDB i nf o t hr eads command with Valgrind-specific information.
Theoperating system'sthread number isfollowed by Vagrind'sinternal index for that thread ("tid") and by the Valgrind
scheduler thread state:

(gdb) info threads
4 Thread 6239 (tid 4 VgTs_Yielding) 0x001f2832 in _dl_sysinfo_int80 () from/lib/ld-lin

* 3 Thread 6238 (tid 3 VgTs_Runnabl e) make error (s=0x8048b76 "called from London") at pr
2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001f2832 in _dl _sysinfo int80 () from/lib/ld-linu
1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1, argv=0xbedcc274) at prog.c: 105

(gdb)

3.2.7. Examining and modifying Valgrind shadow
registers

When the option - - vgdb- shadow- r egi st er s=yes isgiven, the Vagrind gdbserver will let GDB examine and/
or modify Valgrind's shadow registers. GDB version 7.1 or later is needed for thisto work. For x86 and amd64, GDB
version 7.2 or later is needed.

For each CPU register, the Valgrind core maintains two shadow register sets. These shadow registers can be accessed
from GDB by giving a postfix s1 or s2 for respectively the first and second shadow register. For example, the x86
register eax and its two shadows can be examined using the following commands:

47

Using and understanding the VValgrind core: Advanced Topics

(gdb) p $eax
$1 =0

(gdb) p $eaxsl
$2 = 0

(gdb) p $eaxs2
$3 =0

(gdb)

Float shadow registers are shown by GDB as unsigned integer valuesinstead of float values, asit is expected that these
shadow values are mostly used for memcheck validity bits.

Intel/amd64 AV X registers yrm®D to ynmil5 have also their shadow registers. However, GDB presents the shadow
values using two "half" registers. For example, the half shadow registersfor ynm® arexmds1 (lower half for set 1),
ymrBhs1 (upper half for set 1), xmMBs 2 (lower half for set 2), ymmBhs 2 (upper half for set 2). Note the inconsistent
notation for the names of the half registers: the lower part starts with an x, the upper part starts with an y and has
an h before the shadow postfix.

The specia presentation of the AV X shadow registers is due to the fact that GDB independently retrieves the lower
and upper half of the ymmregisters. GDB does hot however know that the shadow half registers have to be shown
combined.

3.2.8. Limitations of the Valgrind gdbserver

Debugging with the Valgrind gdbserver is very similar to native debugging. Valgrind's gdbserver implementation is
quite complete, and so provides most of the GDB debugging functionality. There are however some limitations and
peculiarities:

 Precision of "stop-at" commands.

GDB commands such as"step”, "next", "stepi”, breakpoints and watchpoints, will stop the execution of the process.
With the option - - vgdb=yes, the process might not stop at the exact requested instruction. Instead, it might
continue execution of the current basic block and stop at one of the following basic blocks. Thisislinked to the fact
that Valgrind gdbserver has to instrument a block to allow stopping at the exact instruction requested. Currently,
re-instrumentation of the block currently being executed is not supported. So, if the action requested by GDB (e.g.
single stepping or inserting a breakpoint) implies re-instrumentation of the current block, the GDB action may not
be executed precisely.

Thislimitation applies when the basic block currently being executed has not yet been instrumented for debugging.
This typically happens when the gdbserver is activated due to the tool reporting an error or to a watchpoint. If the
gdbserver block has been activated following a breakpoint, or if a breakpoint has been inserted in the block before
its execution, then the block has already been instrumented for debugging.

If you usetheoption- - vgdb=f ul | , then GDB "stop-at" commandswill be obeyed precisely. Thedownsideisthat
this requires each instruction to be instrumented with an additional call to a gdbserver helper function, which gives
considerable overhead (+500% for memcheck) compared to - - vgdb=no. Option - - vgdb=yes has neglectible
overhead compared to - - vgdb=no.

* Processor registers and flags values.
When Valgrind gdbserver stops on an error, on a breakpoint or when single stepping, registers and flags values
might not be always up to date due to the optimisations done by the Valgrind core. The default value - - vex-

i ropt-regi ster-updat es=unwi ndregs-at - mem access ensures that the registers needed to make a
stack trace (typically PC/SP/FP) are up to date at each memory access (i.e. memory exception points). Disabling

48

Using and understanding the VValgrind core: Advanced Topics

some optimisations using the following values will increase the precision of registers and flags values (a typical
performance impact for memcheck is given for each option).

e --vex-iropt-register-updates=allregs-at-nmemaccess (+10%) ensuresthat all registers and
flags are up to date at each memory access.

e --vex-iropt-register-updates=allregs-at-each-insn (+25%) ensures that al registers and
flags are up to date at each instruction.

Note that - - vgdb=f ul | (+500%, see above Precision of "stop-at" commands) automatically activates - - vex-

i ropt-regi ster-updates=al |l regs-at-each-insn.

Hardware watchpoint support by the Valgrind gdbserver.

The Valgrind gdbserver can simulate hardware watchpoints if the selected tool provides support for it. Currently,
only Memcheck provides hardware watchpoint simulation. The hardware watchpoint simulation provided by
Memcheck is much faster that GDB software watchpoints, which are implemented by GDB checking the value
of the watched zone(s) after each instruction. Hardware watchpoint ssmulation also provides read watchpoints.
The hardware watchpoint simulation by Memcheck has some limitations compared to real hardware watchpoints.
However, the number and length of simulated watchpoints are not limited.

Typically, the number of (rea) hardware watchpoints is limited. For example, the x86 architecture supports a
maximum of 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 bytes. The Valgrind gdbserver does
not have any limitation on the number of simulated hardware watchpoints. It also has no limitation on the length
of the memory zone being watched. Using GDB version 7.4 or later alow full use of the flexibility of the Valgrind
gdbserver's simulated hardware watchpoints. Previous GDB versions do not understand that Valgrind gdbserver
watchpoints have no length limit.

Memcheck implements hardware watchpoint simulation by marking the watched address ranges as being
unaddressable. When a hardware watchpoint is removed, the range is marked as addressable and defined. Hardware
watchpoint simulation of addressable-but-undefined memory zones works properly, but has the undesirable side
effect of marking the zone as defined when the watchpoint is removed.

Write watchpoints might not be reported at the exact instruction that writes the monitored area, unless option
--vgdb=ful | isgiven. Read watchpoints will always be reported at the exact instruction reading the watched
memory.

It is better to avoid using hardware watchpoint of not addressable (yet) memory: in such a case, GDB will fall
back to extremely dlow software watchpoints. Also, if you do not quit GDB between two debugging sessions, the
hardware watchpoints of the previous sessions will be re-inserted as software watchpoints if the watched memory
zone is not addressable at program startup.

Stepping inside shared libraries on ARM.

For unknown reasons, stepping inside shared librarieson ARM may fail. A workaround isto usethel dd command
to find the list of shared libraries and their loading address and inform GDB of the |oading address using the GDB
command "add-symbol-file". Example:

(gdb) shell |dd ./prog

libc.so.6 =>/lib/libc.so.6 (0x4002c000)
/1ib/ld-1inux.so.3 (0x40000000)
(gdb) add-symbol -file /lib/libc.so.6 0x4002c000
add synbol table fromfile "/lib/libc.so.6" at
.text _addr = 0x4002c000

(y or n) vy
Readi ng synbols from/lib/libc.so.6...(no debuggi ng synbols found)...done.

49

Using and understanding the VValgrind core: Advanced Topics

(gdb)
GDB version needed for ARM and PPC32/64.

Y ou must use aGDB version which isable to read XML target description sent by agdbserver. Thisisthe standard
setup if GDB was configured and built with the "expat" library. If your GDB was not configured with XML support,
it will report an error message when using the "target" command. Debugging will not work because GDB will then
not be able to fetch the registers from the Valgrind gdbserver. For ARM programs using the Thumb instruction
set, you must use a GDB version of 7.1 or later, as earlier versions have problems with next/step/breakpoints in
Thumb code.

Stack unwinding on PPC32/PPC64.

On PPC32/PPC64, stack unwinding for leaf functions (functionsthat do not call any other functions) works properly
only when you give the option - - vex-i r opt - r egi st er - updat es=al | r egs- at - nem access or - -
vex-iropt-regi ster-updates=allregs-at-each-insn.Youmust aso pass this option in order to
get a precise stack when asignal is trapped by GDB.

Breakpoints encountered multiple times.

Some instructions (e.g. x86 "rep movsh") are trandated by Valgrind using a loop. If a breakpoint is placed on
such an instruction, the breakpoint will be encountered multiple times -- once for each step of the "implicit" loop
implementing the instruction.

Execution of Inferior function calls by the Valgrind gdbserver.

GDB allows the user to "call" functionsinside the process being debugged. Such calls are named "inferior calls' in
the GDB terminology. A typical use of aninferior call isto execute afunction that prints ahuman-readable version
of acomplex data structure. To make aninferior call, usethe GDB "print" command followed by the function to call
and its arguments. As an example, the following GDB command causes an inferior call to the libc "printf" function
to be executed by the process being debugged:

(gdb) p printf("process being debugged has pid %\ n", getpid())
$5 = 36
(gdb)

The Valgrind gdbserver supports inferior function calls. Whilst an inferior call is running, the Valgrind tool will
report errors as usual. If you do not want to have such errors stop the execution of the inferior call, you can use
v.set vgdb-error to set abig value before the call, then manually reset it to its original value when the call
iscomplete.

To execute inferior calls, GDB changes registers such as the program counter, and then continues the execution of
the program. In amultithreaded program, all threads are continued, not just the thread instructed to make the inferior
call. If another thread reports an error or encounters a breakpoint, the evaluation of the inferior call is abandoned.

Note that inferior function calls are a powerful GDB feature, but should be used with caution. For example, if the
program being debugged is stopped inside the function "printf", forcing arecursive call to printf viaan inferior call
will very probably create problems. The Valgrind tool might also add another level of complexity to inferior calls,
e.g. by reporting tool errors during the Inferior call or due to the instrumentation done.

Connecting to or interrupting a Valgrind process blocked in a system call.

Connecting to or interrupting a Valgrind process blocked in a system call requires the "ptrace” system call to be
usable. This may be disabled in your kernel for security reasons.

50

Using and understanding the VValgrind core: Advanced Topics

When running your program, Valgrind's scheduler periodically checks whether there is any work to be handled by
the gdbserver. Unfortunately this check isonly doneif at least one thread of the processisrunnable. If all thethreads
of the process are blocked in a system call, then the checks do not happen, and the Valgrind scheduler will not
invoke the gdbserver. In such a case, the vgdb relay application will "force" the gdbserver to be invoked, without
the intervention of the Valgrind scheduler.

Such forced invocation of the Valgrind gdbserver isimplemented by vgdb using ptrace system calls. On a properly
implemented kernel, the ptrace calls done by vgdb will not influence the behaviour of the program running under
Valgrind. If however they do, giving the option - - max- i nvoke- ns=0 to the vgdb relay application will disable
the usage of ptrace calls. The consequence of disabling ptrace usage in vgdb isthat aValgrind process blocked in a
system call cannot be woken up or interrupted from GDB until it executes enough basic blocks to let the Valgrind
scheduler's normal checking take effect.

When ptrace is disabled in vgdb, you can increase the responsiveness of the Valgrind gdbserver to commands or
interrupts by giving a lower value to the option - - vgdb- pol | . If your application is blocked in system calls
most of the time, using avery low value for - - vgdb- pol | will cause athe gdbserver to be invoked sooner. The
gdbserver polling done by Valgrind's scheduler isvery efficient, so theincreased polling frequency should not cause
significant performance degradation.

When ptraceisdisabled in vgdb, aquery packet sent by GDB may take significant timeto be handled by the Valgrind
gdbserver. In such cases, GDB might encounter a protocol timeout. To avoid this, you can increase the value of the
timeout by using the GDB command "set remotetimeout”.

Ubuntu versions 10.10 and later may restrict the scope of ptrace to the children of the process calling ptrace. As
the Valgrind process is not a child of vgdb, such restricted scoping causes the ptrace calls to fail. To avoid that,
Valgrind will automatically allow all processes belonging to the same userid to "ptrace” a Valgrind process, by
using PR_SET_PTRACER.

Unblocking processes blocked in system calls is not currently implemented on Mac OS X and Android. So you
cannot connect to or interrupt a process blocked in a system call on Mac OS X or Android.

Unblocking processes blocked in system calls is implemented via agent thread on Solaris. Thisis quite adifferent
approach than using ptrace on Linux, but leads to equivalent result - Valgrind gdbserver isinvoked. Note that agent
thread is a Solaris OS feature and cannot be disabled.

Changing register values.

The Valgrind gdbserver will only modify the values of the thread's registers when the thread is in status Runnable
or Yielding. In other states (typically, WaitSys), attempts to change register values will fail. Amongst other things,
this means that inferior calls are not executed for athread which isin a system call, since the Valgrind gdbserver
does not implement system call restart.

Unsupported GDB functionality.

GDB provides a lot of debugging functionality and not all of it is supported. Specificaly, the following are not
supported: reversible debugging and tracepoints.

Unknown limitations or problems.
The combination of GDB, Valgrind and the Valgrind gdbserver probably has unknown other limitations and
problems. If you encounter strange or unexpected behaviour, feel freeto report abug. But first please verify that the

limitation or problem is not inherent to GDB or the GDB remote protocol. Y ou may be able to do so by checking
the behaviour when using standard gdbserver part of the GDB package.

51

Using and understanding the VValgrind core: Advanced Topics

3.2.9. vgdb command line options
Usage:vgdb [OPTION] ... [[-c] COWAND] ...

vgdb ("Valgrind to GDB") isasmall program that is used as an intermediary between Valgrind and GDB or a shell.
Therefore, it has two usage modes:

1. Asastandalone utility, it isused from a shell command line to send monitor commands to a process running under
Vagrind. For this usage, the vgdb OPTION(s) must be followed by the monitor command to send. To send more
than one command, separate them with the - ¢ option.

2. In combination with GDB "target remote [command, it is used as the relay application between GDB and the
Valgrind gdbserver. For this usage, only OPTION(s) can be given, but no COMMAND can be given.

vgdb accepts the following options:

- - pi d=<nunber >
Specifies the PID of the process to which vgdb must connect to. This option is useful in case more than one
Valgrind gdbserver can be connected to. If the - - pi d argument is not given and multiple Vagrind gdbserver
processes are running, vgdb will report the list of such processes and then exit.

--vgdb- prefix

Must be given to both Valgrind and vgdb if you want to change the default prefix for the FIFOs (named pipes)
used for communication between the VValgrind gdbserver and vgdb.

- -wai t =<nunber >

Instructs vgdb to search for available Valgrind gdbservers for the specified number of seconds. This makes
it possible start a vgdb process before starting the Valgrind gdbserver with which you intend the vgdb to
communicate. This option is useful when used in conjunction with a - - vgdb- pr ef i x that is unique to the
process you want to wait for. Also, if you usethe- - wai t argument in the GDB "target remote" command, you
must set the GDB remotetimeout to avalue bigger than the --wait argument value. See option - - max- i nvoke-
ns (just below) for an example of setting the remotetimeout value.

- - max- i nvoke- ns=<nunber >
Givesthe number of milliseconds after which vgdb will force the invocation of gdbserver embedded in Valgrind.
Thedefault valueis 100 milliseconds. A value of 0 disablesforced invocation. Theforced invocation isused when
vgdb is connected to a VValgrind gdbserver, and the Valgrind process has al its threads blocked in a system call.
If you specify alarge value, you might need to increase the GDB "remotetimeout” value from its default value of

2 seconds. Y ou should ensure that the timeout (in seconds) is bigger than the - - max- i nvoke- s value. For
example, for - - max- i nvoke- ns=5000, the following GDB command is suitable:

(gdb) set renotetineout 6
--cmd-ti me- out =<nunber >
Instructs a standalone vgdb to exit if the Valgrind gdbserver it is connected to does not process a command in the

specified number of seconds. The default value isto never time out.

52

Using and understanding the VValgrind core: Advanced Topics

- - port=<portnr>

Instructs vgdb to use tcp/ip and listen for GDB on the specified port nr rather than to use a pipe to communicate
with GDB. Using tcp/ip allows to have GDB running on one computer and debugging aValgrind process running
on another target computer. Example:

On the target conputer, start your program under val grind using
val grind --vgdb-error=0 prog

and then in another shell, run

vgdb --port=1234

On the computer which hosts GDB, execute the command:

gdb prog

(gdb) target renote targetip: 1234

where targetip is the ip address or hostname of the target computer.

To give more than one command to a standal one vgdb, separate the commands by an option - ¢c. Example:

vgdb v.set log output -c |eak _check any

Instructs a standal one vgdb to report the list of the Valgrind gdbserver processes running and then exit.

Instructs vgdb to add timestamps to vgdb information messages.

Instructs a standalone vgdb to show the state of the shared memory used by the Valgrind gdbserver. vgdb will
exit after having shown the VValgrind gdbserver shared memory state.

Instructs vgdb to produce debugging output. Give multiple - d argsto increase the verbosity. When giving - d to
arelay vgdb, you better redirect the standard error (stderr) of vgdb to afile to avoid interaction between GDB
and vgdb debugging output.

3.2.10. Valgrind monitor commands

This section describes the Valgrind monitor commands, available regardiess of the Valgrind tool selected. For the
tool specific commands, refer to Memcheck Monitor Commands, Helgrind Monitor Commands, Callgrind Monitor
Commands and Massif Monitor Commands.

The monitor commands can be sent either from a shell command line, by using a standalone vgdb, or from GDB,
by using GDB's "monitor" command (see Monitor command handling by the Valgrind gdbserver). They can also be
launched by the client program, using the VALGRIND_MONITOR_COMMAND client request.

53

Using and understanding the VValgrind core: Advanced Topics

hel p [debug] instructs Vagrind's gdbserver to give the list of all monitor commands of the Valgrind core and
of the tool. The optional "debug" argument tells to also give help for the monitor commands aimed at Valgrind
internal's debugging.

v.info all_errors showsall errorsfound so far.
v.info |ast_error showsthelast error found.

v.info location <addr> outputsinformation about the location <addr>. Possibly, the following are
described: global variables, local (stack) variables, allocated or freed blocks, ... Theinformation produced depends
on the tool and on the options given to valgrind. Some tools (e.g. memcheck and helgrind) produce more detailed
information for client heap blocks. For example, these tools show the stacktrace where the heap block was allocated.
If atool does not replace the malloc/free!... functions, then client heap blocks will not be described. Use the option
--read-var - i nf o=yes to obtain more detailed information about global or local (stack) variables.

(gdb) rnonitor v.info | ocation 0x8050b20
Locati on 0x8050b20 is O bytes inside gl obal var
decl ared at tcl19 shadowrem c: 19

nx

(gdb) nmo v.in | oc 0x582f33c
Location 0x582f33c is 0 bytes inside |ocal var "info"
decl ared at tcl1l9 shadowrem c: 282, in frane #1 of thread 3

(gdb)

v.info n_errs_found [nsg] showsthenumber of errorsfound so far, the nr of errors shown so far and the
current value of the- - vgdb- er r or argument. The optional nsg (one or morewords) isappended. Typicaly, this
can be used to insert markersin aprocess output file between several tests executed in sequence by a process started
only once. This allowsto associate the errors reported by Valgrind with the specific test that produced these errors.

v.info open_fds shows the list of open file descriptors and details related to the file descriptor. This only
works if - -t rack-fds=yes or --track-fds=al | (toinclude st di n, st dout and st derr) was given
at Valgrindr startup.

v.cl o <cl o_option>. .. changesoneor moredynamic command lineoptions. If noclo_optionisgiven, lists
the dynamically changeable options. See Dynamically Change Options.

v.set {gdb _output | |og_output | mixed output} alowsredirection of theVagrind output (e.g.
the errors detected by the tool). The default settingism xed_out put .

With mi xed_out put , the Valgrind output goes to the Valgrind log (typically stderr) while the output of the
interactive GDB monitor commands (e.g.v. i nfo | ast _error) isdisplayed by GDB.

With gdb_out put, both the Valgrind output and the interactive GDB monitor commands output are displayed
by GDB.

With| og_out put , both theValgrind output and theinteractive GDB monitor commands output go to the Valgrind
log.

v.wait [nms (default 0)] instructs Valgrind gdbserver to sleep "ms’ milli-seconds and then continue.
When sent from a standalone vgdb, if thisis the last command, the Valgrind process will continue the execution of
the guest process. The typical usage of thisisto use vgdb to send a"no-op" command to a VValgrind gdbserver so
asto continue the execution of the guest process.

v. ki I'l requests the gdbserver to kill the process. This can be used from a standalone vgdb to properly kill a
Valgrind process which is currently expecting a vgdb connection.

Using and understanding the VValgrind core: Advanced Topics

v. set vgdb-error <errornr>dynamicaly changesthevaueof the- - vgdb- er r or argument. A typical
usage of thisisto start with - - vgdb- er r or =0 on the command line, then set a few breakpoints, set the vgdb-
error value to a huge value and continue execution.

xtmenory [<filename> default xtnenory.kcg. %. %] requests the tool (Memcheck, Massif,
Helgrind) to produce an xtree heap memory report. See Execution Trees for adetailed explanation about execution
trees.

The following Valgrind monitor commands are useful for investigating the behaviour of Valgrind or its gdbserver in
case of problems or bugs.

v.do expensive_sanity_check_general executesvarious sanity checks. In particular, the sanity of the
Valgrind heap is verified. This can be useful if you suspect that your program and/or Valgrind has a bug corrupting
Valgrind data structure. It can also be used when a Valgrind tool reports a client error to the connected GDB, in
order to verify the sanity of Vagrind before continuing the execution.

v.info gdbserver_status shows the gdbserver status. In case of problems (e.g. of communications),
this shows the values of some relevant Valgrind gdbserver internal variables. Note that the variables related to
breakpoints and watchpoints (e.g. the number of breakpoint addresses and the number of watchpoints) will be
zero, as GDB by default removes all watchpoints and breakpoints when execution stops, and re-inserts them when
resuming the execution of the debugged process. Y ou can change this GDB behaviour by using the GDB command
set breakpoint al ways-inserted on.

v.info menory [aspacengr] shows the statistics of Valgrind's internal heap management. If option - -
profil e- heap=yes wasgiven, detailed statistics will be output. With the optional argument aspacenyr . the
segment list maintained by valgrind address space manager will be output. Note that thislist of segmentsis always
output on the Valgrind log.

v. i nfo exect xt showsinformation about the "executable contexts' (i.e. the stack traces) recorded by Valgrind.
For some programs, Valgrind can record a very high number of such stack traces, causing a high memory usage.
Thismonitor command shows all the recorded stack traces, followed by some statistics. This can be used to analyse
the reason for having abig number of stack traces. Typicaly, you will use thiscommandif v. i nf o nenory has
shown significant memory usage by the "exectxt" arena.

v.info schedul er shows various information about threads. First, it outputs the host stack trace, i.e. the
Valgrind code being executed. Then, for each thread, it outputs the thread state. For non terminated threads, the
state is followed by the guest (client) stack trace. Finally, for each active thread or for each terminated thread slot
not yet re-used, it shows the max usage of the valgrind stack.

Showing the client stack traces allows to compare the stack traces produced by the Valgrind unwinder with the
stack traces produced by GDB+Valgrind gdbserver. Pay attention that GDB and Valgrind schedul er status havetheir
own thread numbering scheme. To make the link between the GDB thread number and the corresponding Vagrind
scheduler thread number, use the GDB command i nf o t hr eads. The output of this command shows the GDB
thread number and the valgrind 'tid'. The 'tid' is the thread number output by v. i nf o schedul er . When using
the callgrind tool, the callgrind monitor command st at us outputsinternal callgrind information about the stack/
call graph it maintains.

v.info stats shows various valgrind core and tool statistics. With this, Valgrind and tool statistics can be
examined while running, even without option - - st at s=yes.

v.info unwi nd <addr > [<l en>] showsthe CFl unwind debug info for the addressrange [addr, addr+len-1].
The default value of <len>is 1, giving the unwind information for the instruction at <addr>.

v.set debugl og <intval ue> setsthe Valgrind debug log level to <intvalue>. This allows to dynamically
change the log level of Valgrind e.g. when a problem is detected.

55

Using and understanding the VValgrind core: Advanced Topics

e v.set hostvisibility [yes*|no] The vaue "yes' indicates to gdbserver that GDB can look at the
Valgrind 'host' (internal) statussmemory. "no" disables this access. When hostvisibility is activated, GDB can e.g.
look at Valgrind global variables. As an example, to examine aValgrind global variable of the memcheck tool on
an x86, do the following setup:

(gdb) nmonitor v.set hostvisibility yes

(gdb) add-synbol -file /path/to/tool/executable/file/ mencheck-x86-1inux 0x58000000

add synbol table fromfile "/path/to/tool/executable/filel/ mencheck-x86-1inux" at
.text _addr = 0x58000000

(y or n) vy
Readi ng synbols from/path/to/tool/executablel/filelmencheck-x86-1inux...done.

(gdb)

After that, variables defined in memcheck-x86-linux can be accessed, e.g.

(gdb) p /x vgPlain threads[1].o0s_state
$3 = {Iwpid = 0x4688, threadgroup = 0x4688, parent = 0x0,
val gri nd_stack base = 0x62e78000, val grind_stack init_ SP = 0x62f 79f e0,
exi tcode = 0x0, fatal sig = 0x0}
(gdb) p vex_control
$5 = {iropt_verbosity = 0, iropt_level = 2,
iropt _regi ster _updates = VexRegUpdUnwi ndr egsAt MemAccess,
iropt _unroll _thresh = 120, guest nax_insns = 60, guest chase_thresh = 10}

(gdb)

 v.transl ate <address> [<tracefl ags>] showsthetrandation of the block containing addr ess with
the given trace flags. Thet r acef | ags vaue bit patterns have similar meaning to Valgrind's- - t r ace- f | ags
option. It can be given in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1sand Os bit (e.g. 0b00100000).
The default value of the traceflags is 0b00100000, corresponding to "show after instrumentation™. The output of
this command always goes to the Vagrind log.

The additional bit flag 0b100000000 (bit 8) hasno equivalentinthe- - t r ace- f | ags option. It enablestracing of
the gdbserver specific instrumentation. Note that thisbit 8 can only enable the addition of gdbserver instrumentation
in the trace. Setting it to O will not disable the tracing of the gdbserver instrumentation if it is active for some other
reason, for example because there is a breakpoint at this address or because gdbserver isin single stepping mode.

3.3. Function wrapping

Vagrind allows calls to some specified functions to be intercepted and rerouted to a different, user-supplied function.
This can do whatever it likes, typically examining the arguments, calling onwards to the original, and possibly
examining the result. Any number of functions may be wrapped.

Function wrapping is useful for instrumenting an APl in some way. For example, Helgrind wraps functions in the
POSIX pthreads APl so it can know about thread status changes, and the core is able to wrap functions in the
MPI (message-passing) APl so it can know of memory status changes associated with message arrival/departure.

Such information is usually passed to Vagrind by using client requests in the wrapper functions, although the exact
mechanism may vary.

3.3.1. A Simple Example

Supposing we want to wrap some function

56

Using and understanding the VValgrind core: Advanced Topics

int foo (int x, int ' y) { returnx +vy; }

A wrapper isafunction of identical type, but with a special namewhich identifiesit asthe wrapper for f 00. Wrappers
need to include supporting macros from val gri nd. h. Here is a simple wrapper which prints the arguments and
return value:

#i ncl ude <stdio. h>
#i ncl ude "val grind. h"
int | _WRAP_SONAME_FNNAME_ZU(NONE, foo) (int x, int y)
{
i nt result;
OigFn fn;
VALGRI ND_GET_ORI G FN(fn);
printf("foo's wapper: args % %\n", x, y);
CALL_FN WWN(result, fn, Xx,vy);
printf("foo's wapper: result %\n", result);
return result;

}

To become active, the wrapper merely needs to be present in atext section somewhere in the same process address
space as the function it wraps, and for its ELF symbol name to be visible to Valgrind. In practice, this means either
compilingtoa. o and linking it in, or compilingtoa. so and LD _PRELOADing it in. The latter is more convenient
in that it doesn't require relinking.

All wrappers have approximately the above form. There are three crucial macros:

| _VWRAP_SONAME_FNNANME_ZU: this generates the real name of the wrapper. This is an encoded name which
Valgrind notices when reading symbol table information. What it saysis: | am the wrapper for any function named
f oo which isfound in an ELF shared object with an empty ("NONE") soname field. The specification mechanism is
powerful in that wildcards are allowed for both sonames and function names. The details are discussed below.

VALGRI ND_GET_ORI G_FN: onceinthewrapper, thefirst priority isto get hold of the address of the original (and any
other supporting information needed). Thisis stored in avalue of opagque type Or i gFn. Theinformation is acquired
using VALGRI ND_GET_ORI G_FN. It is crucial to make this macro call before calling any other wrapped function
in the same thread.

CALL_FN W W\ eventually wewill want to call the function being wrapped. Calling it directly does not work, since
that just gets us back to the wrapper and leads to an infinite loop. Instead, the result Ivalue, Or i gFn and arguments
are handed to one of afamily of macros of theform CALL_FN_*. These cause Valgrind to call the origina and avoid
recursion back to the wrapper.

3.3.2. Wrapping Specifications

This scheme has the advantage of being self-contained. A library of wrappers can be compiled to object code in the
normal way, and does not rely on an external script telling Valgrind which wrappers pertain to which originals.

Each wrapper has aname which, in the most general case says: | am thewrapper for any function whose name matches
FNPATT and whose ELF "soname" matches SOPATT. Both FNPATT and SOPATT may contain wildcards (asterisks)
and other characters (spaces, dots, @, etc) which are not generally regarded as valid C identifier names.
Thisflexibility is needed to write robust wrappers for POSIX pthread functions, where typically we are not compl etely
sure of either the function name or the soname, or alternatively we want to wrap awhole set of functions at once.

57

Using and understanding the VValgrind core: Advanced Topics

For example, pt hr ead_cr eat e in GNU libpthread is usualy a versioned symbol - one whose name ends in,
eg, @& BC 2. 3. Hence we are not sure what its real name is. We also want to cover any soname of the form
I i bpt hr ead. so*. So the header of the wrapper will be

int | _WRAP_SONAME FNNAME ZZ(| i bpt hr eadZdsoZdO, pt hr eadZucr eat eZAZa)
(... formls ...)
{ ... body ... }

In order to write unusual characters as valid C function names, a Z-encoding scheme is used. Names are written
literally, except that a capital Z acts as an escape character, with the following encoding:

Za encodes *
Zp +
Zc :
Zd

Zu _
Zh -
Zs (space)
ZA @
YA VA
ZL (
ZR)

only in valgrind 3.3.0 and | ater
only in valgrind 3.3.0 and | ater

Hencel i bpt hr eadZdso0Zd0 isan encoding of thesonamel i bpt hr ead. so. 0 andpt hr eadZucr eat eZAZa
isan encoding of the function namept hr ead_create@ .

Themacro|l _WRAP_SONAME_FNNANME_ZZ constructs awrapper name in which both the soname (first component)
and function name (second component) are Z-encoded. Encoding the function name can be tiresome and is often
unnecessary, so a second macro, | _VARAP_SONAME_FNNAME_ZU, can be used instead. The _ZU variant is also
useful for writing wrappers for C++ functions, in which the function name is usually already mangled using some
other convention in which Z plays an important role. Having to encode a second time quickly becomes confusing.

Since the function name field may contain wildcards, it can be anything, including just *. The same is true for
the soname. However, some ELF objects - specifically, main executables - do not have sonames. Any object
lacking a soname is treated as if its soname was NONE, which is why the origina example above had a name
| _VARAP_SONAME_FNNAME_ZU(NONE, f 00) .

Note that the soname of an ELF object is not the same asiits file name, athough it is often similar. You can find the
soname of an object | i bf 00. so usingthecommandr eadel f -a |ibfoo.so | grep sonane.

3.3.3. Wrapping Semantics

The ability for awrapper to replace an infinite family of functionsis powerful but brings complications in situations
where ELF objects appear and disappear (are dlopen'd and diclose'd) on the fly. Valgrind tries to maintain sensible
behaviour in such situations.

For example, suppose a process has dlopened (an ELF object with soname) obj ect 1. so, which contains
functionl. It startstousef uncti onl immediately.

After awhileit dlopenswr apper s. so, which containsawrapper for f unct i onl in (soname) obj ect 1. so. All
subsequent callstof unct i onl are rerouted to the wrapper.

If wr apper s. so islater diclose'd, callstof unct i onl are naturally routed back to the original.

58

Using and understanding the VValgrind core: Advanced Topics

Alternatively, if objectl1.so is diclosed but wrappers. so remains, then the wrapper exported by
wr apper s. so becomes inactive, since thereis no way to get to it - thereis no original to call any more. However,
Vagrind remembers that the wrapper is still present. If obj ect 1. so iseventually dlopen'd again, the wrapper will
become active again.

In short, valgrind inspects all code loading/unloading events to ensure that the set of currently active wrappers remains
consistent.

A second possible problem is that of conflicting wrappers. It is easily possible to load two or more wrappers, both of
which claim to be wrappers for some third function. In such cases Valgrind will complain about conflicting wrappers
when the second one appears, and will honour only the first one.

3.3.4. Debugging

Figuring out what's going on given the dynamic nature of wrapping can be difficult. The - -t r ace-r edi r =yes
option makes this possible by showing the complete state of the redirection subsystem after every nmap/munnap
event affecting code (text).

There are two central concepts:

» A "redirection specification" isabinding of a(soname pattern, fnname pattern) pair to acode address. These bindings
are created by writing functions with names made with the | _WWRAP_SONANMVE_FNNAME {ZZ, ZU} macros.

» An"activeredirection" is acode-address to code-address binding currently in effect.

The state of the wrapping-and-redirection subsystem comprises a set of specifications and a set of active bindings.
The specifications are acquired/discarded by watching all mmap/nunmap events on code (text) sections. The active
binding set is (conceptually) recomputed from the specifications, and all known symbol names, following any change
to the specification set.

--trace-redi r =yes showsthe contents of both sets following any such event.
- v prints aline of text each time an active specification is used for the first time.
Hence for maximum debugging effectiveness you will need to use both options.

One final comment. The function-wrapping facility is closely tied to Valgrind's ability to replace (redirect) specified
functions, for example to redirect callsto mal | oc to its own implementation. Indeed, a replacement function can be
regarded as a wrapper function which does not call the original. However, to make the implementation more robust,
the two kinds of interception (wrapping vs replacement) are treated differently.

--trace-redi r=yes shows specifications and bindings for both replacement and wrapper functions. To
differentiate the two, replacement bindings are printed using R- > whereas wraps are printed using W >.

3.3.5. Limitations - control flow

For the most part, the function wrapping implementation isrobust. The only important cavest is: in awrapper, get hold
of theOr i gFn information using VALGRI ND_GET_ORI G_FN before calling any other wrapped function. Once you
havethe Or i gFn, arbitrary calls between, recursion between, and longjumps out of wrappers should work correctly.
There is never any interaction between wrapped functions and merely replaced functions (eg mal | oc), so you can
cal mal | oc etc safely from within wrappers.

The above comments are true for {x86,amd64,ppc32,arm,mips32,s390} -linux. On ppc64-linux function wrapping is
more fragile due to the (arguably poorly designed) ppc64-linux ABI. This mandates the use of a shadow stack which
tracks entries/exits of both wrapper and replacement functions. This gives two limitations: firstly, longjumping out

59

Using and understanding the VValgrind core: Advanced Topics

of wrappers will rapidly lead to disaster, since the shadow stack will not get correctly cleared. Secondly, since the
shadow stack has finite size, recursion between wrapper/replacement functions is only possible to a limited depth,
beyond which Valgrind has to abort the run. This depth is currently 16 calls.

For al platforms ({ x86,amd64,ppc32,ppc64,arm,mips32,s390} -linux) al the above comments apply on a per-thread
basis. In other words, wrapping is thread-safe: each thread must individually observe the above restrictions, but there
isno need for any kind of inter-thread cooperation.

3.3.6. Limitations - original function signatures

As shown in the above example, to call the original you must use a macro of the form CALL_FN_*. For technical
reasons it isimpossible to create a single macro to deal with al argument types and numbers, so a family of macros
covering the most common cases is supplied. In what follows, "W' denotes a machine-word-typed value (a pointer or
aCl ong), and'v' denotes C'svoi d type. The currently available macros are:

CALL_FN v_v -- call an original of type void fn (void)
CALL_FN WV -- call an original of type long fn (void)
CALL_FN v_W -- call an original of type void fn (long)
CALL_FN W W -- call an original of type long fn (long)
CALL_ FN v_.WW -- call an original of type void fn (long, long)
CALL_FN WWW -- call an original of type long fn (long, long)

CALL_FN v_WMWV -- call an original of type void fn (long, long, |long)
CALL_FN WWMW -- call an original of type long fn (long, long, |long)

CALL_FN WWNWV -- call an original of type long fn (long, long, long, |long)

CALL_FN W5W -- call an original of type long fn (long, long, long, long, long)
CALL_FN W6W -- call an original of type long fn (long, long, long, |ong, |ong,

and so on, up to
CALL_FN W 12w

The set of supported types can be expanded as needed. It isregrettable that thislimitation exists. Function wrapping has
proven difficult to implement, with a certain apparently unavoidable level of ickiness. After several implementation
attempts, the present arrangement appears to be the least-worst tradeoff. At least it works reliably in the presence of
dynamic linking and dynamic code loading/unloading.

You should not attempt to wrap a function of one type signature with a wrapper of a different type signature.
Such trickery will surely lead to crashes or strange behaviour. This is not a limitation of the function wrapping
implementation, merely areflection of the fact that it gives you sweeping powers to shoot yourself in the foot if you
are not careful. Imagine the instant havoc you could wreak by writing awrapper which matched any function namein
any soname - in effect, one which claimed to be awrapper for all functionsin the process.

3.3.7. Examples

In the source tree, mentheck/ t est s/ wr ap[1- 8] . ¢ provide a series of examples, ranging from very simple to
quite advanced.

npi / 1i bnpi wr ap. ¢ isan example of wrapping abig, complex API (the MPI-2 interface). Thisfile defines almost
300 different wrappers.

60

[ong)

4. Memcheck: a memory error detector

To use this tool, you may specify - - t ool =mentheck on the Vagrind command line. Y ou don't have to, though,
since Memcheck is the default tool.

4.1. Overview

Memcheck isamemory error detector. It can detect the following problems that are common in C and C++ programs.

» Accessing memory you shouldn't, e.g. overrunning and underrunning heap blocks, overrunning the top of the stack,
and accessing memory after it has been freed.

» Using undefined values, i.e. values that have not been initialised, or that have been derived from other undefined
values.

* Incorrect freeing of heap memory, such as double-freeing heap blocks, or mismatched use of mal | oc/newnew]
versusf r ee/del et e/del et e[]

» Overlapping sr ¢ and dst pointersin mentpy and related functions.
» Passing afishy (presumably negative) value to the si ze parameter of a memory allocation function.
e Memory leaks.

Problems like these can be difficult to find by other means, often remaining undetected for long periods, then causing
occasional, difficult-to-diagnose crashes.

Memcheck also provides Execution Trees memory profiling using the command line option - - xt r ee- nenor y and
the monitor command xt menory.

4.2. Explanation of error messages from
Memcheck

Memcheck issues arange of error messages. This section presents aquick summary of what error messages mean. The
precise behaviour of the error-checking machinery is described in Details of Memcheck's checking machinery.

4.2.1. lllegal read / lllegal write errors

For example:

Invalid read of size 4
at Ox40F6BBCC. (within /usr/lib/libpng.so.2.1.0.9)
by 0x40F6B804: (within /usr/lib/libpng.so.2.1.0.9)
by 0x40BO07FF4: read_png_i mage(Q magel O *) (kernel/gpngi 0. cpp: 326)
by 0x40AC751B: Q magel O :read() (kernel/qgi mage.cpp: 3621)
Addr ess OxBFFFFOEO is not stack'd, malloc'd or free'd

This happens when your program reads or writes memory at a place which Memcheck reckons it shouldn't. In this
example, the program did a 4-byte read at address OXBFFFFOEQ, somewhere within the system-supplied library

61

Memcheck: a memory error detector

libpng.s0.2.1.0.9, which was called from somewhere else in the same library, called from line 326 of gpngi o. cpp,
and so on.

Memcheck triesto establish what theillegal address might relateto, sincethat's often useful. So, if it pointsinto ablock
of memory which has aready been freed, you'll beinformed of this, and also where the block was freed. Likewise, if
it should turn out to be just off the end of a heap block, a common result of off-by-one-errors in array subscripting,
you'll be informed of this fact, and also where the block was allocated. If you use the - - r ead- var - i nf o option
Memcheck will run more slowly but may give a more detailed description of any illegal address.

In this example, Memcheck can't identify the address. Actually the address is on the stack, but, for some reason, this
is not avalid stack address -- it is below the stack pointer and that isn't allowed. In this particular case it's probably
caused by GCC generating invalid code, a known bug in some ancient versions of GCC.

Note that Memcheck only tells you that your program is about to access memory at an illegal address. It can't stop
the access from happening. So, if your program makes an access which normally would result in a segmentation fault,
you program will still suffer the same fate -- but you will get a message from Memcheck immediately prior to this. In
this particular example, reading junk on the stack is non-fatal, and the program stays alive.

4.2.2. Use of uninitialised values

For example:

Condi tional junp or nove depends on uninitialised value(s)
at O0x402DFA94: 1O vfprintf (_itoa.h:49)
by Ox402E8476: _1O printf (printf.c:36)
by 0x8048472: main (tests/manuel 1.c: 8)

An uninitialised-value use error is reported when your program uses a value which hasn't been initialised -- in other
words, isundefined. Here, the undefined value is used somewhereinsidethe pr i nt f machinery of the C library. This
error was reported when running the following small program:

int main()
{

int x;

printf ("x = %\n", Xx);
}

It isimportant to understand that your program can copy around junk (uninitialised) dataas much asit likes. Memcheck
observesthisand keepstrack of thedata, but doesnot complain. A complaint isissued only when your program attempts
to make use of uninitialised datain away that might affect your program’'sexternally-visible behaviour. Inthisexample,
X isuninitialised. Memcheck observes the value being passedto | O pri ntf andthenceto | O vfprintf, but
makes no comment. However, | O vf pri nt f hasto examinethevalue of x soit canturnitinto the corresponding
ASCII string, and it is at this point that Memcheck complains.

Sources of uninitialised datatend to be:
 Local variablesin procedures which have not been initialised, as in the example above.

» The contents of heap blocks (allocated with mal | oc, new, or a similar function) before you (or a constructor)
write something there.

To see information on the sources of uninitialised datain your program, usethe - -t r ack- ori gi ns=yes option.
This makes Memcheck run more slowly, but can make it much easier to track down the root causes of uninitialised
value errors.

62

Memcheck: a memory error detector

4.2.3. Use of uninitialised or unaddressable values in
system calls

Memcheck checks al parametersto system calls:
* It checksdl the direct parameters themselves, whether they are initialised.

» Also, if asystem call needsto read from abuffer provided by your program, Memcheck checksthat the entire buffer
is addressable and its contents are initialised.

» Also, if the system call needs to write to a user-supplied buffer, Memcheck checks that the buffer is addressable.

After the system call, Memcheck updates its tracked information to precisely reflect any changes in memory state
caused by the system call.

Here's an example of two system calls with invalid parameters:

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(void)

{
char* arr mal | oc(10);
int* arr2 mal | oc(si zeof (int));
wite(1 /* stdout */, arr, 10);
exit(arr2[0]);

}

Y ou get these complaints ...

Syscall paramwite(buf) points to uninitialised byte(s)
at 0x25A48723: _ wite _nocancel (in /lib/tls/libc-2.3.3.s0)
by Ox259AFAD3: _ libc_start_main (in /lib/tls/libc-2.3.3.s0)
by 0x8048348: (wi thin /auto/homes/njn25/grind/ head4/ a. out)
Addr ess 0x25AB8028 is O bytes inside a block of size 10 alloc'd
at 0x259852B0: mall oc (vg_replace_malloc.c: 130)
by 0x80483F1l: main (a.c:5)

Syscal | paramexit(error_code) contains uninitialised byte(s)
at Ox25A21B44: ~ d __exit (in /lib/tls/libc-2.3.3.s0)
by 0x8048426: main (a.c:8)

... because the program has (a) written uninitialised junk from the heap block to the standard output, and (b) passed
an uninitialised value to exi t . Note that the first error refers to the memory pointed to by buf (not buf itself), but
the second error refers directly to exi t 'sargument ar r 2[0] .

4.2.4. lllegal frees

For example:
Invalid free()
at Ox4004FFDF: free (vg_clientmalloc.c:577)

by 0x80484C7: main (tests/doublefree.c: 10)
Addr ess 0x3807F7B4 is O bytes inside a block of size 177 free'd

63

Memcheck: a memory error detector

at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: main (tests/doublefree.c: 10)

Memcheck keeps track of the blocks allocated by your program with nal | oc/new, so it can know exactly whether
or not theargument to f r ee/del et e islegitimate or not. Here, this test program has freed the same block twice. As
with theillegal read/write errors, Memcheck attempts to make sense of the address freed. If, as here, the addressisone
which has previously been freed, you wil be told that -- making duplicate frees of the same block easy to spot. You
will aso get this message if you try to free a pointer that doesn't point to the start of a heap block.

4.2.5. When a heap block is freed with an inappropriate
deallocation function

In the following example, ablock allocated with new|] haswrongly been deallocated with f r ee:

M smat ched free() / delete / delete []
at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp: 149)
by 0x4C261C41: Ppt Doc: : ~Ppt Doc(voi d) (include/ gnenmarray. h: 60)
by 0x4C261FOE: Ppt Xm :: ~Ppt Xm (voi d) (pptxm .cc: 44)
Addr ess 0x4BB292A8 is O bytes inside a block of size 64 alloc'd
at 0x4004318C. operator new] (unsigned int) (vg_clientfuncs.c:152)
by 0x4C21BCl5: KLaol a::readSBStrean(int) const (klaol a.cc:314)
by 0x4C21C155: KLaol a:: strean{KLaol a: : O_LENode const *) (klaol a.cc: 416)
by 0x4C21788F: OLEFilter::convert(QCString const & (olefilter.cc:272)

In C++ it'simportant to deallocate memory in away compatible with how it was allocated. The dedl is:

« If alocated withmal | oc, cal | oc,real | oc,val | oc or nenal i gn, you must deallocate withf r ee.
« If alocated with new, you must deallocate with del et e.

« If alocated with new|], you must deallocate with del et e[] .

The worst thing is that on Linux apparently it doesn't matter if you do mix these up, but the same program may then
crash on a different platform, Solaris for example. So it's best to fix it properly. According to the KDE folks "it's
amazing how many C++ programmers don't know this".

The reason behind the requirement is as follows. In some C++ implementations, del et e[] must be used for objects
allocated by new|] because the compiler stores the size of the array and the pointer-to-member to the destructor of
the array's content just before the pointer actually returned. del et e doesn't account for this and will get confused,
possibly corrupting the heap.

4.2.6. Overlapping source and destination blocks

Thefollowing C library functions copy some datafrom one memory block to another (or something similar): menctpy,
st rcpy, strncpy, strcat, strncat. The blocks pointed to by their src and dst pointers aren't allowed to
overlap. The POSIX standards have wording along the lines "If copying takes place between objects that overlap, the
behavior is undefined." Therefore, Memcheck checks for this.

For example:

==27492== Sour ce and destination overlap in nmencpy(Oxbffff294, Oxbffff280, 21)
==27492== at 0x40026CDC. nentpy (nct_replace_strmemc: 71)
==27492== by 0x804865A: main (overl ap.c: 40)

Memcheck: a memory error detector

Y ou don't want the two blocks to overlap because one of them could get partially overwritten by the copying.

Y ou might think that Memcheck is being overly pedantic reporting this in the case where dst islessthan sr c. For
exampl e, the obviousway toimplement ment py isby copying fromthefirst byteto thelast. However, the optimisation
guides of some architectures recommend copying from the last byte down to the first. Also, some implementations of
mentpy zero dst before copying, because zeroing the destination's cache ling(s) can improve performance.

The mora of the story is: if you want to write truly portable code, don't make any assumptions about the language
implementation.

4.2.7. Fishy argument values

All memory allocation functions take an argument specifying the size of the memory block that should be allocated.
Clearly, the requested size should be a non-negative value and is typically not excessively large. For instance, it is
extremely unlikly that the size of an allocation request exceeds 2* * 63 bytes on a64-bit machine. It ismuch more likely
that such a value is the result of an erroneous size calculation and is in effect a negative value (that just happens to
appear excessively large because the bit pattern is interpreted as an unsigned integer). Such avalueis called a "fishy
value". The si ze argument of the following allocation functions is checked for being fishy: mal | oc, cal | oc,
real l oc,nemal i gn,new,new [].__builtin_new,__ builtin_vec_new,Forcal | oc botharguments
are being checked.

For example:

==32233== Argunent 'size' of function nmalloc has a fishy (possibly negative) value: -3

==32233== at Ox4C2CFA7: malloc (vg_replace_malloc. c: 298)
==32233== by 0x400555: foo (fishy.c: 15)
==32233== by 0x400583: mmin (fishy.c:23)

In earlier Valgrind versions those values were being referred to as "silly arguments” and no back-trace was included.

4.2.8. Memory leak detection

Memcheck keepstrack of all heap blocksissued in responseto callsto mal | oc/newet al. So when the program exits,
it knows which blocks have not been freed.

If - -1 eak- check is set appropriately, for each remaining block, Memcheck determines if the block is reachable
from pointerswithin the root-set. The root-set consists of (a) general purpose registers of all threads, and (b) initialised,
aligned, pointer-sized data words in accessible client memory, including stacks.

There are two ways a block can be reached. The first is with a "start-pointer”, i.e. a pointer to the start of the block.
The second is with an "interior-pointer”, i.e. a pointer to the middle of the block. There are severa ways we know
of that an interior-pointer can occur:

» The pointer might have originally been a start-pointer and have been moved along deliberately (or not deliberately)
by the program. In particular, this can happen if your program uses tagged pointers, i.e. if it uses the bottom one,
two or three bits of a pointer, which are normally always zero due to alignment, in order to store extrainformation.

* It might be arandom junk value in memory, entirely unrelated, just a coincidence.

* It might be apointer to theinner char array of aC++ st d: : st ri ng. For example, some compilers add 3 words at
the beginning of the std::string to store the length, the capacity and areference count before the memory containing
the array of characters. They return a pointer just after these 3 words, pointing at the char array.

» Some code might allocate a block of memory, and use the first 8 bytes to store (block size - 8) as a 64bit number.
sql i t e3MemMal | oc doesthis.

65

Memcheck: a memory error detector

It might be a pointer to an array of C++ objects (which possess destructors) allocated with new|] . In this case,
some compilers store a "magic cooki€" containing the array length at the start of the allocated block, and return a
pointer to just past that magic cookie, i.e. an interior-pointer. See this page for more information.

* It might be apointer to an inner part of a C++ object using multiple inheritance.

Y ou can optionally activate heuristics to use during the leak search to detect the interior pointers corresponding to the
stdstring,| engt h64,newarray andnul ti pl ei nheritance cases. If the heuristic detectsthat an interior
pointer corresponds to such a case, the block will be considered as reachable by the interior pointer. In other words,
the interior pointer will be treated asif it were a start pointer.

With that in mind, consider the nine possible cases described by the following figure.

Poi nter chain AAA Leak Case BBB Leak Case
(1) RRR ------------ > BBB DR
(2) RRR---> AAA ---> BBB DR IR
(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5 RRR ------ Peem - - > BBB (y)DR, (n)DL
(6) RRR ---> AAA -?-> BBB DR (y)IR, (n)DL

(7) RRR -?-> AAA ---> BBB (Yy)DR (n)DL (y)IR (n)IL
(8) RRR-?-> AAA -?2->BBB (y)DR (nm)DL (y,y)IR (n,y)IL, (_,n)DL
(9) RRR AAA -?-> BBB DL (y)IL, (n)DL

Poi nter chain | egend:

- RRR a root set node or DR bl ock
- AAA, BBB: heap bl ocks

- ---> a start-pointer

- -?-> an interior-pointer

Leak Case | egend:

- DR Directly reachabl e

- IR Indirectly reachable

- DL: Directly I ost

- IL: Indirectly | ost

- (y)XY: it's XY if the interior-pointer is a real pointer

- (n)XY: it's XY if the interior-pointer is not a real pointer
- ()XY it's XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these cases in its output,
resulting in the following four leak kinds.

» "Still reachable’. This covers cases 1 and 2 (for the BBB blocks) above. A start-pointer or chain of start-pointersto
the block isfound. Since the block isstill pointed at, the programmer could, at least in principle, havefreed it before
program exit. "Still reachable" blocks are very common and arguably not a problem. So, by default, Memcheck
won't report such blocks individually.

» "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no pointer to the block can be
found. The block is classified as "lost", because the programmer could not possibly have freed it at program exit,
since no pointer to it exists. Thisislikely a symptom of having lost the pointer at some earlier point in the program.
Such cases should be fixed by the programmer.

 "Indirectly lost". Thiscoverscases4 and 9 (for the BBB blocks) above. Thismeansthat the block islost, not because
there are no pointers to it, but rather because all the blocks that point to it are themselves lost. For example, if

66

https://docs.freebsd.org/info/gxxint/gxxint.info.Free_Store.html

Memcheck: a memory error detector

you have a binary tree and the root node is lost, all its children nodes will be indirectly lost. Because the problem
will disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck won't report such blocks
individually by default.

» "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a chain of one or more pointers
to the block has been found, but at |east one of the pointersisan interior-pointer. This could just be arandom value
in memory that happens to point into a block, and so you shouldn't consider this ok unless you know you have
interior-pointers.

(Note: This mapping of the nine possible cases onto four leak kindsis not necessarily the best way that leaks could be
reported; in particular, interior-pointers are treated inconsistently. It is possible the categorisation may be improved
in the future.)

Furthermore, if suppressions exists for ablock, it will be reported as " suppressed” no matter what which of the above
four kinds it belongs to.

Thefollowing is an example leak summary.

LEAK SUMVARY:
definitely lost: 48 bytes in 3 bl ocks.
indirectly lost: 32 bytes in 2 bl ocks.
possi bly lost: 96 bytes in 6 bl ocks.
still reachable: 64 bytes in 4 bl ocks.
suppressed: 0 bytes in O bl ocks.

If heuristics have been used to consider some blocks asreachable, the leak summary detailsthe heuristically reachable
subset of 'still reachable:' per heuristic. In the below example, of the 95 bytes still reachable, 87 bytes (56+7+8+16)
have been considered heuristically reachable.

LEAK SUMVARY:
definitely lost: 4 bytes in 1 bl ocks
indirectly lost: 0 bytes in O bl ocks
possibly lost: O bytes in O bl ocks

still reachable: 95 bytes in 6 bl ocks
of which reachabl e via heuristic:
stdstring : 56 bytes in 2 bl ocks
| engt h64 : 16 bytes in 1 bl ocks
newar r ay : 7 bytes in 1 bl ocks

mul ti pl ei nheritance: 8 bytes in 1 bl ocks
suppressed: 0 bytes in O bl ocks

If - -1 eak- check=ful | is specified, Memcheck will give details for each definitely lost or possibly lost block,
including where it was allocated. (Actually, it merges results for all blocks that have the same leak kind and
sufficiently similar stack tracesinto asingle"lossrecord". The- - | eak-r esol ut i on letsyou control the meaning
of "sufficiently similar".) It cannot tell you when or how or why the pointer to a leaked block was lost; you have to
work that out for yourself. In general, you should attempt to ensure your programs do not have any definitely lost or
possibly lost blocks at exit.

For example:

8 bytes in 1 blocks are definitely lost in loss record 1 of 14
at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)

67

Memcheck: a memory error detector

by Ox........: main (leak-tree.c:39)

88 (8 direct, 80 indirect) bytes in 1 blocks are definitely lost in |loss record 13 of 14

at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:25)

Thefirst message describesasimple case of asingle 8 byte block that hasbeen definitely lost. The second case mentions
another 8 byte block that has been definitely lost; the difference isthat afurther 80 bytesin other blocks are indirectly
lost because of this lost block. The loss records are not presented in any notable order, so the loss record numbers
aren't particularly meaningful. The loss record numbers can be used in the VValgrind gdbserver to list the addresses of
the leaked blocks and/or give more details about how ablock is still reachable.

The option - - show | eak- ki nds=<set > controls the set of leak kinds to show when - - | eak- check=f ul |
is specified.

The <set > of leak kindsis specified in one of the following ways:

» acommaseparated list of one or more of defi nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

» none for the empty set.

The default value for the leak kindsto show is- - show | eak- ki nds=defi ni t e, possi bl e.

To aso show the reachable and indirectly lost blocks in addition to the definitely and possibly lost blocks, you can
use - - show | eak- ki nds=al | . To only show the reachable and indirectly lost blocks, use - - show- | eak-
ki nds=i ndi rect, r eachabl e. The reachable and indirectly lost blocks will then be presented as shown in the
following two examples.

64 bytes in 4 blocks are still reachable in |loss record 2 of 4
at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c:74)

32 bytes in 2 blocks are indirectly lost in loss record 1 of 4

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c: 80)

Because there are different kinds of leaks with different severities, an interesting question is: which leaks should be
counted as true "errors' and which should not?

The answer to this question affects the numbers printed in the ERROR SUMVARY line, and also the effect of the - -
error-exitcode option. First, aleak is only counted as a true "error" if - - | eak- check=f ul | is specified.
Then, the option - - error s- f or - | eak- ki nds=<set > controls the set of leak kinds to consider as errors. The
default valueis- - errors-for - | eak- ki nds=defi nite, possi bl e

4.3. Memcheck Command-Line Options

- - | eak- check=<no| sumary| yes| ful | > [defaul t: summary]

When enabled, search for memory leaks when the client program finishes. If set to sunmar vy, it says how many
leaks occurred. If settof ul | oryes, each individual leak will be shown in detail and/or counted as an error, as
specified by the options - - show- | eak- ki nds and- - errors-for-I| eak-Kkinds.

68

Memcheck: a memory error detector

If - - xm =yes isgiven, memcheck will automatically usethevalue- - | eak- check=ful | . Youcanuse- -
show- | eak- ki nds=none to reduce the size of the xml output if you are not interested in the leak results.

--| eak-resol uti on=<I ow ned| hi gh> [defaul t: high]

When doing leak checking, determines how willing Memcheck is to consider different backtraces to be the same
for the purposes of merging multiple leaks into a single leak report. When set to | ow, only the first two entries
need match. When nmed, four entries have to match. When hi gh, al entries need to match.

For hardcore leak debugging, you probably want to use - - | eak- r esol ut i on=hi gh together with - - num
cal | er s=40 or some such large number.

Note that the - - | eak- r esol ut i on setting does not affect Memcheck's ahility to find leaks. It only changes
how the results are presented.

- -show | eak- ki nds=<set > [default: definite, possible]
Specifiesthe leak kindsto show inaf ul | leak search, in one of the following ways:
e acommaseparated list of oneor moreof defi nite i ndirect possible reachable.

« all to specify the complete set (al leak kinds). It is equivalent to --show- | eak-
ki nds=definite,indirect, possibl e, reachabl e.

* none for the empty set.
--errors-for-1|eak-kinds=<set> [defaul t: definite, possible]

Specifiesthe leak kindsto count aserrorsinaf ul | leak search. The<set > is specified similarly to - - show
| eak- ki nds

- -l eak-check-heuristics=<set> [default: all]

Specifies the set of leak check heuristics to be used during leak searches. The heuristics control which interior
pointersto ablock causeit to be considered asreachable. The heuristic set is specifiedin one of thefollowing ways:

e acommaseparated list of oneor moreof st dst ri ng | engt h64 newarray nul ti pl ei nheritance.

e all to activate the complete set of heuristics. It is equivaent to --I|eak-check-
heuri stics=stdstring, | ength64, newarray, nul tipl ei nheritance.

* none for the empty set.

Note that these heuristics are dependent on the layout of the objects produced by the C++ compiler. They have
been tested with some gcc versions (e.g. 4.4 and 4.7). They might not work properly with other C++ compilers.

- -show r eachabl e=<yes| no> , --show possi bl y-I ost =<yes| no>
These options provide an aternative way to specify the leak kinds to show:

» --showreachabl e=no --show possi bl y-1 ost=yes is equivdent to --show | eak-
ki nds=defi nite, possi bl e.

e --showreachabl e=no --show possi bl y-1ost=no is equivdent to --show- | eak-
ki nds=definite.

e --show reachabl e=yes isequivalentto - - show | eak- ki nds=al | .

Notethat - - show possi bl y-1 ost =no hasno effect if - - show r eachabl e=yes is specified.

69

Memcheck: a memory error detector

--xtree-| eak=<no| yes> [no]

If set to yes, the results for the leak search done at exit will be output in a 'Callgrind Format' execution tree
file. Note that this automatically sets the options - - | eak- check=f ul | and - - show- | eak- ki nds=al I,
to allow xtree visualisation tools such as kcachegrind to select what kind to leak to visualise. The produced file
will contain the following events:

* RB: Reachable Bytes

» PB: Possibly lost Bytes

| B: Indirectly lost Bytes

DB : Definitely lost Bytes (direct plus indirect)

» DI B: Definitely Indirectly lost Bytes (subset of DB)
* RBk : reachable Blocks

» PBK : Possibly lost Blocks

e | Bk : Indirectly lost Blocks

e DBK : Definitely lost Blocks

The increase or decrease for all events above will also be output in the file to provide the delta (increase or
decrease) between 2 successive leak searches. For example, i RB is the increase of the RB event, dPBK is the
decrease of PBk event. The values for the increase and decrease events will be zero for the first leak search done.

See Execution Trees for a detailed explanation about execution trees.
--xtree-leak-file=<filenane> [default: xtleak. kcg. %]

Specifies that Valgrind should produce the xtree leak report in the specified file. Any %p, % or % sequences
appearing in thefilename are expanded in exactly the sameway asthey arefor - - | og-f i | e. Seethedescription
of --log-file for details.

See Execution Trees for a detailed explanation about execution trees formats.
--undef -val ue- errors=<yes| no> [default: yes]

Controls whether Memcheck reports uses of undefined value errors. Set this to no if you don't want to see
undefined value errors. It aso has the side effect of speeding up Memcheck somewhat. AddrCheck (removed in
Valgrind 3.1.0) functioned like Memcheck with - - undef - val ue- err or s=no.

--track-origi ns=<yes| no> [default: no]

Controls whether Memcheck tracks the origin of uninitialised values. By default, it does not, which means that
although it can tell you that an uninitialised value is being used in a dangerous way, it cannot tell you where the
uninitialised value came from. This often makes it difficult to track down the root problem.

When set to yes, Memcheck keeps track of the origins of all uninitialised values. Then, when an uninitialised
value error is reported, Memcheck will try to show the origin of the value. An origin can be one of the following
four places: a heap block, a stack allocation, a client request, or miscellaneous other sources (eg, acall to br k).

For uninitialised values originating from a heap block, Memcheck shows where the block was allocated. For
uninitialised values originating from astack all ocation, Memcheck can tell you which function allocated the val ue,
but no more than that -- typically it shows you the source location of the opening brace of the function. So you
should carefully check that all of the function'slocal variables areinitialised properly.

70

Memcheck: a memory error detector

Performance overhead: origin tracking is expensive. It halves Memcheck's speed and increases memory use by
a minimum of 100MB, and possibly more. Nevertheless it can drastically reduce the effort required to identify
the root cause of uninitialised value errors, and so is often a programmer productivity win, despite running more
sowly.

Accuracy: Memcheck tracks origins quite accurately. To avoid very large space and time overheads, some
approximations are made. It is possible, although unlikely, that Memcheck will report an incorrect origin, or not
be able to identify any origin.

Note that the combination - -t r ack- ori gi ns=yes and - - undef - val ue- er r or s=no is nonsensical.
Memcheck checks for and rejects this combination at startup.

--partial -1 oads- ok=<yes| no> [default: yes]

Controlshow Memcheck handles 32-, 64-, 128- and 256-bit naturally aligned |oads from addresses for which some
bytes are addressable and others are not. When yes, such loads do not produce an address error. Instead, loaded
bytes originating from illegal addresses are marked as uninitialised, and those corresponding to legal addresses
are handled in the normal way.

When no, loads from partially invalid addresses are treated the same as loads from compl etely invalid addresses:
an illegal-address error isissued, and the resulting bytes are marked as initialised.

Note that code that behaves in this way is in violation of the ISO C/C++ standards, and should be considered
broken. If at al possible, such code should be fixed.

- -expensi ve- def i nedness- checks=<no| aut o] yes> [defaul t: auto]

Controls whether Memcheck should employ more precise but aso more expensive (time consuming)
instrumentation when checking the definedness of certain values. In particular, this affects the instrumentation of
integer adds, subtracts and equality comparisons.

Selecting - - expensi ve- def i nedness- checks=yes causes Memcheck to use the most accurate analysis
possible. This minimises false error rates but can cause up to 30% performance degradation.

Selecting - - expensi ve- def i nedness- checks=no causesMemcheck to usethe cheapest instrumentation
possible. This maximises performance but will nhormally give an unusably high false error rate.

The default setting, - - expensi ve- def i nedness- checks=aut o, is strongly recommended. This causes
Memcheck to use the minimum of expensive instrumentation needed to achieve the same false error rate as - -

expensi ve- def i nedness- checks=yes. It also enablesan instrumentation-time analysis passwhich aims
to further reduce the costs of accurate instrumentation. Overall, the performance loss is generally around 5%
relativeto - - expensi ve- def i nedness- checks=no, although thisis strongly workload dependent. Note
that the exact instrumentation settings in this mode are architecture dependent.

--keep-stacktraces=al l oc|free|al |l oc-and-free|al | oc-t hen-free| none [defaul t:
al | oc-and-free]

Controls which stack trace(s) to keep for malloc'd and/or free'd blocks.

Withal | oc-t hen-free, astack traceisrecorded at alocation time, and is associated with the block. When
the block is freed, a second stack trace is recorded, and this replaces the allocation stack trace. As aresult, any
"use after free" errorsrelating to this block can only show a stack trace for where the block was freed.

With al | oc- and- f r ee, both alocation and the deallocation stack traces for the block are stored. Hence a
"use after free" error will show both, which may make the error easier to diagnose. Comparedtoal | oc-t hen-
f r ee, this setting slightly increases Valgrind's memory use as the block contains two references instead of one.

71

Memcheck: a memory error detector

With al | oc, only the allocation stack trace is recorded (and reported). With f r ee, only the deallocation stack
trace is recorded (and reported). These values somewhat decrease Valgrind's memory and cpu usage. They can
be useful depending on the error types you are searching for and the level of detail you need to analyse them. For
example, if you are only interested in memory leak errors, it is sufficient to record the all ocation stack traces.

With none, no stack traces are recorded for malloc and free operations. If your program allocates a lot of
blocks and/or allocates/frees from many different stack traces, this can significantly decrease cpu and/or memory
required. Of course, few details will be reported for errors related to heap blocks.

Note that once a stack trace is recorded, Valgrind keeps the stack trace in memory even if it is not referenced
by any block. Some programs (for example, recursive algorithms) can generate a huge number of stack traces. If
Valgrind uses too much memory in such circumstances, you can reduce the memory required with the options - -
keep- st ackt r aces and/or by using asmaller value for the option - - num cal | er s.

If youwanttouse- - xt r ee- menor y=f ul | memory profiling (see Execution Trees), then you cannot specify
- - keep- st ackt races=free or--keep- st ackt races=none.

--freelist-vol =<nunber> [default: 20000000]

When the client program releases memory usingf r ee (in C) or del et e (C++), that memory is not immediately
made available for re-allocation. Instead, it is marked inaccessible and placed in a queue of freed blocks. The
purpose is to defer as long as possible the point at which freed-up memory comes back into circulation. This
increases the chance that Memcheck will be able to detect invalid accesses to blocks for some significant period
of time after they have been freed.

This option specifies the maximum total size, in bytes, of the blocks in the queue. The default value is twenty
million bytes. Increasing this increases the total amount of memory used by Memcheck but may detect invalid
uses of freed blocks which would otherwise go undetected.

--freelist-big-bl ocks=<nunber> [default: 1000000]

When making blocks from the queue of freed blocks available for re-allocation, Memcheck will in priority re-
circulate the blocks with a size greater or equal to - - f r eel i st - bi g- bl ocks. This ensures that freeing big
blocks (in particular freeing blocksbigger than- - f r eel i st - vol) doesnotimmediately lead to are-circulation
of al (or alot of) the small blocksin the freelist. In other words, this option increases the likelihood to discover
dangling pointers for the "small" blocks, even when big blocks are freed.

Setting avalue of 0 meansthat all the blocks are re-circulated in a FIFO order.
- -wor kar ound- gcc296- bugs=<yes| no> [defaul t: no]

When enabled, assume that reads and writes some small distance below the stack pointer are due to bugsin GCC
2.96, and does not report them. The "small distance” is 256 bytes by default. Note that GCC 2.96 is the default
compiler on some ancient Linux distributions (RedHat 7.X) and so you may need to use this option. Do not use
it if you do not have to, as it can cause real errors to be overlooked. A better alternative is to use a more recent
GCC in which this bug isfixed.

You may also need to use this option when working with GCC 3.X or 4.X on 32-bit PowerPC Linux. This
is because GCC generates code which occasionally accesses below the stack pointer, particularly for floating-
point to/from integer conversions. Thisisin violation of the 32-bit PowerPC ELF specification, which makes no
provision for locations below the stack pointer to be accessible.

This option is deprecated as of version 3.12 and may be removed from future versions. Y ou should instead use

--i gnore-range- bel ow sp to specify the exact range of offsets below the stack pointer that should be
ignored. A suitable equivalentis- - i gnor e-r ange- bel ow sp=1024- 1.

72

Memcheck: a memory error detector

gnor e- r ange- bel ow sp=<nunber >- <nunber >

Thisisamoregeneral replacement for the deprecated - - wor kar ound- gcc296- bugs option. When specified,
it causes Memcheck not to report errors for accesses at the specified offsets below the stack pointer. The two
offsets must be positive decimal numbers and -- somewhat counterintuitively -- the first one must be larger, in
order to imply a non-wraparound address range to ignore. For example, to ignore 4 byte accesses at 8192 bytes
below the stack pointer, use- - i gnor e- r ange- bel ow sp=8192- 8189. Only one range may be specified.

- -show m snmat ched- frees=<yes| no> [default: yes]

When enabled, Memcheck checks that heap blocks are deallocated using a function that matches the allocating
function. That is, it expects f r ee to be used to deallocate blocks alocated by nmal | oc, del et e for blocks
allocated by new, and del et e[] for blocksallocated by new] . If amismatch is detected, an error isreported.
This is in genera important because in some environments, freeing with a non-matching function can cause
crashes.

There is however a scenario where such mismatches cannot be avoided. That is when the user provides
implementations of newnew{] that cal mal | oc and of del et e/del et e[] that cal free, and these
functions are asymmetrically inlined. For example, imagine that del et e[] isinlined but new|] is not. The
resultisthat Memcheck "sees" all del et e[] callsasdirect callstof r ee, even whenthe program source contains
no mismatched calls.

This causes alot of confusing and irrelevant error reports. - - show nmi snat ched- f r ees=no disablesthese
checks. It is not generally advisable to disable them, though, because you may missrea errors as aresult.

gnor e-ranges=0xPP- 0xQQ , OXRR- 0xSS]

Any ranges listed in this option (and multiple ranges can be specified, separated by commas) will be ignored by
Memcheck's addressability checking.

--mal l oc-fill =<hexnunber >

Fills blocks alocated by mal | oc, new, etc, but not by cal | oc, with the specified byte. This can be
useful when trying to shake out obscure memory corruption problems. The allocated area is still regarded
by Memcheck as undefined -- this option only affects its contents. Note that - - nal | oc-fill does not
affect a block of memory when it is used as argument to client requests VALGRIND_MEMPOOL_ALLOC or
VALGRIND_MALLOCLIKE_BLOCK.

--free-fill =<hexnunber >

4.

Fillsblocksfreed by f r ee, del et e, etc, with the specified byte value. This can be useful when trying to shake
out obscure memory corruption problems. The freed areaiis still regarded by Memcheck as not valid for access --
this option only affectsits contents. Notethat - - f r ee-fi | | does not affect ablock of memory whenit is used
as argument to client requests VALGRIND _MEMPOOL_FREE or VALGRIND _FREELIKE BLOCK.

4. Writing suppression files

The basic suppression format is described in Suppressing errors.

The suppression-type (second) line should have the form:

Mentheck: suppressi on_t ype

The Memcheck suppression types are as follows:

73

Memcheck: a memory error detector

e Val uel, Val ue2, Val ue4, Val ue8, Val uel6, meaning an uninitialised-value error when using avalue of 1,
2, 4, 8 or 16 hytes.

» Cond (or itsold name, Val ue0), meaning use of an uninitialised CPU condition code.

e Addr 1, Addr 2, Addr 4, Addr 8, Addr 16, meaning an invalid address during a memory access of 1, 2, 4, 8 or
16 bytes respectively.

* Junp, meaning an jump to an unaddressable location error.

» Par am meaning an invalid system call parameter error.

* Free, meaning an invalid or mismatching free.

* Overl ap, meaningasr c /dst overlapin mencpy or asimilar function.
» Leak, meaning amemory leak.

Par amerrors have a mandatory extrainformation line at this point, which is the name of the offending system call
parameter.

Leak errors have an optional extrainformation line, with the following format:

mat ch- | eak- ki nds: <set >

where <set > specifies which leak kinds are matched by this suppression entry. <set > is specified in the same way
aswith the option - - show- | eak- ki nds, that is, one of the following:

» acommaseparated list of one or moreof defi nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

* none for the empty set.

If this optional extraline is not present, the suppression entry will match all leak kinds.

Be aware that leak suppressionsthat are created using - - gen- suppr essi ons will contain this optional extraline,
and therefore may match fewer leaks than you expect. Y ou may want to remove the line before using the generated
suppressions.

The other Memcheck error kinds do not have extralines.

If you give the - v option, Valgrind will print the list of used suppressions at the end of execution. For a leak
suppression, this output givesthe number of different loss records that match the suppression, and the number of bytes
and blocks suppressed by the suppression. If the run contains multiple leak checks, the number of bytes and blocks
are reset to zero before each new leak check. Note that the number of different loss records is not reset to zero.

In the example below, in the last leak search, 7 blocks and 96 bytes have been suppressed by a suppression with the
namesomne_| eak _suppr essi on:

--21041-- used_suppressi on: 10 sone_ot her | eak_suppressi on s.supp: 14 suppressed: 12,40
--21041-- used_suppressi on: 39 sone_| eak_suppressi on s.supp: 2 suppressed: 96 bytes in

For Val ueNand Addr Nerrors, thefirst line of the calling context is either the name of the function in which the error
occurred, or, failing that, the full path of the. so file or executable containing the error location. For Fr ee errors, the
first line isthe name of the function doing the freeing (eg, free, __builtin_vec_del et e, etc). For Over | ap
errors, the first line is the name of the function with the overlapping arguments (eg. menctpy, st r cpy, €etc).

74

Memcheck: a memory error detector

Thelast part of any suppression specifies the rest of the calling context that needs to be matched.

4.5. Details of Memcheck's checking machinery

Read this section if you want to know, in detail, exactly what and how Memcheck is checking.

4.5.1. Valid-value (V) bits

It is simplest to think of Memcheck implementing a synthetic CPU which is identical to areal CPU, except for one
crucia detail. Every hit (literally) of data processed, stored and handled by the real CPU has, in the synthetic CPU, an
associated "valid-value" bit, which says whether or not the accompanying bit has alegitimate value. In the discussions
which follow, this bit is referred to asthe V (valid-value) hit.

Each byte in the system therefore has a 8 V bits which follow it wherever it goes. For example, when the CPU loads
aword-size item (4 bytes) from memory, it also loads the corresponding 32 V bits from a bitmap which stores the V
bitsfor the process entire address space. If the CPU should later write the whole or some part of that value to memory
at adifferent address, the relevant V bits will be stored back in the V-bit bitmap.

In short, each bit in the system has (conceptually) an associated V bit, which followsit around everywhere, eveninside
the CPU. Yes, al the CPU's registers (integer, floating point, vector and condition registers) have their own V bit
vectors. For thisto work, Memcheck uses a great deal of compression to represent the V bits compactly.

Copying vaues around does not cause Memcheck to check for, or report on, errors. However, whenavalueisusedina
way which might conceivably affect your program’'s externally-visible behaviour, the associated V bitsareimmediately
checked. If any of these indicate that the value is undefined (even partially), an error is reported.

Here's an (admittedly nonsensical) example:

int i, j;

int a[10], b[10];

for (i =0; i <10; i++) {
j =ali];
b[i] =1;

}

Memcheck emits no complaints about this, since it merely copies uninitialised valuesfroma[] intob[], and doesn't
use them in away which could affect the behaviour of the program. However, if the loop is changed to:

for (i =0; i <10; i++) {
j o+=afi];

}

if (j ==77)
printf("hello there\n");

then Memcheck will complain, at the i f, that the condition depends on uninitialised values. Note that it doesn't
complainatthej += a[i]; ,sinceatthat point the undefinednessisnot "observable". It'sonly when adecision hasto
be made asto whether or not todo thepri nt f -- an observable action of your program -- that Memcheck complains.

Most low level operations, such as adds, cause Memcheck to use the V bitsfor the operandsto calculate the V bitsfor
theresult. Even if the result is partially or wholly undefined, it does not complain.

Checks on definedness only occur in three places. when avalue is used to generate a memory address, when control
flow decision needs to be made, and when a system call is detected, Memcheck checks definedness of parameters
as required.

75

Memcheck: a memory error detector

If a check should detect undefinedness, an error message is issued. The resulting value is subsequently regarded as
well-defined. To do otherwise would give long chains of error messages. In other words, once Memcheck reports an
undefined value error, it tries to avoid reporting further errors derived from that same undefined value.

This sounds overcomplicated. Why not just check all readsfrom memory, and complain if an undefined valueisloaded
into a CPU register? Well, that doesn't work well, because perfectly legitimate C programs routinely copy uninitialised
values around in memory, and we don't want endless complaints about that. Here's the canonical example. Consider
astruct like this:

struct S { int x; char c; };
struct S sl1, s2;

sl.x = 42;
sl.c ="'z";
s2 = s1;

The question to ask is: how largeisstruct S, in bytes? Ani nt is4 bytes and achar one byte, so perhaps a
struct S occupies 5 bytes? Wrong. All non-toy compilers we know of will round the size of struct Supto
a whole number of words, in this case 8 bytes. Not doing this forces compilers to generate truly appalling code for
accessing arrays of st ruct S's on some architectures.

So s1 occupies 8 bytes, yet only 5 of them will be initialised. For the assignment s2 = s1, GCC generates code
to copy &l 8 bytes wholesale into s2 without regard for their meaning. If Memcheck simply checked values as they
came out of memory, it would yelp every time a structure assignment like this happened. So the more complicated
behaviour described above is necessary. This allows GCC to copy s1 into s2 any way it likes, and a warning will
only be emitted if the uninitialised values are later used.

As explained above, Memcheck maintains 8 V bitsfor each byte in your process, including for bytesthat arein shared
memory. However, the same piece of shared memory can be mapped multiple times, by several processes or even by
the same process (for example, if the process wants aread-only and a read-write mapping of the same page). For such
multiple mappings, Memcheck tracksthe V bitsfor each mapping independently. Thiscan lead to false positive errors,
asthe shared memory can beinitialised viaafirst mapping, and accessed viaanother mapping. The accessviathisother
mapping will haveitsown V bits, which have not been changed when the memory wasinitialised viathe first mapping.
The bypass for these false positives is to use Memcheck's client requests VALGRI ND_MAKE_MEM DEFI NED and
VALGRI ND_MAKE_MEM_ UNDEFI NEDto inform Memcheck about what your program does (or what another process
does) to these shared memory mappings.

4.5.2. Valid-address (A) bits

Notice that the previous subsection describes how the validity of valuesis established and maintained without having
to say whether the program does or does not have the right to access any particular memory location. We now consider
the latter question.

As described above, every bit in memory or in the CPU has an associated valid-value (V) bit. In addition, all bytes
in memory, but not in the CPU, have an associated valid-address (A) bit. This indicates whether or not the program
can legitimately read or write that location. It does not give any indication of the validity of the data at that location
-- that's the job of the V bits -- only whether or not the location may be accessed.

Every time your program reads or writes memory, Memcheck checks the A bits associated with the address. If any
of them indicate an invalid address, an error is emitted. Note that the reads and writes themselves do not change the
A bits, only consult them.

So how do the A hits get set/cleared? Like this:

» When the program starts, all the global data areas are marked as accessible.

76

Memcheck: a memory error detector

When the program does mal | oc/new, the A bitsfor exactly the areaallocated, and not a byte more, are marked as
accessible. Upon freeing the areathe A bits are changed to indicate inaccessihility.

When the stack pointer register (SP) moves up or down, A bits are set. The ruleis that the area from SP up to the
base of the stack ismarked as accessible, and below SP isinaccessible. (If that soundsillogical, bear in mind that the
stack grows down, not up, on ailmost all Unix systems, including GNU/Linux.) Tracking SP. like this has the useful
side-effect that the section of stack used by a function for local variables etc is automatically marked accessible on
function entry and inaccessible on exit.

When doing system calls, A bits are changed appropriately. For example, map magically makesfiles appear in the
process address space, so the A bits must be updated if mmap succeeds.

Optionaly, your program can tell Memcheck about such changes explicitly, using the client request mechanism
described above.

4.5.3. Putting it all together

Memcheck's checking machinery can be summarised as follows:

Each bytein memory has 8 associated V (valid-value) bits, saying whether or not the byte has a defined value, and
asingle A (valid-address) bit, saying whether or not the program currently has the right to read/write that address.
As mentioned above, heavy use of compression means the overhead is typically around 25%.

When memory is read or written, the relevant A bits are consulted. If they indicate an invalid address, Memcheck
emits an Invalid read or Invalid write error.

When memory is read into the CPU's registers, the relevant V bits are fetched from memory and stored in the
simulated CPU. They are not consulted.

When aregister is written out to memory, the V bits for that register are written back to memory too.

When valuesin CPU registers are used to generate a memory address, or to determine the outcome of a conditional
branch, the V bits for those values are checked, and an error emitted if any of them are undefined.

When values in CPU registers are used for any other purpose, Memcheck computes the V bits for the result, but
does not check them.

Oncethe V bits for avalue in the CPU have been checked, they are then set to indicate validity. This avoids long
chains of errors.

When values are loaded from memory, Memcheck checks the A bits for that |ocation and issues an illegal-address
warning if needed. In that case, the V bits loaded are forced to indicate Valid, despite the location being invalid.

This apparently strange choice reduces the amount of confusing information presented to the user. It avoids the
unpleasant phenomenon in which memory is read from a place which is both unaddressable and contains invalid
values, and, as a result, you get not only an invalid-address (read/write) error, but also a potentialy large set of
uninitialised-value errors, one for every time the value is used.

There is a hazy boundary case to do with multi-byte loads from addresses which are partially valid and partially
invalid. See details of the option - - par ti al - | oads- ok for details.

Memcheck intercepts callsto nal | oc, cal | oc,real | oc,val | oc,nenal i gn,free,new,new], del ete
anddel et e[] . The behaviour you get is:

mal | oc/newnew] : the returned memory is marked as addressable but not having valid values. This means you
have to write to it before you can read it.

7

Memcheck: a memory error detector

e cal | oc: returned memory is marked both addressable and valid, since cal | oc clearsthe areato zero.

» real | oc: if the new sizeislarger than the old, the new section is addressable but invalid, aswith mal | oc. If the
new sizeis smaller, the dropped-off section is marked as unaddressable. Y ou may only passtor eal | oc apointer
previously issued to you by mal | oc/cal | oc/real | oc.

» freeldel et e/del et e[]: you may only pass to these functions a pointer previously issued to you by the
corresponding allocation function. Otherwise, Memcheck complains. If the pointer isindeed valid, Memcheck marks
the entire area it points at as unaddressable, and places the block in the freed-blocks-queue. The aim isto defer as
long as possible reallocation of this block. Until that happens, all attempts to access it will elicit an invalid-address
error, as you would hope.

4.6. Memcheck Monitor Commands

The Memcheck tool provides monitor commands handled by Valgrind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver).

e xb <addr> [<l en>] showsthe definedness (V) bits and values for <len> (default 1) bytes starting at <addr>.
For each 8 bytes, two lines are outpuit.

The first line shows the validity bits for 8 bytes. The definedness of each byte in the range is given using two
hexadecimal digits. These hexadecimal digits encode the validity of each bit of the corresponding byte, using O if
the bit is defined and 1 if the bit is undefined. If a byte is not addressable, its validity bits are replaced by __ (a
double underscore).

The second line shows the values of the bytes below the corresponding validity bits. The format used to show the
bytes data is similar to the GDB command 'x /<len>xb <addr>'. The value for a non addressable bytes is shown
as ?7? (two question marks).

Inthefollowing example, st ri ngl10 isan array of 10 characters, in which the even numbered bytes are undefined.
In the below example, the byte corresponding to st ri ng10[5] isnot addressable.

(gdb) p &stringlO
$4 = (char (*)[10]) 0x804a2f0
(gdb) nmo xb 0x804a2f0 10

ff 00 ff 00 ff _ ff 00
0x804A2F0: Ox 3f Ox6e Ox 3f 0x65 0x 3f 0x?? 0x 3f 0x65
ff 00
0x804A2F8: Ox 3f 0x00
Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

(gdb)

The command xb cannot be used with registers. To get the validity bits of aregister, you must start Valgrind with
the option - - vgdb- shadow- r egi st er s=yes. The validity bits of aregister can then be obtained by printing
the 'shadow 1' corresponding register. In the below x86 example, the register eax has all its bits undefined, while
the register ebx isfully defined.

(gdb) p /x $eaxsl
$9 = Oxffffffff
(gdb) p /x $ebxsl
$10 = 0xO0

(gdb)

78

Memcheck: a memory error detector

e get _vbits <addr> [<Ien>] showsthe definedness (V) bits for <len> (default 1) bytes starting at <addr>
using the same convention asthe xb command. get _vbi t s only showstheV bits(grouped by 4 bytes). It does not
show the values. If you want to associate V bits with the corresponding byte values, the xb command will be easier
touse, in particular onlittle endian computerswhen associ ating undefined parts of aninteger withtheir V bitsvalues.

The following example shows theresult of get _vi bt s onthest ri ng10 used in the xb command explanation.

(gdb) nonitor get_vbits 0x804a2f0 10
ffooffoo ff__ffoO ffOO
Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

(gdb)

 make_nenory [noaccess| undefi ned| defi ned| Defi nedi f addressabl e] <addr> [<l en>]
marks the range of <len> (default 1) bytes at <addr> as having the given status. Parameter noaccess marks
the range as non-accessible, so Memcheck will report an error on any access to it. undef i ned or defi ned
mark the area as accessible, but Memcheck regards the bytes in it respectively as having undefined or defined
values. Def i nedi f addr essabl e marks as defined, bytes in the range which are already addressible, but
makes no change to the status of bytes in the range which are not addressible. Note that the first letter of
Def i nedi f addr essabl e isan uppercase D to avoid confusion with def i ned.

In the following example, thefirst byte of thest ri ng10 is marked as defined:

(gdb) nonitor make nmenory defi ned 0x8049e28 1
(gdb) nonitor get vbits 0x8049e28 10
0000f f 00 ffOOff00 ff0OO

(gdb)

» check_menory [addressabl e| defi ned] <addr> [<l en>] checksthat the range of <len> (default 1)
bytes at <addr> has the specified accessibility. It then outputs a description of <addr>. In the following example, a
detailed description is available because the option - - r ead- var - i nf o=yes wasgiven at Valgrind startup:

(gdb) rnonitor check nenory defined 0x8049e28 1

Addr ess 0x8049E28 | en 1 defined

==14698== Locati on 0x8049e28 is 0 bytes inside stringl0O[O0],
==14698== declared at prog.c:10, in frame #0 of thread 1

(gdb)
* | eak_check [full*|summary| xt! eak] [kinds <set>|reachabl e| possi bl el eak*|
definitel eak] [heuristics heur 1, heur2,...] [i ncreased*| changed| any]

[unlimted*|limted <max_|oss_records_out put>] performs a leak check. The * in the
arguments indicates the default values.

Ifthe[ful | *| summary| xt | eak] argumentissummar y, only asummary of theleak searchisgiven; otherwise
afull leak report is produced. A full leak report gives detailed information for each leak: the stack trace where the
|eaked blocks were allocated, the number of blocks leaked and their total size. When afull report is requested, the
next two arguments further specify what kind of leaks to report. A leak's details are shown if they match both the
second and third argument. A full leak report might output detailed information for many leaks. The nr of leaks for
which information is output can be controlled using thel i mi t ed argument followed by the maximum nr of leak
recordsto output. If this maximum is reached, the leak search outputs the records with the biggest number of bytes.

The value xt | eak also produces a full leak report, but output it as an xtree in a file xtleak.kcg.%p.%n (see --
log-file). See Execution Trees for a detailed explanation about execution trees formats. See --xtree-leak for the
description of the eventsin a xtree leak file.

79

Memcheck: a memory error detector

Theki nds argument controlswhat kind of blocks are shown for af ul | leak search. The set of leak kindsto show
can be specified using a<set > similarly to the command line option - - show- | eak- ki nds. Alternatively, the
valuedefi ni t el eak isequivaenttoki nds defi ni t e, thevauepossi bl el eak isequivaent toki nds
definite, possi bl e:itwill alsoshow possibly leaked blocks, .i.e those for which only an interior pointer was
found. Thevaluer eachabl e will show all block categories (i.e. isequivalent to ki nds al |).

The heuri sti cs argument controls the heuristics used during the leak search. The set of heuristics to use can
be specified using a <set > similarly to the command line option - - | eak- check- heuri sti cs. The default
valuefor theheuri sti cs argumentisheuri stics none.

The[i ncr eased*| changed| any] argument controlswhat kindsof changesareshownfor af ul | leak search.
The value i ncr eased specifies that only block allocation stacks with an increased number of leaked bytes or
blocks since the previous leak check should be shown. The value changed specifies that allocation stacks with
any change since the previous leak check should be shown. The value any specifiesthat all leak entries should be
shown, regardless of any increase or decrease. When If i ncr eased or changed are specified, the leak report

entries will show the deltarelative to the previous leak

report.

The following example shows usage of the| eak _check monitor command onthe mentheck/ t est s/ | eak-
cases. ¢ regression test. The first command outputs one entry having an increase in the leaked bytes. The second
command is the same as the first command, but uses the abbreviated forms accepted by GDB and the Valgrind
gdbserver. It only outputs the summary information, as there was no increase since the previous leak search.

(gdb) rnonitor |eak check full possiblel eak increased
==19520== 16 (+16) bytes in 1 (+1) bl ocks are possibly | ost

in loss record 9 of 12

==19520== at 0x40070B4: nmalloc (vg replace nalloc. c: 263)
==19520== by 0x80484D5: nk (| eak-cases.c:52)

==19520== by 0x804855F: f (| eak-cases.c: 81)

==19520== by 0x80488E0: mmi n (| eak-cases. c: 107)

==19520==

==19520== LEAK SUWMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+16) bytes in 2 (+1) bl ocks
==19520== still reachable: 96 (+16) bytes in 6 (+1) bl ocks
==19520== suppressed: 0 (+0) bytes in 0 (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak check

==19520==

(gdb) no |

==19520== LEAK SUWMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== still reachable: 96 (+0) bytes in 6 (+0) bl ocks
==19520== suppressed: 0 (+0) bytes in 0 (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak check

==19520==
(gdb)

Note that when using Valgrind's gdbserver, it is not necessary to rerun with - - | eak- check=f ul | --show
r eachabl e=yes to see the reachable blocks. Y ou can obtain the same information without rerunning by using
reachabl e any (or, using abbreviation:mo | f r a).

the GDB command noni t or | eak_check full

80

Memcheck: a memory error detector

bl ock_|i st <l oss_record_nr>| <l oss_record_nr_fronp..<loss_record_nr_t o>
[unlimted*|limted <max_bl ocks>] [heuristics heur 1, heur2,...] shows
the list of blocks belonging to <loss record nr> (or to the loss records range
<loss_record_nr_fronp..<loss_record_nr_to>). Thenr of blocks to print can be controlled using
thel i m t ed argument followed by the maximum nr of blocks to output. If one or more heuristics are given, only
prints the loss records and blocks found via one of the given heur 1, heur 2, . . . heuristics.

A leak search merges the allocated blocks in loss records : aloss record re-groups al blocks having the same state
(for example, Definitely Lost) and the same allocation backtrace. Each loss record is identified in the leak search
result by aloss record number. The bl ock | i st command shows the loss record information followed by the
addresses and sizes of the blocks which have been merged in the lossrecord. If ablock was found using an heuristic,
the block sizeisfollowed by the heuristic.

If adirectly lost block causes some other blocks to be indirectly lost, the block_list command will also show these
indirectly lost blocks. The indirectly lost blocks will be indented according to the level of indirection between the
directly lost block and the indirectly lost block(s). Each indirectly lost block isfollowed by the reference of itsloss
record.

Theblock_list command can be used on the results of aleak search aslong as no block has been freed after thisleak
search: as soon as the program frees a block, a new leak search is needed before block _list can be used again.

In the below example, the program leaks a tree structure by losing the pointer to the block A (top of the tree). So,
the block A isdirectly lost, causing an indirect loss of blocks B to G. The first block_list command shows the loss
record of A (adefinitely lost block with address 0x4028028, size 16). The addresses and sizes of the indirectly lost
blocks due to block A are shown below the block A. The second command shows the details of one of the indirect
loss records output by the first command.

/\ /\

(gdb) bt

#0 main () at leak-tree.c:69

(gdb) nonitor |eak check full any

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost

==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)
==19552== by 0x80484FC. f (l|eak-tree.c:41)
==19552== by 0x8048856: main (|eak-tree.c:63)
==19552==

==19552== LEAK SUMVARY:

==19552== definitely lost: 16 bytes in 1 bl ocks
==19552== indirectly lost: 96 bytes in 6 bl ocks
==19552== possibly lost: O bytes in O bl ocks
==19552== still reachable: 0 bytes in O bl ocks
==19552== suppressed: 0 bytes in O bl ocks
==19552==

(gdb) nonitor block list 7

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost
==19552== at 0x40070B4: malloc (vg_replace _mall oc. c: 263)

==19552== by 0x80484D5: nk (| eak-tree.c:28)

81

in | oss rec

in | oss rec

Memcheck: a memory error detector

==19552== by 0x80484FC. f (l|eak-tree.c:41)

==19552== by 0x8048856: main (l|eak-tree.c:63)

==19552== 0x4028028[16]

==19552== 0x4028068[16] indirect loss record 1

==19552== 0x40280E8[16] indirect |oss record 3
==19552== 0x4028128[16] indirect | oss record 4
==19552== 0x40280A8[16] indirect |oss record 2

==19552== 0x4028168[16] indirect |loss record 5
==19552== 0x40281A8[16] indirect |loss record 6

(gdb) nmo b 2

==19552== 16 bytes in 1 blocks are indirectly lost in |oss record 2 of 7
==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)

==19552== by 0x8048519: f (l|eak-tree.c:43)

==19552== by 0x8048856: main (|eak-tree.c:63)

==19552== 0x40280A8][16]

==19552== 0x4028168[16] indirect |loss record 5

==19552== 0x40281A8[16] indirect |oss record 6

(gdb)

who_poi nts_at <addr> [<I en>] showsall the locations where a pointer to addr is found. If len is equal
to 1, the command only shows the locations pointing exactly at addr (i.e. the "start pointers’ to addr). If lenis> 1,
"interior pointers" pointing at the len first bytes will aso be shown.

The locations searched for are the same as the locations used in the leak search. So, who_poi nt s_at canao. be
used to show why the leak search still can reach ablock, or can search for dangling pointers to afreed block. Each
location pointing at addr (or pointing inside addr if interior pointers are being searched for) will be described.

In the below example, the pointersto the 'tree block A’ (see example in command bl ock_| i st) is shown before
the tree was leaked. The descriptions are detailed as the option - - r ead- var - i nf o=yes wasgiven at Valgrind
startup. The second call shows the pointers (start and interior pointers) to block G. The block G (0x40281A8) is
reachable viablock C (0x40280a8) and register ECX of tid 1 (tid isthe Valgrind thread id). It is"interior reachable"
viatheregister EBX.

(gdb) nonitor who_points_at 0x4028028

==20852== Searching for pointers to 0x4028028

==20852== *(0x8049e20 points at 0x4028028

==20852== Locati on 0x8049e20 is O bytes inside global var "t"

==20852== decl ared at |eak-tree.c:35

(gdb) nonitor who_points_at 0x40281A8 16

==20852== Searching for pointers pointing in 16 bytes from 0x40281a8
==20852== *(0x40280ac points at 0x40281a8

==20852==Address 0x40280ac is 4 bytes inside a block of size 16 alloc'd

==20852== at 0x40070B4: malloc (vg_replace_nmall oc. c: 263)
==20852== by 0x80484D5: nk (| eak-tree.c:28)

==20852== by 0x8048519: f (leak-tree.c:43)

==20852== by 0x8048856: main (leak-tree.c:63)

==20852==tid 1 register ECX points at 0x40281a8
==20852== tid 1 register EBX interior points at 2 bytes inside 0x40281a8
(gdb)

When who_poi nt s_at finds an interior pointer, it will report the heuristic(s) with which this interior pointer
will be considered as reachable. Note that this is done independently of the value of the option - - | eak- check-

82

Memcheck: a memory error detector

heuri sti cs. Inthe below example, the loss record 6 indicates a possibly lost block. who_poi nt s_at reports
that there is an interior pointer pointing in this block, and that the block can be considered reachable using the
heuristicrul ti pl ei nheri t ance.

(gdb) rnmonitor block list 6

==3748== 8 bytes in 1 blocks are possibly lost in |loss record 6 of 7

==3748== at 0x4007D77: operator new(unsigned int) (vg replace_malloc.c:313)

==3748== by 0x8048954: main (|l eak cpp_interior.cpp:43)

==3748== 0x402A0EOQ] 8]

(gdb) nonitor who points_at 0x402A0E0 8

==3748== Searching for pointers pointing in 8 bytes from 0x402a0e0

==3748== *0xbe8ee078 interior points at 4 bytes inside 0x402a0e0

==3748==Address Oxbe8ee078 is on thread 1's stack

==3748== bl ock at 0x402a0e0 consi dered reachabl e by ptr 0x402a0e4 using multipl ei nheritai

(gdb)

e xtnenory [<filenane> default xtmenory.kcg. %. %] requests Memcheck tool to produce an
xtree heap memory report. See Execution Trees for a detailed explanation about execution trees.

4.7. Client Requests

Thefollowing client requests are defined in nentheck. h. Seenentheck. h for exact details of their arguments.

* VALGRI ND_MAKE_MEM NQACCESS, VALGRI ND_MAKE_MEM _UNDEFI NED and
VALGRI ND_MAKE_MEM DEFI NED. These mark address ranges as completely inaccessible, accessible but
containing undefined data, and accessible and containing defined data, respectively. They return -1, when run on
Valgrind and O otherwise.

e VALGRI ND_MAKE_MEM DEFI NED_| F_ADDRESSABLE. Thisisjust like VALGRI ND_MAKE_MEM _DEFI NED
but only affects those bytes that are already addressable.

 VALCRI ND_CHECK_MEM | S_ADDRESSABLE and VALGRI ND_CHECK_MEM | S _DEFI NED: check
immediately whether or not the given address range has the relevant property, and if not, print an error message.
Also, for the convenience of the client, returns zero if the relevant property holds; otherwise, the returned value is
the address of the first byte for which the property is not true. Always returns 0 when not run on Valgrind.

* VALGRI ND_CHECK_VALUE | S_DEFI NED: aquick and easy way to find out whether Valgrind thinksa particul ar
value (Ivalue, to be precise) is addressable and defined. Prints an error message if not. It has no return value.

* VALGRI ND_DO_LEAK_CHECK: does a full memory leak check (like - - | eak- check=f ul |) right now. This
isuseful for incrementally checking for leaks between arbitrary places in the program's execution. It has no return
value.

* VALGRI ND_DO ADDED LEAK CHECK: sameas VALGRI ND_DO LEAK_ CHECK but only shows the entries
for which there was an increase in leaked bytes or leaked number of blocks since the previous leak search. It has
no return value.

* VALGRI ND_DO CHANGED LEAK CHECK: sameasVALGRI ND_DO LEAK CHECK but only shows the entries
for which there was an increase or decrease in leaked bytes or leaked number of blocks since the previous leak
search. It has no return value.

* VALGRI ND_ DO QUI CK_LEAK CHECK: like VALGRI ND_DO LEAK_ CHECK, except it produces only a leak
summary (like- - | eak- check=sumar y). It has no return value.

83

Memcheck: a memory error detector

e VALGRI ND_COUNT_LEAKS: fills in the four arguments with the number of bytes of memory found
by the previous leak check to be leaked (i.e. the sum of direct leaks and indirect leaks), dubious,
reachable and suppressed. This is useful in test harness code, after calling VALGRI ND_DO LEAK CHECK or
VALGRI ND_DO_QUI CK_LEAK_CHECK.

* VALGRI ND_COUNT_LEAK BLOCKS: identical to VALGRI ND_COUNT _LEAKS except that it returns the number
of blocks rather than the number of bytesin each category.

* VALGRI ND GET _VBI TS and VALGRI ND_SET_VBI TS: alow you to get and set the V (validity) bits for an
address range. Y ou should probably only set V bits that you have got with VALGRI ND_GET_VBI TS. Only for
those who really know what they are doing.

* VALGRI ND_CREATE_BLOCK and VALGRI ND_DI SCARD. VALGRI ND_CREATE_BLOCK takes an address, a
number of bytes and a character string. The specified address range is then associated with that string. When
Memcheck reports an invalid access to an address in the range, it will describe it in terms of this block rather than
in terms of any other block it knows about. Note that the use of this macro does not actually change the state of
memory in any way -- it merely gives a name for the range.

At some point you may want Memcheck to stop reporting errors in terms of the block named by
VALGRI ND_CREATE_BLOCK. To make this possible, VALGRI ND_CREATE_BLOCK returns a "block handle",
whichisaCi nt value. You can passthisblock handleto VALGRI ND_DI SCARD. After doing so, Valgrind will no
longer relate addressing errorsin the specified range to the block. Passing invalid handlesto VALGRI ND_DI SCARD
isharmless.

4.8. Memory Pools: describing and working
with custom allocators

Some programs use custom memory allocators, often for performance reasons. Left to itself, Memcheck is unable to
understand the behaviour of custom allocation schemes as well as it understands the standard allocators, and so may
miss errors and leaksin your program. What this section describesis away to give Memcheck enough of a description
of your custom allocator that it can make at |east some sense of what is happening.

There are many different sorts of custom allocator, so Memcheck attempts to reason about them using aloose, abstract
model. We use the following terminology when describing custom allocation systems:

» Custom alocation involves a set of independent "memory pools'.

» Memcheck's notion of aamemory pool consists of asingle "anchor address' and a set of non-overlapping "chunks"
associated with the anchor address.

» Typicaly apool's anchor address is the address of a book-keeping "header" structure.

» Typicaly the pool's chunks are drawn from a contiguous "superblock” acquired through the system mal | oc or
nep.

Keep in mind that the last two points above say "typically": the Valgrind mempool client request API isintentionally
vague about the exact structure of a mempool. There is no specific mention made of headers or superblocks.
Nevertheless, the following picture may help elucidate the intention of the termsin the API:

"pool "
(anchor address)

\'

Memcheck: a memory error detector

Foocooooa +-- -+
| header | o |
Foocooooa +-| -+
|
\ super bl ock
Foooooo Foocodicococooooooooa Foocodfcococooooooooooooa +
| |rzB| allocation |rzB|
Foooooo Foocodicococooooooooa Foocodfcococooooooooooooa +
N N
| |
n a.(j(jrll n a.(j(jrll +"Si Zell

Note that the header and the superblock may be contiguous or discontiguous, and there may be multiple superblocks
associated with a single header; such variations are opaque to Memcheck. The API only requires that your allocation
scheme can present sensible values of "pool"”, "addr" and "size".

Typically, before making client requests related to mempools, a client program will have allocated
such a header and superblock for their mempool, and marked the superblock NOACCESS using the
VALGRI ND_MAKE_NMEM NOACCESS client request.

When dealing with mempools, the goal is to maintain a particular invariant condition: that Memcheck believes the
unallocated portions of the pool's superblock (including redzones) are NOACCESS. To maintain this invariant, the
client program must ensure that the superblock starts out in that state; Memcheck cannot make it so, since Memcheck
never explicitly learns about the superblock of a pool, only the allocated chunks within the pool.

Once the header and superblock for a pool are established and properly marked, there are a number of client requests
programs can use to inform Memcheck about changes to the state of a mempool:

* VALGRI ND_CREATE_MEMPOOL(pool , rzB, is_zeroed): Thisrequest registersthe addresspool asthe
anchor address for a memory pool. It also provides a size r zB, specifying how large the redzones placed around
chunks allocated from the pool should be. Finally, it providesani s_zer oed argument that specifies whether the
pool's chunks are zeroed (more precisely: defined) when allocated.

Upon completion of this request, no chunks are associated with the pool. The request simply tells Memcheck that
the pool exists, so that subsequent calls can refer to it as a pool.

 VALGRI ND_CREATE _MEMPOOL_EXT(pool, rzB, is_zeroed, flags): Create amemory pool with
someflags (that can be OR-ed together) specifying extended behaviour. When flagsiszero, the behaviour isidentical
to VALGRI ND_CREATE_MEMPCOCL.

e Theflag VALGRI ND_MEMPOOL _METAPOCL specifiesthat the pieces of memory associated with the pool using
VALGRI ND_MEMPOOL_ALLOC will be used by the application as superblocks to dole out MALLOC LIKE
blocks using VALGRI ND_MALLOCLI KE_BLOCK. In other words, a meta pool is a "2 levels' pool : first
level is the blocks described by VALGRI ND_MEMPOOL_ALLCC. The second level blocks are described
using VALGRI ND_MALLOCLI KE_BLOCK. Note that the association between the pool and the second level
blocks is implicit : second level blocks will be located inside first level blocks. It is necessary to use the
VALGRI ND_MEMPOOL_ METAPQOOL flag for such 2 levels pools, as otherwise valgrind will detect overlapping
memory blocks, and will abort execution (e.g. during leak search).

e VALCRI ND_MEMPOOL_AUTO FREE. Such a meta pool can aso be marked as an ‘auto free
pool using the flag VALGRI ND_MEMPOOL_AUTO FREE, which must be OR-ed together with
the VALGRI ND_MEMPOOL_METAPQOOL. For an 'auto free' pool, VALGRI ND_MEMPOOL_FREE will
automatically free the second level blocks that are contained inside the first level block freed with
VALGRI ND_MEMPOOL_FREE. In other words, calling VALGRI ND_MEMPOOL_ FREE will cause implicit calls
to VALGRI ND_FREEL| KE_BLOCK for &l the second level blocks included in the first level block. Note: it is

85

Memcheck: a memory error detector

an error to use the VALGRI ND_MEMPOOL_AUTO_FREE flag without the VALGRI ND_VEMPOOL_ METAPOOL
flag.

VALGRI ND_DESTROY_MEMPOCL(pool): This request tells Memcheck that a pool is being torn down.
Memcheck then removes all records of chunks associated with the pool, aswell asits record of the pool's existence.
While destroying its records of a mempool, Memcheck resets the redzones of any live chunks in the pool to
NOACCESS.

VALGRI ND_MEMPOOL_ALLOC(pool , addr, size): Thisrequest informs Memcheck that a si ze-byte
chunk has been allocated at addr , and associates the chunk with the specified pool . If the pool was created with
nonzero r zB redzones, Memcheck will mark the r zB bytes before and after the chunk as NOACCESS. If the
pool was created with thei s_zer oed argument set, Memcheck will mark the chunk as DEFINED, otherwise
Memcheck will mark the chunk as UNDEFINED.

VALGRI ND_MEMPOOL_FREE(pool , addr) : Thisrequest informs Memcheck that the chunk at addr should
no longer be considered allocated. Memcheck will mark the chunk associated withaddr asNOACCESS, and delete
its record of the chunk's existence.

VALGRI ND_MEMPOOL_TRI M pool , addr, size): Thisrequest trims the chunks associated with pool .
The request only operates on chunks associated with pool . Trimming is formally defined as:

¢ All chunksentirely insidetherangeaddr . . (addr +si ze- 1) are preserved.

e All chunks entirely outside the range addr..(addr+size-1) are discaded, as though
VALGRI ND_MEMPOOL_ FREE was called on them.

¢ All other chunks must intersect with the range addr . . (addr +si ze- 1) ; areas outside the intersection are
marked as NOACCESS, as though they had been independently freed with VALGRI ND_MEMPOOL _ FREE.

Thisis a somewhat rare request, but can be useful in implementing the type of mass-free operations common in
custom LIFO allocators.

VALGRI ND_MOVE_MEMPOOL(pool A, pool B) : This request informs Memcheck that the pool previously
anchored at address pool A has moved to anchor address pool B. Thisis arare request, typically only needed if
your eal | oc the header of a mempool.

No memory-status bits are altered by this request.

VALGRI ND_MEMPOOL_CHANGE(pool , addr A, addr B, si ze) : Thisrequest informs Memcheck that the
chunk previously allocated at addressaddr A within pool has been moved and/or resized, and should be changed
to cover theregion addr B. . (addr B+si ze- 1) . Thisisarare request, typically only needed if your eal | oc
asuperblock or wish to extend a chunk without changing its memory-status bits.

No memory-status bits are altered by this request.

VALGRI ND_MEMPOOL_EXI STS(pool) : This request informs the caller whether or not Memcheck is currently
tracking amempool at anchor addresspool . It evaluatesto 1 when thereisamempool associated with that address,
0 otherwise. Thisis arare request, only useful in circumstances when client code might have lost track of the set
of active mempools.

4.9. Debugging MPI Parallel Programs with
Valgrind

Memcheck supports debugging of distributed-memory applicationswhich usethe MPI message passing standard. This

support consists of alibrary of wrapper functions for the PMPI _* interface. When incorporated into the application's

86

Memcheck: a memory error detector

address space, either by direct linking or by LD PREL QAD, thewrappersintercept callsto PMPI _Send, PMPI _Recv,
etc. They then use client requeststo inform Memcheck of memory state changes caused by the function being wrapped.
This reduces the number of false positives that Memcheck otherwise typically reports for MPI applications.

The wrappers a so take the opportunity to carefully check size and definedness of buffers passed as argumentsto MPI
functions, hence detecting errors such as passing undefined datato PMPI _Send, or receiving datainto abuffer which
istoo small.

Unlike most of the rest of Valgrind, the wrapper library is subject to a BSD-style license, so you can link it into any
code base you like. Seethetop of npi / | i brpi wr ap. ¢ for license details.

4.9.1. Building and installing the wrappers

The wrapper library will be built automatically if possible. Valgrind's configure script will ook for a suitable nmpi cc
to build it with. This must be the same npi cc you use to build the MPI application you want to debug. By default,
Valgrind tries npi cc, but you can specify a different one by using the configure-time option - - wi t h- npi cc.
Currently the wrappers are only buildable with npi ccswhich are based on GNU GCC or Intel's C++ Compiler.

Check that the configure script prints aline like this:

checki ng for usable Ml 2-conpliant npicc and npi.h... yes, npicc
Ifitsays. .. no,your npi cc hasfailed to compile and link atest MPI2 program.

If the configure test succeeds, continuein the usual way with make andmake i nst al | . Thefina install tree should
then contain | i bnpi wr ap- <pl at f or n>. so.

Compile up atest MPI program (eg, MPI hello-world) and try this:

LD PRELOAD=$prefix/1ib/val grind/libnpiwap-<platfornrp.so \
npirun [args] $prefix/bin/valgrind ./hello

Y ou should see something similar to the following

val grind MPI w appers 31901: Active for pid 31901
val grind MPI w appers 31901: Try MPIWRAP_DEBUG=hel p for possible options

repeated for every processin the group. If you do not see these, there is an build/installation problem of some kind.

The MPI functions to be wrapped are assumed to be in an ELF shared object with soname matching | i bnpi . so*.
Thisis known to be correct at least for Open MPI and Quadrics MPI, and can easily be changed if required.

4.9.2. Getting started

Compile your MPI application as usual, taking care to link it using the same npi cc that your Vagrind build was
configured with.

Use the following basic scheme to run your application on Valgrind with the wrappers engaged:

MPI WRAP_DEBUG=[wr apper - ar gs] \
LD PRELOAD=$prefix/|ib/val grind/libnpiw ap-<platfornp. so \
npi run [nmpi run- ar gs] \

87

Memcheck: a memory error detector

$prefix/bin/valgrind [val grind-args] \
[application] [app-args]

Asandternativeto LD PRELQADIng | i bnpi wr ap- <pl at f or n>. so, you can simply link it to your application
if desired. This should not disturb native behaviour of your application in any way.

4.9.3. Controlling the wrapper library

Environment variable MPI WRAP_DEBUG s consulted at startup. The default behaviour isto print a starting banner

val grind MPI w appers 16386: Active for pid 16386
val grind MPI w appers 16386: Try MPIWRAP_DEBUG=hel p for possible options

and then berelatively quiet.
You can give alist of comma-separated options in MPl WRAP_DEBUG. These are

» ver bose: show entries/exits of all wrappers. Also show extra debugging info, such as the status of outstanding
MPI _Request sresulting from uncompleted MPl _| r ecvs.

e qui et : oppositeof ver bose, only print anything when the wrappers want to report adetected programming error,
or in case of catastrophic failure of the wrappers.

» war n: by default, functions which lack proper wrappers are not commented on, just silently ignored. This causes a
warning to be printed for each unwrapped function used, up to a maximum of three warnings per function.

e strict: print an error message and abort the program if afunction lacking awrapper is used.

If you want to use Valgrind's XML output facility (- - xm =yes), you should pass qui et in MPI WRAP_DEBUG so
asto get rid of any extraneous printing from the wrappers.

4.9.4. Functions

All MPI2 functions except MPI _W i ck, MPl _W i ne and MPlI _Pcont r ol have wrappers. The first two are not
wrapped becausethey returnadoubl e, which Vagrind's function-wrap mechanism cannot handle (but it could easily
be extended to do s0). MPI _Pcont r ol cannot be wrapped asit has variable arity: i nt MPI _Pcont r ol (const
int level, ...)

Most functions are wrapped with a default wrapper which does nothing except complain or abort if it is called,
depending on settings in MPI WRAP_DEBUG listed above. The following functions have "real", do-something-useful
wrappers:

PMPI _Send PWMPI _Bsend PMPI _Ssend PMPI _Rsend

PWMPI _Recv PMPI _Get count

PMPI _Isend PMPI | bsend PMPI | ssend PWPI | rsend

PMPI I recv

PMPI _Vait PMPI_Waitall

PMPI _Test PMPI _Testall

PMPI _| probe PMPI _Probe

88

Memcheck: a memory error detector

PMPI _Cancel

PMPI _Sendr ecv

PMPI _Type_comrit PMPlI _Type free
PMPI _Pack PMPI _Unpack

PMPI _Bcast PMPI _Gat her PMPI _Scatter PMPI _Alltoall
PMPI _Reduce PWMPI _Allreduce PMPI _Op_create

PMPI _Comm create PWMPI _Comm dup PMPI _Comm free PMPI _Comm rank PMPI _Comm size

PMPI _Error_string
PVMPI Init PVPI Initialized PMPI _Finalize

A few functions such as PMPI _Addr ess are listed as HAS _NO WRAPPER. They have no wrapper at al asthereis
nothing worth checking, and giving a no-op wrapper would reduce performance for no reason.

Note that the wrapper library itself can itself generate large numbers of calls to the MPI implementation,
especidly when walking complex types. The most common functions called are PMPI _Ext ent,
PMPI _Type_get envel ope, PMPI _Type_get _contents,and PMPI _Type_free.

4.9.5. Types

MPI-1.1 structured types are supported, and walked exactly. The currently supported
combiners are MPl _COVBI NER_NAMED, MPI _COMVBI NER_CONTI GUOUS, MPI _COMVBI NER_VECTOR,
MPI _COMVBI NER_HVECTOR MPI _COVBI NER _| NDEXED, MPI _COVBI NER_HI NDEXED and
MPI _COMVBI NER_STRUCT. This should cover all MPI-1.1 types. The mechanism (function wal k_t ype) should
extend easily to cover MPI2 combiners.

MPI defines some named structured types (MPl _FLQOAT_| NT, MPl _DOUBLE_| NT, MPl _LONG_| NT, MPI _2| NT,
MPI _SHORT | NT, MPI _LONG _DQOUBLE | NT) which are pairs of somebasic typeand aCi nt . Unfortunately the
MPI specification makesit impossibleto |ook inside these types and see where thefields are. Therefore these wrappers
assumethetypesareladoutasstruct { float val; int loc; } (for MPl _FLQAT I NT), etc, and act
accordingly. This appears to be correct at least for Open MPI 1.0.2 and for Quadrics MPI.

Ifstrict isanoption specifiedin MPI WRAP_DEBUG, the application will abort if an unhandled typeisencountered.
Otherwise, the application will print awarning message and continue.

Some effort is made to mark/check memory ranges corresponding to arrays of valuesin asingle pass. Thisisimportant
for performance since asking Valgrind to mark/check any range, no matter how small, carries quite a large constant
cost. This optimisation is applied to arrays of primitive types (doubl e, f 1 oat ,i nt,l ong,| ong | ong, short,
char,and | ong doubl e on platformswhere si zeof (1 ong doubl e) == 8). For arrays of al other types,
the wrappers handle each element individually and so there can be a very large performance cost.

4.9.6. Writing new wrappers

For the most part the wrappers are straightforward. The only significant complexity arises with nonblocking receives.

Theissueisthat MPl _| r ecv statestherecv buffer and returnsimmediately, giving ahandle (MPI _Request) for the
transaction. Later the user will have to poll for completion with MPlI Wi t etc, and when the transaction completes
successfully, the wrappers have to paint the recv buffer. But the recv buffer details are not presented to MPI _ Wi t --

89

Memcheck: a memory error detector

only thehandleis. Thelibrary therefore maintains ashadow table which associatesuncompleted VPl _ Request swith
the corresponding buffer address/count/type. When an operation completes, the table is searched for the associated
address/count/type info, and memory is marked accordingly.

Access to the table is guarded by a (POSIX pthreads) lock, so as to make the library thread-safe.
Thetableis alocated with mal | oc and never f r eed, so it will show up inleak checks.

Writing new wrappers should be fairly easy. The source fileisnpi / | i bnpi wr ap. c. If possible, find an existing
wrapper for afunction of similar behaviour to the one you want to wrap, and use it as a starting point. The wrappers
are organised in sections in the same order asthe MPI 1.1 spec, to aid navigation. When adding a wrapper, remember
to comment out the definition of the default wrapper in the long list of defaults at the bottom of thefile (do not remove
it, just comment it out).

4.9.7. What to expect when using the wrappers

The wrappers should reduce Memcheck's false-error rate on MPI applications. Because the wrapping is done at the
MPI interface, there will still potentially be a large number of errors reported in the MPI implementation below the
interface. The best you can do istry to suppress them.

You may aso find that the input-side (buffer length/definedness) checks find errors in your MPI use, for example
passing too short abuffer to VPl _Recv.

Functions which are not wrapped may increase the false error rate. A possible approach is to run with MPl _ DEBUG
containingwar n. Thiswill show you functions which lack proper wrappers but which are nevertheless used. Y ou can
then write wrappers for them.

A known source of potential false errors are the PMPI _Reduce family of functions, when using a custom (user-
defined) reduction function. In a reduction operation, each node notionally sends datato a"central point" which uses
the specified reduction function to merge the dataitems into a single item. Hence, in general, datais passed between
nodes and fed to the reduction function, but the wrapper library cannot mark the transferred data as initialised before
it is handed to the reduction function, because al that happens "inside" the PMPI _Reduce call. Asaresult you may
see false positives reported in your reduction function.

90

5. Cachegrind: a cache and branch-
prediction profiler

To usethistool, you must specify - - t ool =cachegr i nd on the Vagrind command line.

5.1. Overview

Cachegrind simulates how your program interacts with amachine's cache hierarchy and (optionally) branch predictor.
It simulates amachinewith independent first-level instruction and data caches (11 and D1), backed by a unified second-
level cache (L2). This exactly matches the configuration of many modern machines.

However, some modern machineshavethree or four levelsof cache. For these machines (in the caseswhere Cachegrind
can auto-detect the cache configuration) Cachegrind simulatesthe first-level and last-level caches. Thereason for this
choiceisthat thelast-level cache hasthe most influence on runtime, asit masksaccessesto main memory. Furthermore,
the L1 caches often have low associativity, so simulating them can detect cases where the code interacts badly with
this cache (eg. traversing a matrix column-wise with the row length being a power of 2).

Therefore, Cachegrind alwaysreferstothell, D1 and LL (last-level) caches.
Cachegrind gathers the following statistics (abbreviations used for each statistic is given in parentheses):

| cachereads (I r , which equals the number of instructions executed), 11 cache read misses (I 1nr) and LL cache
instruction read misses (I Lnt).

» D cachereads (Dr , which equals the number of memory reads), D1 cache read misses (D1nt), and LL cache data
read misses (DLnT).

* D cache writes (Dw, which equals the number of memory writes), D1 cache write misses (D1nw), and LL cache
data write misses (DLmw).

» Conditional branches executed (Bc) and conditional branches mispredicted (Bcm).
* Indirect branches executed (Bi) and indirect branches mispredicted (Bi nj.
Note that D1 total accessesisgiven by D1nr + D1nw, and that LL total accessesisgivenby | Lnt + DLnt + DLnmw.

These statistics are presented for the entire program and for each function in the program. Y ou can also annotate each
line of source code in the program with the counts that were caused directly by it.

On amodern machine, an L1 misswill typically cost around 10 cycles, an LL miss can cost as much as 200 cycles, and
amispredicted branch costs in the region of 10 to 30 cycles. Detailed cache and branch profiling can be very useful
for understanding how your program interacts with the machine and thus how to make it faster.

Also, since oneinstruction cache read is performed per instruction executed, you can find out how many instructions
are executed per line, which can be useful for traditional profiling.

5.2. Using Cachegrind, cg_annotate and
cg_merge
First off, asfor normal Valgrind use, you probably want to compilewith debugging info (the- g option). But by contrast

with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your program as
it will be normally run.

91

Cachegrind: a cache and branch-prediction profiler

Then, you need to run Cachegrind itself to gather the profiling information, and then run cg_annotate to get a detailed
presentation of that information. As an optional intermediate step, you can use cg_merge to sum together the outputs
of multiple Cachegrind runsinto asingle file which you then use as the input for cg_annotate. Alternatively, you can
use cg_diff to difference the outputs of two Cachegrind runs into a single file which you then use as the input for
cg_annotate.

5.2.1. Running Cachegrind

To run Cachegrind on a program pr og, run:

val grind --tool =cachegri nd prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

==31751== refs: 27,742,716

==31751== 11 mi sses: 276

==31751== LLi m sses: 275

==31751== 11 niss rate: 0. 0%

==31751== LLi miss rate: 0. 0%

==31751==

==31751== D refs: 15, 430,290 (10,955,517 rd + 4,474,773 wr)
==31751== D1 m sses: 41,185 (21,905 rd + 19,280 wr)
==31751== LLd m sses: 23,085 (3,987 rd + 19, 098 wr)
==31751== D1 m ss rate: 0.2% (0.1% + 0.4%
==31751== LLd m ss rate: 0.1% (0.0% + 0.4%
==31751==

==31751== LL mi sses: 23,360 (4,262 rd + 19, 098 wr)
==31751== LL mi ss rate: 0. 0% (0.0% + 0.4%

Cache accesses for instruction fetches are summarised first, giving the number of fetches made (this is the number
of instructions executed, which can be useful to know in its own right), the number of 11 misses, and the number of
LL instruction (LLi) misses.

Cache accesses for data follow. The information is similar to that of the instruction fetches, except that the values are
also shown split between reads and writes (note each row'sr d and wr values add up to the row's total).

Combined instruction and data figures for the LL cache follow that. Note that the LL missrate is computed relative to
the total number of memory accesses, not the number of L1 misses. l.e.itis(I Lnr + DLnt + DLnw) / (Ir
+ Dr + DW) not(lLnr + DLnr + DLmw) / (l1nr + Dlmr + D1lmw)

Branch prediction statistics are not collected by default. To do so, add the option - - br anch- si nryes.

5.2.2. Output File

As well as printing summary information, Cachegrind also writes more detailed profiling information to a file. By
default this file is named cachegri nd. out . <pi d> (where <pi d> is the program's process I1D), but its name
can be changed with the - - cachegri nd- out - fi | e option. This file is human-readable, but is intended to be
interpreted by the accompanying program cg_annotate, described in the next section.

The default . <pi d> suffix on the output file name serves two purposes. Firstly, it means you don't have to rename

old log files that you don't want to overwrite. Secondly, and more importantly, it allows correct profiling with the - -
trace-chi |l dr en=yes option of programs that spawn child processes.

92

Cachegrind: a cache and branch-prediction profiler

The output file can be big, many megabytes for large applications built with full debugging information.

5.2.3. Running cg_annotate

Before using cg_annotate, it is worth widening your window to be at least 120-characters wide if possible, as the
output lines can be quite long.

To get afunction-by-function summary, run:
cg_annotate <fil enane>

on a Cachegrind output file.

5.2.4. The Output Preamble

Thefirst part of the output looks like this:

I 1 cache: 65536 B, 64 B, 2-way associative

D1 cache: 65536 B, 64 B, 2-way associative

LL cache: 262144 B, 64 B, 8-way associative
Command: concord vg _to_ucode.c

Events recorded: Ir I'2nr ILmr Dr Dinr DLnr Dw Dlmw DLnw
Event s shown: Ir I'lnr ILntr Dr Dinr DLnr Dw Dlnmw DLnw
Event sort order: Ir I'lnr ILntr Dr Dinr DLnr Dw Dlnmw DLnw
Thr eshol d: 99%

Chosen for annotati on:

Aut 0- annot at i on: of f

Thisisasummary of the annotation options:

* |1 cache, D1 cache, LL cache: cache configuration. So you know the configuration with which these results were
obtained.

» Command: the command line invocation of the program under examination.
» Eventsrecorded: which events were recorded.

» Events shown: the events shown, which is a subset of the events gathered. This can be adjusted with the - - show
option.

» Event sort order: the sort order in which functions are shown. For example, in this case the functions are sorted from
highest | r counts to lowest. If two functions have identical | r counts, they will then be sorted by | 1nr counts,
and so on. This order can be adjusted with the - - sor t option.

Note that this dictates the order the functions appear. It is not the order in which the columns appear; that is dictated
by the "events shown" line (and can be changed with the - - show option).

» Threshold: cg_annotate by default omits functionsthat cause very low countsto avoid drowning you in information.
In this case, cg_annotate shows summaries the functions that account for 99% of thel r counts; | r ischosen asthe
threshold event since it is the primary sort event. The threshold can be adjusted with the - - t hr eshol d option.

» Chosen for annotation: names of files specified manually for annotation; in this case none.

93

Cachegrind: a cache and branch-prediction profiler

 Auto-annotation: whether auto-annotation was requested viathe - - aut o=yes option. In this case no.

5.2.5. The Global and Function-level Counts

Then follows summary statistics for the whole program:

27,742,716 276 275 10,955,517 21,905 3,987 4,474,773 19,280 19,098 PROGRAM TOTALS
These are similar to the summary provided when Cachegrind finishes running.

Then comes function-by-function statistics:

Ir I int ILmr Dr Dinmr DLnr Dw Dimv DLnw file:function
8,821, 482 5 5 2,242,702 1,621 73 1,794, 230 0 O getc.c:_ 10 getc
5,222,023 4 4 2,276,334 16 12 875, 959 1 1 concord.c:get_word
2,649, 248 2 2 1,344,810 7,326 1, 385 . . vg_main. c:strcnp
2,521, 927 2 2 591, 215 0 0 179, 398 0 0 concord. c: hash
2,242,740 2 2 1,046, 612 568 22 448, 548 0 0 ctype.c:tol ower
1, 496, 937 4 4 630,874 9, 000 1, 400 279, 388 0 0 concord.c:insert
897,991 51 51 897, 831 95 30 62 1 1 ?2?272:?2??
598, 068 1 1 299, 034 0 0 149, 517 0 0 ../sysdeps/generic/lock
598, 068 0 0 299,034 0 0 149, 517 0 0 ../sysdeps/generic/lock
598, 024 4 4 213,580 35 16 149, 506 0 0 vg_clientmalloc.c:mallo
446, 587 1 1 215,973 2,167 430 129,948 14,057 13,957 concord. c: add_exi sting
341, 760 2 2 128, 160 0 0 128, 160 0 0 vg_clientmalloc.c:vg_tr
320, 782 4 4 150, 711 276 0 56, 027 53 53 concord.c:init_hash_tab
298, 998 1 1 106, 785 0 0 64,071 1 1 concord.c:create
149, 518 0 0 149, 516 0 0 1 0 0 ???:tol ower @&.IBC 2.0
149, 518 0 0 149, 516 0 0 1 0 0 ???:.fgetc@adLlBC 2.0
95, 983 4 4 38, 031 0 0 34,409 3,152 3,150 concord.c:new word_node
85, 440 0 0 42,720 0 0 21, 360 0 0 vg clientmalloc.c:vg_bo

Each function isidentified by af i | e_name: f uncti on_name pair. If a column contains only a dot it means the
function never performs that event (e.g. the third row shows that st r cnp() contains no instructions that write to
memory). The name ??7? is used if the file name and/or function name could not be determined from debugging

It isworth noting that functions will come both from the profiled program (e.g. concor d. c¢) and from libraries (e.g.
getc.c)

5.2.6. Line-by-line Counts

By default, all source code annotation is aso shown. (Filenames to be annotated can also by specified manually
as arguments to cg_annotate, but this is rarely needed.) For example, the output from running cg_annot at e
<fil enane> for our example producesthe same output as above followed by an annotated version of concor d. c,
asection of which looks like:

94

Cachegrind: a cache and branch-prediction profiler

-- Aut o-annot ated source: concord.c
Ir I 1nr I Lmr Dr Dinmr DLnr Dw Dimv DLnw
. void init_hash_table(char *
3 1 1 1 0 0 {
FILE *file_ptr;

. Wrd_Info *data;

1 0 0 1 1 1 int line =1, i;

5 0 0 3 0 0 data = (Wrd_Info *) cr
4,991 0 0 1, 995 0 0 998 0 0 for (i = 0; < TABLE_S
3, 988 1 1 1,994 0 0 997 53 52 table[i]

. /* Open file, check it.

6 0 0 1 0 0 4 0 0 file_ptr = fopen(file_n

2 0 0 1 0 0 . . . if (!(file_ptr)) {

. fprintf(stderr,

1 1 1 exi t (EXI T_FAI LURE) ;

}
165, 062 1 1 73,360 0 0 91,700 0 0 while ((line
146, 712 0 0 73,356 0 0 73,356 0 0 i nsert (data->; word,

4 0 0 1 0 0 2 0 0 free(data);

4 0 0 1 0 0 2 0 0 fclose(file_ptr);

3 0 0 2 0 0 . . .}

(Although column widths are automatically minimised, awide terminal isclearly useful.)

Each source fileis clearly marked (User - annot at ed sour ce) as having been chosen manually for annotation.
If the file was found in one of the directories specified with the - | /- - i ncl ude option, the directory and file are
both given.

Each line is annotated with its event counts. Events not applicable for aline are represented by a dot. Thisis useful
for distinguishing between an event which cannot happen, and one which can but did not.

Sometimes only asmall section of asourcefileisexecuted. To minimise uninteresting output, Cachegrind only shows
annotated lines and lines within a small distance of annotated lines. Gaps are marked with the line numbers so you
know which part of afile the shown code comes from, eg:

(figures and code for |ine 704)
- line 704 ----- o e
- line 878 ------ i e e
(figures and code for |ine 878)

The amount of context to show around annotated linesis controlled by the - - cont ext option.

Automatic annotation is enabled by default. cg_annotate will automatically annotate every source fileit can find that
is mentioned in the function-by-function summary. Therefore, the files chosen for auto-annotation are affected by the
--sort and- -t hreshol d options. Each sourcefileis clearly marked (Aut o- annot at ed sour ce) asbeing
chosen automatically. Any filesthat could not be found are mentioned at the end of the output, eg:

95

Cachegrind: a cache and branch-prediction profiler

The following files chosen for auto-annotation could not be found:

getc.c
ctype.c
../ sysdeps/ generic/lockfile.c

Thisis quite common for library files, sincelibraries are usually compiled with debugging information, but the source
files are often not present on asystem. If afileis chosen for annotation both manually and automatically, it is marked
asUser - annot at ed source. Usethe-1/--i ncl ude option to tell Valgrind where to look for source files if
the filenames found from the debugging information aren't specific enough.

Beware that cg_annotate can take some time to digest large cachegri nd. out . <pi d> files, e.g. 30 seconds or
more. Also beware that auto-annotation can produce alot of output if your program islarge!

5.2.7. Annotating Assembly Code Programs

Valgrind can annotate assembly code programs too, or annotate the assembly code generated for your C program.
Sometimes this is useful for understanding what is really happening when an interesting line of C code is translated
into multiple instructions.

To do this, you just need to assemble your . s fileswith assembly-level debug information. Y ou can use compile with

the - S to compile C/C++ programs to assembly code, and then assembl e the assembly code files with - g to achieve
this. Y ou can then profile and annotate the assembly code source files in the same way as C/C++ sourcefiles.

5.2.8. Forking Programs

If your program forks, the child will inherit al the profiling data that has been gathered for the parent.
If the output file format string (controlled by - - cachegri nd- out - fi | e) does not contain %p, then the outputs

from the parent and child will be intermingled in a single output file, which will almost certainly make it unreadable
by cg_annotate.

5.2.9. cg_annotate Warnings

There are a couple of situationsin which cg_annotate issues warnings.

» If a source file is more recent than the cachegri nd. out . <pi d> file. This is because the information in
cachegri nd. out . <pi d> isonly recorded with line numbers, so if the line numbers change at all in the source
(e.0. lines added, deleted, swapped), any annotations will be incorrect.

« If information is recorded about line numbers past the end of afile. This can be caused by the above problem, i.e.

shortening the source file while using an old cachegr i nd. out . <pi d> file. If this happens, the figures for the
bogus lines are printed anyway (clearly marked as bogus) in case they are important.

5.2.10. Unusual Annotation Cases

Some odd things that can occur during annotation:

« If annotating at the assembler level, you might see something like this:

96

Cachegrind: a cache and branch-prediction profiler

1 0 0 . | eal -12(%bp), Yeax
1 0 o . . .1 0 0 movl Y%eax, 84(%ebx)
2 0 0 O 0 0 1 0 0 movl $1, - 20(%ebp)

.align 4,0x90

1 0 0 nmovl $. Lnr B, %eax

1 0 o . . .1 0 0 movl Y%eax, - 16(%ebp)

How can the third instruction be executed twice when the others are executed only once? As it turns out, it isn't.
Here's a dump of the executable, using obj dunp - d:

8048f 25: 8d 45 f4 | ea oxfffffff4(%bp), Yeax
8048f 28: 89 43 54 nmov %eax, 0x54(%ebx)

8048f 2b: c7 45 ec 01 00 00 OO nmov| $0x1, Oxffffffec(%ebp)
8048f 32: 89 f6 nmov %esi , Yesi

8048f 34: b8 08 8b 07 08 nov $0x8078b08, Y%eax

8048f 39: 89 45 fO0 nmov Y%eax, OxfffffffO(%bp)

Noticetheextranmov %esi , ¥esi instruction. Where did this come from? The GNU assembl er inserted it to serve
as the two bytes of padding needed to align the novl $. Lnr B, %ax instruction on a four-byte boundary, but
pretended it didn't exist when adding debug information. Thus when Valgrind reads the debug info it thinks that
themovl $0x1, Oxffffffec(%bp) instruction coversthe addressrange 0x8048f2b--0x804833 by itself, and
attributes the counts for themov %esi , ¥%esi toit.

» Sometimes, the samefilename might be represented with arel ative name and with an absolute namein different parts
of the debug info, eg: / hore/ user/ proj / proj . hand. ./ proj. h.Inthiscase, if you use auto-annotation,
the file will be annotated twice with the counts split between the two.

* If you compile somefileswith - g and some without, some events that take place in afile without debug info could
be attributed to the last line of a file with debug info (whichever one gets placed before the non-debug-info file
in the executable).

Thislist looks long, but these cases should be fairly rare.

5.2.11. Merging Profiles with cg_merge

cg_mergeisasimple program which reads multiple profilefiles, as created by Cachegrind, merges them together, and
writes the resultsinto another filein the same format. Y ou can then examine the merged resultsusingcg_annot at e
<fi | enane>, as described above. The merging functionality might be useful if you want to aggregate costs over
multiple runs of the same program, or from a single parallel run with multiple instances of the same program.

cg_mergeisinvoked asfollows:

cg_nmerge -o outputfile filel file2 file3 ...

It reads and checks fi | el, then read and checks f i | e2 and merges it into the running totals, then the same with
fil e3,etc. Thefinal results are writtento out put fi | e, or to standard out if no output file is specified.

Costs are summed on a per-function, per-line and per-instruction basis. Because of this, the order in which the input
files does not matter, although you should take care to only mention each file once, since any file mentioned twice
will be added in twice.

cg_merge does not attempt to check that the input files come from runs of the same executable. It will happily merge
together profile files from completely unrelated programs. It does however check that the Event s: lines of al the

97

Cachegrind: a cache and branch-prediction profiler

inputs are identical, so as to ensure that the addition of costs makes sense. For example, it would be nonsensical for it
to add a number indicating D1 read references to a number from a different file indicating LL write misses.

A number of other syntax and sanity checks are done whilst reading theinputs. cg_merge will stop and attempt to print
ahelpful error message if any of the input filesfail these checks.

5.2.12. Differencing Profiles with cg_diff

cg_diff is a simple program which reads two profile files, as created by Cachegrind, finds the difference between
them, and writes the results into another file in the same format. You can then examine the merged results using
cg_annot ate <fil enane>, asdescribed above. Thisis very useful if you want to measure how a change to a
program affected its performance.

cg_diff isinvoked as follows:

cg diff filel file2

It readsand checksf i | el, thenread and checksf i | €2, then computesthe difference (effectively fi l el -fi | e2).
Thefinal results are written to standard output.

Costsare summed on aper-function basis. Per-line costs are not summed, because doing so istoo difficult. For example,
consider differencing two profiles, one from asingle-file program A, and one from the same program A whereasingle
blank linewas inserted at the top of thefile. Every single per-line count has changed. In comparison, the per-function
counts have not changed. The per-function count differences are still very useful for determining differences between
programs. Note that because the result is the difference of two profiles, many of the counts will be negative; this
indicates that the counts for the relevant function are fewer in the second version than those in the first version.

cg_diff does not attempt to check that the input files come from runs of the same executable. It will happily merge
together profile files from completely unrelated programs. It does however check that the Event s: lines of al the
inputs are identical, so as to ensure that the addition of costs makes sense. For example, it would be nonsensical for it
to add a number indicating D1 read references to a number from a different file indicating LL write misses.

A number of other syntax and sanity checks are done whilst reading the inputs. cg_diff will stop and attempt to print
ahelpful error message if any of the input files fail these checks.

Sometimes you will want to compare Cachegrind profiles of two versions of a program that you have sitting side-
by-side. For example, you might havever si onl/ prog. c andver si on2/ pr og. ¢, wherethe second is slightly
different to the first. A straight comparison of the two will not be useful -- because functions are qualified with
filenames, afunction f will be listed asver si onl/ prog. c: f for the first version but ver si on2/ prog. c: f
for the second version.

When this happens, you can usethe - - nod- f i | enane option. Itsargument is a Perl search-and-replace expression
that will be applied to all the filenames in both Cachegrind output files. It can be used to remove minor differences
in filenames. For example, the option - - mod- fi | ename=" s/ versi on[0-9]/versi onN " will suffice for
this case.

Similarly, sometimes compilers auto-generate certain functions and give them randomized names. For example, GCC
sometimes auto-generates functions with names like T. 1234, and the suffixes vary from build to build. You can
use the - - nod- f uncnane option to remove small differences like these; it works in the same way as - - mod-
fil enane.

5.3. Cachegrind Command-line Options

Cachegrind-specific options are:

98

Cachegrind: a cache and branch-prediction profiler

--11=<si ze>, <associativity> <line size>

Specify the size, associativity and line size of the level 1 instruction cache.
- - Dl=<si ze>, <associ ativity>, <l ine size>

Specify the size, associativity and line size of the level 1 data cache.
--LL=<si ze>, <associ ativity>, <line size>

Specify the size, associativity and line size of the last-level cache.
--cache-si mFno| yes [yes]

Enables or disables collection of cache access and miss counts.
- - branch- si meno| yes [no]

Enables or disables collection of branch instruction and misprediction counts. By default thisisdisabled asit Slows
Cachegrind down by approximately 25%. Note that you cannot specify - - cache- si meno and - - br anch-
si meno together, as that would leave Cachegrind with no information to collect.

--cachegrind-out-file=<file>

Write the profile datato f i | e rather than to the default output file, cachegri nd. out . <pi d>. The % and
% format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the core option- - | og-fi l e.

5.4. cg_annotate Command-line Options
-h --help
Show the help message.
--version
Show the version number.
--show=A, B, C [default: all, using order in cachegrind. out.<pid>]

Specifies which events to show (and the column order). Default is to use all present in the
cachegri nd. out . <pi d>file(and usetheorder inthefile). Useful if you want to concentrate on, for example,
| cache misses (- - show=l 1nr, | Lnt), or data read misses (- - show=Dlnr, DLnr), or LL data misses (- -
show=DLnr , DLmn). Best used in conjunction with - - sor t .

--sort=A B, C [default: order in cachegrind. out. <pid>]
Specifies the events upon which the sorting of the function-by-function entries will be based.
--threshol d=X [default: 0.1%

Sets the threshold for the function-by-function summary. A function is shown if it accounts for more than X% of
the counts for the primary sort event. If auto-annotating, also affects which files are annotated.

Note: thresholds can be set for more than one of the events by appending any eventsfor the- - sort option with
acolon and a number (no spaces, though). E.g. if you want to see each function that covers more than 1% of LL
read misses or 1% of LL write misses, use this option:;

99

Cachegrind: a cache and branch-prediction profiler

--sort=DLnr: 1, DLmw 1
- - show per cs=<no| yes> [defaul t: yes]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of each
function and line.

--aut o=<no| yes> [defaul t: yes]

When enabled, automatically annotates every file that is mentioned in the function-by-function summary that can
be found. Also gives alist of those that couldn't be found.

--context=N [default: 8]

Print N lines of context before and after each annotated line. Avoids printing large sections of source files that
were not executed. Use alarge number (e.g. 100000) to show all source lines.

-l <dir> --include=<dir> [default: none]

Adds a directory to the list in which to search for files. Multiple - | /- - i ncl ude options can be given to add
multiple directories.

5.5. cg_merge Command-line Options

-0 outfile

Write the profile datato out f i | e rather than to standard outpuit.

5.6. cg_diff Command-line Options

-h --help
Show the help message.
--version
Show the version number.
--nod-fil enane=<expr> [default: none]

Specifies a Perl search-and-replace expression that is applied to al filenames. Useful for removing minor
differences in paths between two different versions of a program that are sitting in different directories.

- - nod- f uncnane=<expr> [defaul t: none]

Like - - nod-fi | enane, but for filenames. Useful for removing minor differences in randomized names of
auto-generated functions generated by some compilers.

5.7. Acting on Cachegrind's Information

Cachegrind gives you lots of information, but acting on that information isn't always easy. Here are some rules of
thumb that we have found to be useful.

100

Cachegrind: a cache and branch-prediction profiler

First of al, the global hit/miss counts and missrates are not that useful. If you have multiple programs or multiple runs
of aprogram, comparing the numbers might identify if any are outliers and worthy of closer investigation. Otherwise,
they're not enough to act on.

Thefunction-by-function counts are more useful to look at, asthey pinpoint which functions are causing large numbers
of counts. However, beware that inlining can make these counts misleading. If afunction f is aways inlined, counts
will beattributed to the functionsitisinlined into, rather than itself. However, if you look at the line-by-line annotations
for f you'll seethe countsthat belong to f . (Thisis hard to avoid, it's how the debug info is structured.) So it's worth
looking for large numbers in the line-by-line annotations.

The line-by-line source code annotations are much more useful. In our experience, the best place to start is by looking
at the | r numbers. They simply measure how many instructions were executed for each line, and don't include any
cache information, but they can still be very useful for identifying bottlenecks.

After that, we havefound that LL missesaretypically amuch bigger source of dow-downsthan L1 misses. Soit'sworth
looking for any snippets of code with high DLnr or DLmw counts. (You can use - - show=DLnr - -sort =DLnr
with cg_annotate to focus just on DLnr counts, for example.) If you find any, it's still not always easy to work out
how to improve things. Y ou need to have a reasonable understanding of how caches work, the principles of locality,
and your program'’s data access patterns. |mproving things may require redesigning a data structure, for example.

Looking at the Bcmand Bi mmisses can aso be helpful. In particular, Bi mmisses are often caused by swi t ch
statements, and in some cases these swi t ch statements can be replaced with table-driven code. For example, you
might replace code like this:

enumE { A B, C};

enum E e;

int i;

switch (e)

{
case A: i += 1; break;
case B: i += 2; break;
case C. i += 3; break;

}

with code like this:

enumE { A B, C};

enum E e;

int table[] ={ 1, 2, 3 };

int i;

i += table[e];

Thisis obviously a contrived example, but the basic principle appliesin awide variety of situations.

In short, Cachegrind can tell you where some of the bottlenecks in your code are, but it can't tell you how to fix them.
Y ou have to work that out for yourself. But at least you have the information!

5.8. Simulation Detalls

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest to
some people.

101

Cachegrind: a cache and branch-prediction profiler

5.8.1. Cache Simulation Specifics

Specific characteristics of the cache simulation are as follows:

» Write-allocate: when a write miss occurs, the block written to is brought into the D1 cache. Most modern caches
have this property.

« Bit-selection hash function: the set of line(s) in the cache to which a memory block maps is chosen by the middie
bits M--(M+N-1) of the byte address, where:

¢ linesize=2"M bytes
e (cachesize/linesize/ associativity) = 2N bytes

* Inclusive LL cache: the LL cache typically replicates al the entries of the L1 caches, because fetching into L1
involvesfetchinginto LL first (thisdoesnot guarantee strict inclusiveness, aslinesevicted from LL still could reside
inL1). Thisis standard on Pentium chips, but AMD Opterons, Athlons and Durons use an exclusive LL cache that
only holds blocks evicted from L 1. Ditto most modern VIA CPUs.

The cache configuration smulated (cache size, associativity and line size) is determined automatically using the x86
CPUID ingtruction. If you have amachine that (a) doesn't support the CPUID instruction, or (b) supportsitin an early
incarnation that doesn't give any cache information, then Cachegrind will fall back to using a default configuration
(that of amodel 3/4 Athlon). Cachegrind will tell you if this happens. Y ou can manually specify one, two or all three
levels(1/DL/LL) of the cache from thecommand lineusingthe- - 1 1, - - D1 and - - LL options. For cache parameters
to be valid for simulation, the number of sets (with associativity being the number of cache linesin each set) has to
be a power of two.

On PowerPC platforms Cachegrind cannot automatically determinethe cache configuration, so you will need to specify
itwiththe--11,--D1 and- - LL options.

Other noteworthy behaviour:

+ References that straddle two cache lines are treated as follows:
« If both blocks hit --> counted as one hit
* If one block hits, the other misses --> counted as one miss.
« If both blocks miss --> counted as one miss (not two)

* Instructions that modify a memory location (e.g. i nc and dec) are counted as doing just aread, i.e. asingle data
reference. This may seem strange, but since the write can never cause a miss (the read guarantees the block isin
the cache) it's not very interesting.

Thus it measures not the number of times the data cache is accessed, but the number of times a data cache miss
could occur.

If you are interested in simulating a cache with different properties, it is not particularly hard to write your own cache
simulator, or to modify the existing onesincg_si m c¢. We'd beinterested to hear from anyone who does.

5.8.2. Branch Simulation Specifics

Cachegrind simulatesbranch predictorsintended to betypical of mainstream desktop/server processorsof around 2004.

Conditional branches are predicted using an array of 16384 2-bit saturating counters. The array index used for abranch
instruction iscomputed partly from thelow-order bits of the branch instruction's address and partly using the taken/not-

102

Cachegrind: a cache and branch-prediction profiler

taken behaviour of thelast few conditional branches. Asaresult the predictionsfor any specific branch depend both on
itsown history and the behaviour of previous branches. Thisisastandard technique for improving prediction accuracy.

For indirect branches(that is, jumpsto unknown destinations) Cachegrind usesasimple branch target address predictor.
Targets are predicted using an array of 512 entries indexed by the low order 9 bits of the branch instruction's address.
Each branch is predicted to jump to the same address it did last time. Any other behaviour causes a mispredict.

More recent processors have better branch predictors, in particular better indirect branch predictors. Cachegrind's
predictor design is deliberately conservative so as to be representative of the large installed base of processors which
pre-date widespread deployment of more sophisticated indirect branch predictors. In particular, late model Pentium
4s (Prescott), Pentium M, Core and Core 2 have more sophisticated indirect branch predictors than modelled by
Cachegrind.

Cachegrind does not simulate a return stack predictor. It assumes that processors perfectly predict function return
addresses, an assumption which is probably close to being true.

See Hennessy and Patterson's classic text "Computer Architecture: A Quantitative Approach”, 4th edition (2007),
Section 2.3 (pages 80-89) for background on modern branch predictors.

5.8.3. Accuracy

Valgrind's cache profiling has anumber of shortcomings:
« Itdoesn't account for kernel activity -- the effect of system callson the cache and branch predictor contentsisignored.
* It doesn't account for other process activity. Thisis probably desirable when considering a single program.

* It doesn't account for virtual-to-physical address mappings. Hence the simulation is not a true representation of
what's happening in the cache. Most caches and branch predictors are physically indexed, but Cachegrind simulates
caches using virtual addresses.

* It doesn't account for cache misses not visible at the instruction level, e.g. those arising from TLB misses, or
speculative execution.

» Valgrind will schedule threads differently from how they would be when running natively. This could warp the
results for threaded programs.

» Thex86/amd64 instructionsbt s, bt r and bt ¢ will incorrectly be counted asdoing adataread if both thearguments
areregisters, eg:
bt sl % ax, %edx
This should only happen rarely.

» x86/amd64 FPU instructions with data sizes of 28 and 108 bytes (e.g. f save) aretreated asthough they only access
16 bytes. These instructions seem to be rare so hopefully this won't affect accuracy much.

Another thing worth noting isthat results are very sensitive. Changing the size of the executable being profiled, or the
sizes of any of the shared librariesit uses, or even the length of their file names, can perturb the results. Variations will
be small, but don't expect perfectly repeatable results if your program changes at all.

More recent GNU/Linux distributions do address space randomisation, in which identical runs of the same program
have their shared libraries |loaded at different locations, as a security measure. This also perturbs the results.

While these factors mean you shouldn't trust the results to be super-accurate, they should be close enough to be useful.

103

Cachegrind: a cache and branch-prediction profiler

5.9. Implementation Details

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest to
some people.

5.9.1. How Cachegrind Works

The best reference for understanding how Cachegrind works is chapter 3 of "Dynamic Binary Analysis and
Instrumentation”, by Nicholas Nethercote. It is available on the Valgrind publications page.

5.9.2. Cachegrind Output File Format

Thefileformat isfairly straightforward, basically giving the cost centre for every line, grouped by files and functions.
It's also totally generic and self-describing, in the sense that it can be used for any events that can be counted on a
line-by-line basis, not just cache and branch predictor events. For example, earlier versions of Cachegrind didn't have
a branch predictor simulation. When this was added, the file format didn't need to change at all. So the format (and
consequently, cg_annotate) could be used by other toals.

The file format:

count _line
summary_line ::
count :

[ine_numws? (count ws)+
"summary: " ws? (count ws)+
num |

file = desc_line* cnd_|line events line data_line+ summary_|ine
desc_line = "desc:" ws? non_nl _string

cnd_line = "cmd:" ws? cnd

events_|ine = "events:" ws? (event ws)+

data |ine =fileline | fn_line | count_Iline

file line = "fl=" fil enane

fn_line = "fn=" fn_nane

Where:

e non_nl _string isany string not containing a newline.

» cnd isastring holding the command line of the profiled program.
e event isastring containing no whitespace.

» fil ename andf n_nane arestrings.

e numand| i ne_numare decimal numbers.

* ws iswhitespace.

The contents of the"desc:" linesare printed out at thetop of the summary. Thisisageneric way of providing simulation
specific information, e.g. for giving the cache configuration for cache simulation.

More than oneline of info can be presented for each file/fn/line number. In such cases, the counts for the named events
will be accumulated.

Counts can be "." to represent zero. This makes the files easier for humansto read.

104

http://www.valgrind.org/docs/pubs.html

Cachegrind: a cache and branch-prediction profiler

The number of counts in each | i ne and the sunmary_| i ne should not exceed the number of events in the
event _| i ne.If thenumberineachl i ne isless, cg_annotate treats those missing as though they werea"." entry.
This saves space.

A file_Iine changesthe current file name. A f n_I i ne changes the current function name. A count _| i ne
contains counts that pertain to the current filename/fn_name. A "fn="fil e _line andafn_I i ne must appear
beforeany count _I i nesto give the context of the first count _| i nes.

Eachfil e_I| i ne will normally beimmediately followed by af n_I i ne. But it doesn't have to be.

The summary lineis redundant, because it just holds the total counts for each event. But this serves as a useful sanity
check of the data; if the totals for each event don't match the summary line, something has gone wrong.

105

6. Callgrind: a call-graph generating
cache and branch prediction profiler

To usethistool, you must specify - - t ool =cal | gri nd on the Valgrind command line.

6.1. Overview

Callgrind isaprofiling tool that records the call history among functionsin a program’'srun as a call-graph. By defaullt,
the collected data consists of the number of instructions executed, their relationship to source lines, the caller/callee
relationship between functions, and the numbers of such calls. Optionally, cache simulation and/or branch prediction
(similar to Cachegrind) can produce further information about the runtime behavior of an application.

The profile dataiswritten out to afile at program termination. For presentation of the data, and interactive control of
the profiling, two command line tools are provided:

callgrind_annotate
This command readsin the profile data, and prints a sorted lists of functions, optionally with source annotation.

For graphical visualization of the data, try KCachegrind, which is a KDE/Qt based GUI that makes it easy to
navigate the large amount of data that Callgrind produces.

callgrind_control

This command enables you to interactively observe and control the status of a program currently running under
Callgrind's control, without stopping the program. Y ou can get statistics information as well as the current stack
trace, and you can request zeroing of counters or dumping of profile data.

6.1.1. Functionality

Cachegrind collectsflat profile data: event counts (datareads, cache misses, etc.) are attributed directly to the function
they occurred in. This cost attribution mechanism is called self or exclusive attribution.

Callgrind extends this functionality by propagating costs across function call boundaries. If function f oo callsbar,
the costs from bar are added into f 00's costs. When applied to the program as a whole, this builds up a picture of
so called inclusive costs, that is, where the cost of each function includes the costs of all functions it called, directly
or indirectly.

As an example, the inclusive cost of mai n should be almost 100 percent of the total program cost. Because of costs
arising before mai n is run, such as initialization of the run time linker and construction of global C++ objects, the
inclusive cost of mai n isnot exactly 100 percent of the total program cost.

Together with the call graph, this allows you to find the specific call chains starting from mrai n in which the majority
of the program's costs occur. Caller/callee cost attribution is also useful for profiling functions called from multiple
call sites, and where optimization opportunities depend on changing code in the callers, in particular by reducing the
call count.

Callgrind's cache simulation is based on that of Cachegrind. Read the documentation for Cachegrind: a cache and
branch-prediction profiler first. The material below describes the features supported in addition to Cachegrind's
features.

Callgrind's ahility to detect function calls and returns depends on the instruction set of the platform it is run on. It
works best on x86 and amd64, and unfortunately currently does not work so well on PowerPC, ARM, Thumb or MIPS

106

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

code. Thisis because there are no explicit call or return instructions in these instruction sets, so Callgrind has to rely
on heuristics to detect calls and returns.

6.1.2. Basic Usage

Aswith Cachegrind, you probably want to compile with debugging info (the - g option) and with optimization turned
on.

To start a profile run for a program, execute:

valgrind --tool =callgrind [callgrind options] your-program [program options]
While the simulation is running, you can observe execution with:

cal l grind_control -b

Thiswill print out the current backtrace. To annotate the backtrace with event counts, run
callgrind_control -e -b

After program termination, aprofiledatafilenamedcal | gri nd. out . <pi d>isgenerated, wherepid isthe process
ID of the program being profiled. The data file contains information about the calls made in the program among the
functions executed, together with Instruction Read (Ir) event counts.

To generate a function-by-function summary from the profile datafile, use
cal l grind_annotate [options] callgrind. out. <pid>

Thissummary is similar to the output you get from a Cachegrind run with cg_annotate: the list of functionsis ordered
by exclusive cost of functions, which also are the onesthat are shown. Important for the additional features of Callgrind
are the following two options:

* --inclusive=yes: Instead of using exclusive cost of functions as sorting order, use and show inclusive cost.

» --tree=bot h: Interleave into the top level list of functions, information on the callers and the callees of each
function. In these lines, which represents executed calls, the cost gives the number of events spent in the call.
Indented, above each function, there is the list of callers, and below, the list of callees. The sum of eventsin calls
to agiven function (caller lines), aswell as the sum of eventsin calls from the function (callee lines) together with
the self cost, givesthe total inclusive cost of the function.

By default, you will also get annotated source code for al relevant functions for which the source can be found. In
addition to source annotation as produced by cg_annot at e, you will see the annotated call sites with call counts.
For all other options, consult the (Cachegrind) documentation for cg_annot at e.

For better call graph browsing experience, it ishighly recommended to use KCachegrind. If your code has asignificant
fraction of its cost in cycles (sets of functions calling each other in arecursive manner), you have to use KCachegrind,
ascal | gri nd_annot at e currently does not do any cycle detection, which is important to get correct resultsin
this case.

If you are additionally interested in measuring the cache behavior of your program, use Callgrind with the option
- - cache-si mryes. For branch prediction simulation, use - - br anch- si nryes. Expect a further slow down
approximately by afactor of 2.

If the program section you want to profile is somewhere in the middle of the run, it is beneficial to fast forward
to this section without any profiling, and then enable profiling. This is achieved by using the command line option
--instr-atstart=no and running, in ashell: cal I grind_control -i on just before the interesting
code section is executed. To exactly specify the code position where profiling should start, use the client request
CALLGRI ND_START_| NSTRUMENTATI ON.

107

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

If you want to be able to see assembly code level annotation, specify - - dunp- i nst r =yes. Thiswill produce profile
data at instruction granularity. Note that the resulting profile data can only be viewed with K Cachegrind. For assembly
annotation, it also is interesting to see more details of the control flow inside of functions, i.e. (conditional) jumps.
Thiswill be collected by further specifying - - col | ect - j unps=yes.

6.2. Advanced Usage

6.2.1. Multiple profiling dumps from one program run

Sometimes you are not interested in characteristics of a full program run, but only of a small part of it, for example
execution of one algorithm. If there are multiple algorithms, or one algorithm running with different input data, it may
even be useful to get different profile information for different parts of a single program run.

Profile data files have names of the form

cal l grind.out.pid.part-threadl D

where pid is the PID of the running program, part is a number incremented on each dump (".part" is skipped for the
dump at program termination), and threadID is athread identification ("-threadlD" is only used if you request dumps
of individual threads with - - separ at e- t hr eads=yes).

There are different ways to generate multiple profile dumps while a program is running under Callgrind's supervision.
Nevertheless, all methodstrigger the sameaction, whichis"dumpall profileinformation sincethelast dump or program
start, and zero cost counters afterwards'. To alow for zeroing cost counters without dumping, there is a second action
"zero al cost counters now". The different methods are:

» Dump on program termination. This method isthe standard way and doesn't need any special action on your part.
* Spontaneous, interactive dumping. Use
call grind_control -d [hint [PlID Nane]]

to request the dumping of profile information of the supervised application with PID or Name. hint is an arbitrary
string you can optionally specify to later be ableto distinguish profile dumps. The control program will not terminate
before the dump is completely written. Note that the application must be actively running for detection of the dump
command. So, for a GUI application, resize the window, or for a server, send a request.

If you are using K Cachegrind for browsing of profileinformation, you can use the toolbar button For cedump. This
will request adump and trigger areload after the dump is written.

» Periodic dumping after execution of a specified number of basic blocks. For this, use the command line option
- -dunp- every-bb=count .

» Dumping at enter/leave of specified functions. Use the option - - dunp- bef or e=f uncti on and - - dunp-
af t er =f unct i on. To zero cost counters before entering a function, use - - zer o- bef or e=f uncti on.

Y ou can specify these options multiple times for different functions. Function specifications support wildcards: e.g.
use- - dunp- bef or e=' f o0*' to generate dumps before entering any function starting with foo.

* Program controlled dumping. Insert CALLGRI ND_DUMP_STATS; at the position in your code where you want
a profile dump to happen. Use CALLGRI ND_ZERO STATS; to only zero profile counters. See Client request
reference for more information on Callgrind specific client requests.

If you are running amulti-threaded application and specify the command lineoption - - separ at e- t hr eads=yes,
every thread will be profiled on its own and will create its own profile dump. Thus, the last two methods will only

108

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

generate one dump of the currently running thread. With the other methods, you will get multiple dumps (one for each
thread) on a dump request.

6.2.2. Limiting the range of collected events

By default, whenever events are happening (such as an instruction execution or cache hit/miss), Callgrind is
aggregating them into event counters. However, you may be interested only in what is happening within a given
function or starting from a given program phase. To this end, you can disable event aggregation for uninteresting
program parts. While attribution of events to functions as well as producing separate output per program phase can
be done by other means (see previous section), there are two benefits by disabling aggregation. Firgt, thisisvery fine-
granular (e.g. just for a loop within a function). Second, disabling event aggregation for complete program phases
allows to switch off time-consuming cache simulation and allows Callgrind to progress at much higher speed with an
slowdown of around factor 2 (identical toval gri nd - -t ool =none).

There are two aspects which influence whether Callgrind is aggregating events at some point in time of program
execution. Firgt, there is the collection state. If this is off, no aggregation will be done. By changing the collection
state, you can control event aggregation at a very fine granularity. However, there is not much difference in regard
to execution speed of Callgrind. By default, collection is switched on, but can be disabled by different means (see
below). Second, there is the instrumentation mode in which Callgrind is running. This mode either can be on or off.
If instrumentation is off, no observation of actionsin the program will be done and thus, no actions will be forwarded
to the simulator which could trigger events. In the end, no events will be aggregated. The huge benefit is the much
higher speed with instrumentation switched off. However, this only should be used with care and in a coarse fashion:
every mode change resets the simulator state (ie. whether a memory block is cached or not) and flushes Valgrinds
internal cache of instrumented code blocks, resulting in latency penalty at switching time. Also, cache simulator results
directly after switching on instrumentation will be skewed due to identified cache misses which would not happen in
reality (if you care about this warm-up effect, you should make sure to temporarly have collection state switched off
directly after turning instrumentation mode on). However, switching instrumentation state is very useful to skip larger
program phases such as an initialization phase. By default, instrumentation is switched on, but as with the collection
state, can be changed by various means.

Callgrind can start with instrumentation mode switched off by specifying option --instr-at start=no.
Afterwards, instrumentation can be controlled in two ways: first, interactively with:

callgrind_control -i on

(and switching off again by specifying "off* instead of "on"). Second, instrumentation state
can be programmatically changed with the macros CALLGRI ND_START | NSTRUVENTATI ON; and
CALLGRI ND_STOP_I NSTRUMENTATI ON,; .

Similarly, the collection state at program start can be switched off by - - i nst r - at st art =no. During execution, it
can be controlled programmatically with the macro CALLGRI ND_TOGGLE_COLLECT:; . Further, you can limit event
collection to aspecific function by using - - t oggl e- col | ect =f unct i on. Thiswill toggle the collection state on
entering and leaving the specified function. When this option isin effect, the default collection state at program start is
"off". Only events happening while running inside of the given function will be collected. Recursive calls of the given
function do not trigger any action. This option can be given multiple times to specify different functions of interest.

6.2.3. Counting global bus events

For access to shared data among threads in a multithreaded code, synchronization is required to avoid raced
conditions. Synchronization primitives are usually implemented via atomic instructions. However, excessive use of
such instructions can lead to performance issues.

To enable analysis of this problem, Callgrind optionally can count the number of atomic instructions executed. More
precisaly, for x86/x86_64, these are instructions using alock prefix. For architectures supporting LL/SC, these are the
number of SC instructions executed. For both, the term "global bus events" is used.

109

Callgrind: a call-graph generating cache and branch prediction profiler

The short name of the event type used for global bus eventsis"Ge". To count global bus events, use - - col | ect -
bus=yes.

6.2.4. Avoiding cycles

Informally speaking, acycleisagroup of functions which call each other in arecursive way.

Formally speaking, a cycle is a nonempty set S of functions, such that for every pair of functions Fand G in S, it
is possible to call from F to G (possibly via intermediate functions) and also from G to F. Furthermore, S must be
maximal -- that is, be the largest set of functions satisfying this property. For example, if athird function H is called
frominside S and calls back into S, then H isaso part of the cycle and should be included in S.

Recursion is quite usual in programs, and therefore, cycles sometimes appear in the call graph output of Callgrind.
However, thetitle of this chapter should raise two questions: What is bad about cycleswhich makes you want to avoid
them? And: How can cycles be avoided without changing program code?

Cyclesare not bad initself, but tend to make performance analysis of your code harder. Thisis because inclusive costs
for callsinside of a cycle are meaningless. The definition of inclusive cogt, i.e. self cost of afunction plusinclusive
cost of its callees, needs atopological order among functions. For cycles, this does not hold true: callees of afunction
in a cycle include the function itself. Therefore, KCachegrind does cycle detection and skips visualization of any
inclusive cost for calls inside of cycles. Further, al functions in a cycle are collapsed into artificial functions called
likeCycl e 1.

Now, when a program exposes really big cycles (as is true for some GUI code, or in general code using event or
callback based programming style), you lose the nice property to let you pinpoint the bottlenecks by following call
chainsfrom mai n, guided viainclusive cost. In addition, KCachegrind losesits ahility to show interesting parts of the
call graph, asit usesinclusive coststo cut off uninteresting aress.

Despite the meaningless of inclusive costs in cycles, the big drawback for visualization motivates the possibility to
temporarily switch off cycle detection in KCachegrind, which can lead to misguiding visualization. However, often
cycles appear because of unlucky superposition of independent call chainsin away that the profile result will see a
cycle. Neglecting uninteresting calls with very small measured inclusive cost would break these cycles. In such cases,
incorrect handling of cycles by not detecting them still gives meaningful profiling visualization.

It has to be noted that currently, callgrind_annotate does not do any cycle detection at al. For program executions
with function recursion, it e.g. can print nonsense inclusive costs way above 100%.

After describing why cyclesare bad for profiling, it isworth talking about cycle avoidance. The key insight hereisthat
symbolsin the profile data do not have to exactly match the symbols found in the program. Instead, the symbol name
could encode additional information from the current execution context such asrecursion level of the current function,
or even some part of the call chain leading to the function. While encoding of additional information into symbolsis
quite capable of avoiding cycles, it has to be used carefully to not cause symbol explosion. The latter imposes large
memory requirement for Callgrind with possible out-of-memory conditions, and big profile data files.

A further possihility to avoid cyclesin Callgrind's profile data output is to simply leave out given functionsin the call
graph. Of course, this also skips any call information from and to an ignored function, and thus can break a cycle.
Candidates for this typically are dispatcher functionsin event driven code. The option to ignore callsto afunction is
- - fn-ski p=functi on. Asidefrom possibly breaking cycles, thisis used in Callgrind to skip trampoline functions
inthe PLT sectionsfor callsto functionsin shared libraries. Y ou can see the differenceif you profile with - - ski p-

pl t =no. If acall isignored, its cost events will be propagated to the enclosing function.

If you have a recursive function, you can distinguish the first 10 recursion levels by specifying - - separ at e-

recs10=f uncti on. Orfor al functionswith - - separ at e- r ecs=10, but thiswill give you much bigger profile
datafiles. In the profile data, you will see the recursion levels of "func" as the different functions with names "func”,
"func'2", "func'3" and so on.

110

Callgrind: a call-graph generating cache and branch prediction profiler

If you havecall chains"A >B > C" and"A > C > B" in your program, you usually get a"false" cycle"B <> C". Use
--separate-call ers2=B--separat e-cal | er s2=C, and functions"B" and"C" will betreated asdifferent
functions depending on the direct caller. Using the apostrophe for appending this "context" to the function name, you
get"A >B'A>CB"and"A > CA >B'C", and there will beno cycle. Use- - separate-cal | ers=2togeta2-
caller dependency for all functions. Note that doing this will increase the size of profile datafiles.

6.2.5. Forking Programs

If your program forks, the child will inherit al the profiling data that has been gathered for the parent. To start with
empty profile counter values in the child, the client request CALLGRI ND_ZERO STATS; can be inserted into code
to be executed by the child, directly after f or k.

However, you will have to make sure that the output file format string (controlled by - - cal 1 gri nd-out -fil e)
does contain %p (which istrue by default). Otherwise, the outputs from the parent and child will overwrite each other
or will beintermingled, which aimost certainly is not what you want.

Y ou will be able to control the new child independently from the parent via callgrind_control.

6.3. Callgrind Command-line Options

In the following, options are grouped into classes.

Some options allow the specification of a function/symbol name, such as - - dunp- bef or e=f uncti on, or - -

f n- ski p=functi on. All these options can be specified multiple times for different functions. In addition, the
function specifications actually are patterns by supporting the use of wildcards ' (zero or more arbitrary characters)
and'? (exactly onearbitrary character), similar tofilenameglobbing intheshell. Thisfeatureisimportant especially for
C++, aswithout wildcard usage, the function would have to be specified in full extent, including parameter signature.

6.3.1. Dump creation options

These options influence the name and format of the profile datafiles.
--callgrind-out-file=<file>

Write the profile datato f i | e rather than to the default output file, cal | gri nd. out . <pi d>. The % and
% format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the core option - - | og- f i | e. When multiple dumps are made, the file name is modified
further; see below.

--dunp-line=<no|yes> [default: yes]

This specifies that event counting should be performed at source line granularity. This allows source annotation
for sources which are compiled with debug information (- g).

--dunp-instr=<no| yes> [default: no]

This specifies that event counting should be performed at per-instruction granularity. This allows for assembly
code annotation. Currently the results can only be displayed by KCachegrind.

--conpress-strings=<no|yes> [default: yes]

This option influences the output format of the profile data. It specifies whether strings (file and function names)
should be identified by numbers. This shrinks the file, but makes it more difficult for humans to read (which is
not recommended in any case).

111

Callgrind: a call-graph generating cache and branch prediction profiler

--conpress- pos=<no| yes> [default: yes]

This option influences the output format of the profile data. It specifies whether numerical positions are always
specified as absolute values or are allowed to be relative to previous numbers. This shrinksthefile size.

- - conbi ne- dunps=<no| yes> [defaul t: no]

When enabled, when multiple profile data parts are to be generated these parts are appended to the same output
file. Not recommended.

6.3.2. Activity options

These options specify when actions relating to event counts are to be executed. For interactive control use
callgrind_contral.

- -dunp- every-bb=<count > [default: 0, never]

Dump profiledataevery count basic blocks. Whether adump isneeded isonly checked when Valgrind'sinternal
scheduler isrun. Therefore, the minimum setting useful is about 100000. The count is a 64-bit value to make long
dump periods possible.

- - dunp- bef or e=<f uncti on>

Dump when entering f unct i on.
--zer o- bef ore=<functi on>

Zero all costs when entering f unct i on.
- -dunp- af t er =<f uncti on>

Dump when leaving f unct i on.

6.3.3. Data collection options

These options specify when events are to be aggregated into event counts. Also see Limiting range of event collection.
--instr-atstart=<yes|no> [default: yes]

Specify if you want Callgrind to start simulation and profiling from the beginning of the program. When
set to no, Callgrind will not be able to collect any information, including calls, but it will have at most a
slowdown of around 4, which is the minimum Valgrind overhead. Instrumentation can be interactively enabled
viacal I grind_control -i on.

Note that the resulting call graph will most probably not contain rai n, but will contain all the functions
executed after instrumentation was enabled. Instrumentation can also be programmatically enabled/disabled. See
the Callgrind include filecal | gri nd. h for the macro you have to use in your source code.

For cache simulation, resultswill be less accurate when switching on instrumentation later in the program run, as
the simulator starts with an empty cache at that moment. Switch on event collection later to cope with this error.

--collect-atstart=<yes|no> [default: yes]
Specify whether event collection is enabled at beginning of the profile run.

To only look at parts of your program, you have two possibilities:

112

Callgrind: a call-graph generating cache and branch prediction profiler

1. Zero event counters before entering the program part you want to profile, and dump the event counters to a
file after leaving that program part.

2. Switch on/off collection state as needed to only see event counters happening while inside of the program part
you want to profile.

The second option can be used if the program part you want to profileis called many times. Option 1, i.e. creating
alot of dumpsis not practical here.

Collection state can betoggled at entry and exit of agiven function with theoption- - t oggl e- col | ect . If you
use this option, collection state should be disabled at the beginning. Note that the specification of - - t oggl e-
col | ect implicitly sets- - col | ect - st at e=no.

Collection state can be toggled also by inserting the client request CALLGRI ND_TOGGLE COLLECT ; atthe
needed code positions.

--toggl e-col | ect =<functi on>
Toggle collection on entry/exit of f unct i on.
--col | ect-junps=<no| yes> [default: no]

This specifies whether information for (conditional) jumps should be collected. As above, calgrind_annotate
currently isnot able to show you the data. Y ou have to use K Cachegrind to get jump arrowsin the annotated code.

--col | ect-systi me=<no| yes| msec| usec| nsec> [default: no]
This specifies whether information for system call times should be collected.
The value no indicates to record no system call information.

The other values indicate to record the number of system calls done (sysCount event) and the elapsed time
(sysTime event) spent in system calls. The- - col | ect - syst i ne vaue givesthe unit used for sysTime : milli
seconds, micro seconds or nano seconds. With the value nsec, callgrind also records the cpu time spent during
system calls (sysCpuTime).

Thevaueyes isasynonym of msec. Thevaue nsec isnot supported on Darwin.
--col | ect-bus=<no|yes> [default: no]

This specifies whether the number of global bus events executed should be collected. The event type " Ge" isused
for these events.

6.3.4. Cost entity separation options

These options specify how event counts should be attributed to execution contexts. For example, they specify whether
the recursion level or the call chain leading to a function should be taken into account, and whether the thread 1D
should be considered. Also see Avoiding cycles.

--separ at e-t hreads=<no| yes> [defaul t: no]

This option specifies whether profile data should be generated separately for every thread. If yes, the file names
get "-threadI D" appended.

--separate-call ers=<cal l ers> [default: 0]

Separate contexts by at most <callers> functionsin the call chain. See Avoiding cycles.

113

Callgrind: a call-graph generating cache and branch prediction profiler

--separ at e- cal | er s<nunber >=<f uncti on>

Separate nunber callersfor f unct i on. See Avoiding cycles.
--separate-recs=<|evel > [default: 2]

Separate function recursions by at most | evel levels. See Avoiding cycles.
- - separ at e-r ecs<nunber >=<f uncti on>

Separate nuber recursionsfor f unct i on. See Avoiding cycles.
- - ski p-pl t=<no| yes> [defaul t: yes]

Ignore calls to/from PLT sections.
--ski p-direct-rec=<no|yes> [default: yes]

Ignore direct recursions.
- - f n- ski p=<functi on>

Ignore calls to/from a given function. E.g. if you have acall chain A > B > C, and you specify function B to be
ignored, you will only see A > C.

This is very convenient to skip functions handling callback behaviour. For example, with the signal/slot
mechanism in the Qt graphicslibrary, you only want to see the function emitting asignal to call the slots connected
to that signal. First, determine the real call chain to see the functions needed to be skipped, then use this option.

6.3.5. Simulation options

--cache-si me<yes| no> [defaul t: no]

Specify if you want to do full cache simulation. By default, only instruction read accesses will be counted ("1r").
With cache simulation, further event counters are enabled: Cache misses on instruction reads ("I1mr"/"ILmr"),
data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"), data write accesses ("Dw") and related
cache misses ("D1mw"/"DLmw"). For more information, see Cachegrind: a cache and branch-prediction profiler.

- -branch- si me<yes| no> [defaul t: no]

Specify if you want to do branch prediction simulation. Further event counters are enabled: Number of executed
conditional branches and related predictor misses ("Bc"/"Bcm™), executed indirect jJumps and related misses of
the jump address predictor ("Bi"/"Bim").

6.3.6. Cache simulation options
--si nmul at e-wb=<yes| no> [defaul t: no]

Specify whether write-back behavior should be simulated, allowing to distinguish LL caches misses with and
without write backs. The cache model of Cachegrind/Callgrind does not specify write-through vs. write-back
behavior, and this also is not relevant for the number of generated miss counts. However, with explicit write-
back simulation it can be decided whether a miss triggers not only the loading of a new cache line, but also if
awrite back of adirty cache line had to take place before. The new dirty miss events are ILdmr, DLdmr, and
DLdmw, for misses because of instruction read, data read, and data write, respectively. As they produce two
memory transactions, they should account for a doubled time estimation in relation to anormal miss.

114

Callgrind: a call-graph generating cache and branch prediction profiler

- -si mul at e- hwpr ef =<yes| no> [defaul t: no]

Specify whether simulation of a hardware prefetcher should be added which is able to detect stream accessin the
second level cache by comparing accesses to separate to each page. As the simulation can not decide about any
timing issues of prefetching, it is assumed that any hardware prefetch triggered succeeds before areal accessis
done. Thus, this gives a best-case scenario by covering all possible stream accesses.

--cacheuse=<yes| no> [defaul t: no]

Specify whether cache line use should be collected. For every cache line, from loading to it being evicted, the
number of accesses as well as the number of actually used bytes is determined. This behavior is related to the
code which triggered loading of the cache line. In contrast to miss counters, which shows the position where the
symptoms of bad cache behavior (i.e. latencies) happens, the use counters try to pinpoint at the reason (i.e. the
code with the bad access behavior). The new counters are defined in away such that worse behavior resultsin
higher cost. AcCost1 and AcCost2 are counters showing bad temporal locality for L1 and LL caches, respectively.
Thisis done by summing up reciprocal values of the numbers of accesses of each cache line, multiplied by 1000
(as only integer costs are allowed). E.g. for a given source line with 5 read accesses, a value of 5000 AcCost
means that for every access, anew cacheline was|oaded and directly evicted afterwards without further accesses.
Similarly, SpLossl/2 shows bad spatial locality for L1 and LL caches, respectively. It givesthe spatial 1oss count
of bytes which were loaded into cache but never accessed. It pinpoints at code accessing datain away such that
cache space is wasted. This hints at bad layout of data structures in memory. Assuming a cache line size of 64
bytesand 100 L 1 missesfor agiven sourceline, theloading of 6400 bytesinto L1 wastriggered. If SpLoss1 shows
avalue of 3200 for thisline, this means that half of the loaded data was never used, or using a better data layout,
only half of the cache space would have been needed. Please note that for cache line use counters, it currently is
not possible to provide meaningful inclusive costs. Therefore, inclusive cost of these counters should be ignored.

--11=<si ze>, <associativity> <line size>

Specify the size, associativity and line size of the level 1 instruction cache.
--Dl=<si ze>, <associativity>, <line size>

Specify the size, associativity and line size of the level 1 data cache.
--LL=<si ze>, <associativity> <line size>

Specify the size, associativity and line size of the last-level cache.

6.4. Callgrind Monitor Commands

The Callgrind tool provides monitor commands handled by the VValgrind gdbserver (see Monitor command handling
by the Valgrind gdbserver).

e dunp [<dunp_hi nt >] requeststo dump the profile data.
* zer o requeststo zero the profile data counters.

e instrumentation [on]| of f] requeststo set (if parameter on/off is given) or get the current instrumentation
state.

» st at us requeststo print out some status information.

6.5. Callgrind specific client requests

Callgrind provides the following specific client requestsincal | gri nd. h. Seethat file for the exact details of their
arguments.

115

Callgrind: a call-graph generating cache and branch prediction profiler

CALLGRI ND_DUMP_STATS

Force generation of a profile dump at specified position in code, for the current thread only. Written counters
will be reset to zero.

CALLGRI ND_DUMP_STATS_AT(stri ng)

Same as CALLGRI ND_DUMP_STATS, but allows to specify a string to be able to distinguish profile dumps.
CALLGRI ND_ZERO STATS

Reset the profile counters for the current thread to zero.
CALLGRI ND_TOGGLE_COLLECT

Toggle the collection state. This allows to ignore events with regard to profile counters. See also options - -
collect-atstart and--toggle-collect.

CALLGRI ND_START_I NSTRUMENTATI ON

Start full Callgrind instrumentation if not already enabled. When cache simulation is done, this will flush the
simulated cache and lead to an artificial cache warmup phase afterwards with cache misses which would not have
happened in reality. Seealsooption--i nstr-atstart.

CALLGRI ND_STOP_I NSTRUMENTATI ON

Stop full Callgrind instrumentation if not aready disabled. This flushes Valgrinds trandation cache, and
does no additional instrumentation afterwards. it effectivly will run at the same speed as Nulgrind,
i.e. a minima sowdown. Use this to speed up the Callgrind run for uninteresting code parts. Use
CALLGRI ND_START_| NSTRUMENTATI ON to enable instrumentation again. See also option --instr-
atstart.

6.6. callgrind_annotate Command-line Options

-h --help
Show summary of options.
--version
Show version of callgrind_annotate.
--show=A, B, C [defaul t: all]
Only show figuresfor events A,B,C.
--threshol d=<0--100> [default: 99%
Percentage of counts (of primary sort event) we are interested in.

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functionsis bigger
or equal to the given threshold percentage.

--sort=A,B,C
Sort columns by events A,B,C [event column order].

Optionally, each event isfollowed by a: and athreshold, to specify different thresholds depending on the event.

116

Callgrind: a call-graph generating cache and branch prediction profiler

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functions for all
the eventsis bigger or equal to the given event threshold percentages.

When one or more thresholds are given viathis option, the value of - - t hr eshol d isignored.
--show percs=<no| yes> [defaul t: no]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of each
function and line.

--aut o=<yes| no> [defaul t: yes]
Annotate all source files containing functions that hel ped reach the event count threshold.
--context=N [default: 8]
Print N lines of context before and after annotated lines.
--inclusive=<yes|no> [default: no]
Add subroutine costs to functions calls.
--tree=<none|cal l er|calling|both> [default: none]
Print for each function their calers, the called functions or both.
-1, --include=<dir>

Add di r tothelist of directoriesto search for source files.

6.7. callgrind_control Command-line Options

By default, callgrind_control acts on all programs run by the current user under Callgrind. It is possible to limit the
actions to specified Callgrind runs by providing alist of pids or program names as argument. The default action isto
give some brief information about the applications being run under Callgrind.

-h --help
Show a short description, usage, and summary of options.
--version
Show version of callgrind_control.
-1 --long
Show also the working directory, in addition to the brief information given by default.
-s --stat
Show statistics information about active Callgrind runs.
-b --back

Show stack/back traces of each thread in active Callgrind runs. For each active function in the stack trace, also
the number of invocations since program start (or last dump) is shown. This option can be combined with -e to
show inclusive cost of active functions.

117

Callgrind: a call-graph generating cache and branch prediction profiler

e [AB,...] (defaullt all)

Show the current per-thread, exclusive cost values of event counters. If no explicit event names are given, figures
for all event types which are collected in the given Callgrind run are shown. Otherwise, only figures for event
types A, B, ... are shown. If this option is combined with -b, inclusive cost for the functions of each active stack
frame is provided, too.

- - dunp[=<desc>] (default: no description)

Request the dumping of profile information. Optionally, a description can be specified which is written into the
dump as part of theinformation giving the reason which triggered the dump action. This can be used to distinguish
multiple dumps.

-z --zero
Zero all event counters.
-k --kill
Force a Callgrind run to be terminated.
--instr=<on|of f>

Switch instrumentation mode on or off. If aCallgrind run has instrumentation disabled, no simulation is done and
no events are counted. Thisis useful to skip uninteresting program parts, as there is much less slowdown (same
aswith the Valgrind tool "none"). See also the Callgrind option- -i nstr-atstart.

- -vgdb- prefi x=<prefix>

Specify the vgdb prefix to use by callgrind_control. callgrind_control internally uses vgdb to find and control
the active Callgrind runs. If the - - vgdb- pr ef i x option was used for launching valgrind, then the same option
must be given to callgrind_control.

118

/. Helgrind: athread error detector

To usethistool, you must specify - - t ool =hel gri nd on the Valgrind command line.

7.1. Overview

Helgrind is aValgrind tool for detecting synchronisation errorsin C, C++ and Fortran programs that use the POSI X
pthreads threading primitives.

The main abstractions in POSIX pthreads are: a set of threads sharing a common address space, thread creation,
thread joining, thread exit, mutexes (locks), condition variables (inter-thread event notifications), reader-writer locks,
spinlocks, semaphores and barriers.

Helgrind can detect three classes of errors, which are discussed in detail in the next three sections:
1. Misuses of the POSIX pthreads API.

2. Potential deadlocks arising from lock ordering problems.

3. Dataraces -- accessing memory without adequate locking or synchronisation.

Problems like these often result in unreproducible, timing-dependent crashes, deadl ocks and other misbehaviour, and
can be difficult to find by other means.

Helgrind is aware of all the pthread abstractions and tracks their effects as accurately as it can. On x86 and amd64
platforms, it understands and partially handles implicit locking arising from the use of the LOCK instruction prefix.
On PowerPC/POWER and ARM platforms, it partially handles implicit locking arising from load-linked and store-
conditional instruction pairs.

Helgrind works best when your application uses only the POSIX pthreads API. However, if you want to use custom
threading primitives, you can describe their behaviour to Helgrind using the ANNOTATE_* macros defined in
hel gri nd. h.

Helgrind also provides Execution Trees memory profiling using the command line option - - xt r ee- nenor y and
the monitor command xt menory.

Following those is a section containing hints and tips on how to get the best out of Helgrind.
Then thereis a summary of command-line options.

Finally, thereis abrief summary of areasin which Helgrind could be improved.

7.2. Detected errors: Misuses of the POSIX
pthreads API

Helgrind intercepts calls to many POSIX pthreads functions, and is therefore able to report on various common
problems. Although these are unglamourous errors, their presence can lead to undefined program behaviour and hard-
to-find bugs later on. The detected errors are:

« unlocking an invalid mutex
« unlocking a not-locked mutex
« unlocking amutex held by adifferent thread

 destroying aninvalid or alocked mutex

119

Helgrind: athread error detector

« recursively locking a non-recursive mutex

» deallocation of memory that contains alocked mutex

* passing mutex arguments to functions expecting reader-writer lock arguments, and vice versa

» when aPOSIX pthread function fails with an error code that must be handled

» when athread exits whilst till holding locked locks

» caling pt hread_cond_wai t with anot-locked mutex, an invalid mutex, or one locked by a different thread
* inconsistent bindings between condition variables and their associated mutexes

* invalid or duplicate initialisation of a pthread barrier

* initialisation of a pthread barrier on which threads are still waiting

* destruction of a pthread barrier object which was never initialised, or on which threads are still waiting
* waiting on an uninitialised pthread barrier

« for al of the pthreads functions that Helgrind intercepts, an error is reported, along with a stack trace, if the system
threading library routine returns an error code, even if Helgrind itself detected no error

Checks pertaining to the validity of mutexes are generally also performed for reader-writer locks.

Various kinds of this-can't-possibly-happen events are also reported. These usually indicate bugs in the system
threading library.

Reported errors always contain a primary stack trace indicating where the error was detected. They may aso contain
auxiliary stack traces giving additional information. In particular, most errors relating to mutexes will also tell you
where that mutex first cameto Helgrind's attention (the"was first observed at" part), soyou have achance
of figuring out which mutex it is referring to. For example:

Thread #1 unl ocked a not-|ocked | ock at Ox7FEFFFA90
at 0x4C2408D: pt hread nutex_unl ock (hg_intercepts.c:492)
by 0x40073A: nearly main (tc09 bad unl ock. c: 27)
by 0x40079B: nmain (tc09_bad unl ock. c: 50)
Lock at Ox7FEFFFA90 was first observed
at 0x4C25D01: pthread nmutex_init (hg_intercepts.c: 326)
by 0x40071F:. nearly main (tc09 bad unl ock. c: 23)
by 0x40079B: nmain (tc09_bad unl ock. c: 50)

Helgrind has away of summarising thread identities, as you see here with the text "Thr ead #1". Thisis so that it
can speak about threads and sets of threads without overwhelming you with details. See below for more information
on interpreting error messages.

7.3. Detected errors: Inconsistent Lock
Orderings

In this section, and in general, to "acquire" alock simply means to lock that lock, and to "release” alock means to
unlock it.

Helgrind monitors the order in which threads acquire locks. This alows it to detect potential deadlocks which could
arise from the formation of cycles of locks. Detecting such inconsistencies is useful because, whilst actual deadlocks

120

Helgrind: athread error detector

arefairly obvious, potentia deadlocks may never be discovered during testing and could later |ead to hard-to-diagnose
in-service failures.

The simplest example of such a problem is as follows.

* Imagine some shared resource R, which, for whatever reason, is guarded by two locks, L1 and L 2, which must both
be held when R is accessed.

 Suppose athread acquires L1, then L2, and proceeds to access R. The implication of thisisthat al threads in the
program must acquire the two locks in the order first L1 then L2. Not doing so risks deadl ock.

* The deadlock could happen if two threads -- call them T1 and T2 -- both want to access R. Suppose T1 acquires
L1 first, and T2 acquires L2 first. Then T1 triesto acquire L2, and T2 tries to acquire L1, but those locks are both
already held. So T1 and T2 become deadlocked.

Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When a thread
acquires a new lock, the graph is updated, and then checked to see if it now contains a cycle. The presence of acycle
indicates a potential deadlock involving the locksin the cycle.

In general, Helgrind will choose two locks involved in the cycle and show you how their acquisition ordering has
become inconsistent. It does this by showing the program pointsthat first defined the ordering, and the program points
which later violated it. Here is a simple example involving just two locks:

Thread #1: |ock order "0Ox7FFO006D0 before Ox7FFO006A0" vi ol ated

oserved (incorrect) order is: acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts.c:494)
by 0x400825: main (tcl3_|laogl.c: 23)

followed by a later acquisition of |ock at Ox7FFO006DO0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts.c:494)
by 0x400853: mmin (tcl3_l aogl. c: 24)

Requi red order was established by acquisition of |ock at 0x7FF0006D0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts.c:494)
by 0x40076D: mmin (tcl3_laogl.c:17)

followed by a later acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts.c:494)
by 0x40079B: mmin (tcl3_l aogl. c: 18)

When there are more than two locks in the cycle, the error is equally serious. However, at present Helgrind does not
show the locks involved, sometimes because that information is not available, but also so as to avoid flooding you
with information. For example, a naive implementation of the famous Dining Philosophers problem involves a cycle
of fivelocks (see hel gri nd/ tests/tcl4_| aog_di nphil s. c). Inthis case Helgrind has detected that all 5
philosophers could simultaneoudly pick up their left fork and then deadlock whilst waiting to pick up their right forks.

Thread #6: | ock order "0x80499A0 before 0x8049A00" vi ol at ed

oserved (incorrect) order is: acquisition of [ock at 0x8049A00
at 0x40085BC: pt hread_nutex_| ock (hg_intercepts.c:495)
by 0x80485B4: dine (tcl4_ | aog _dinphils.c:18)
by 0x400BDA4: nythread_wr apper (hg_intercepts.c:219)
by 0x39B924: start_thread (pthread_create.c:297)
by 0x2F107D: cl one (cl one.S: 130)

121

Helgrind: athread error detector

followed by a later acquisition of [ock at 0x80499A0
at 0x40085BC: pthread_nutex_| ock (hg_intercepts.c:495)
by 0x80485CD: dine (tcl4_|aog _dinphils.c:19)
by 0x400BDA4: nyt hread_wr apper (hg_intercepts.c:219)
by 0x39B924: start_thread (pthread_create.c:297)
by 0x2F107D: cl one (cl one.S: 130)

7.4. Detected errors: Data Races

A datarace happens, or could happen, when two threads access a shared memory |ocation without using suitable locks
or other synchronisation to ensure single-threaded access. Such missing locking can cause obscure timing dependent
bugs. Ensuring programs are race-free is one of the central difficulties of threaded programming.

Reliably detecting races is a difficult problem, and most of Helgrind's internals are devoted to dealing with it. We
begin with asimple example.

7.4.1. A Simple Data Race

About the simplest possible example of araceis asfollows. In this program, it isimpossible to know what the value
of var isat the end of the program. Isit2?0r 1 ?

#i ncl ude <pt hread. h>
int var = O;

voi d* child_fn (void* arg) {
var++; /* Unprotected relative to parent */ /* this is line 6 */
return NULL;

}

int min (void) {
pthread_t child;
pt hread_create(&child, NULL, child_fn, NULL);
var++; /* Unprotected relative to child */ /* this is line 13 */
pt hread_j oi n(child, NULL);
return O;

}

The problem isthereis nothing to stop var being updated simultaneously by both threads. A correct program would
protect var with alock of type pt hr ead_rut ex_t , whichis acquired before each access and rel eased afterwards.
Helgrind's output for this program is:

Thread #1 is the program s root thread

Thread #2 was created
at O0x511CO8E: clone (in /lib64/1ibc-2.8.s0)
by Ox4E333A4: do_clone (in /lib64/1ibpthread-2.8.so0)
by Ox4E33A30: pthread create@as| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. so)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)
by 0x400605: main (sinple_race.c:12)

122

Helgrind: athread error detector

Possi bl e data race during read of size 4 at 0x601038 by thread #1
Locks hel d: none
at 0x400606: main (sinple_race.c:13)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none
at 0x4005DC:. child_fn (sinple_race.c:6)
by Ox4C29AFF: nyt hread_wr apper (hg_intercepts.c:194)
by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)
by 0x511CO0CC: clone (in /1ib64/1ibc-2.8.s0)

Locati on 0x601038 is O bytes inside gl obal var
decl ared at sinple_race.c:3

var

Thisis quite alot of detail for an apparently simple error. The last clause is the main error message. It says thereis
arace as aresult of aread of size 4 (bytes), at 0x601038, which is the address of var , happening in function mai n
at line 13 in the program.

Two important parts of the message are:

» Helgrind showstwo stack tracesfor the error, not one. By definition, arace involvestwo different threads accessing
the same location in such away that the result depends on the relative speeds of the two threads.

The first stack trace follows the text "Possi bl e data race during read of size 4 ..."andthe
second tracefollowsthetext"Thi s conflicts with a previous wite of size 4 ...". Hegrind
isusually able to show both accessesinvolved in arace. At least one of these will be awrite (since two concurrent,
unsynchronised reads are harmless), and they will of course be from different threads.

By examining your program at the two locations, you should be able to get at |east some idea of what the root cause
of theproblemis. For each location, Helgrind showsthe set of locks held at thetime of the access. This often makesit
clear which thread, if any, failed to take arequired lock. In thisexample neither thread holdsalock during the access.

* For races which occur on global or stack variables, Helgrind tries to identify the name and defining point of the
variable. Hencethetext "Locat i on 0x601038 i s O bytes inside gl obal var "var" decl ared
at sinple_race.c: 3"

Showing names of stack and global variables carries no run-time overhead once Helgrind has your program up and
running. However, it does require Helgrind to spend considerabl e extra time and memory at program startup to read
the relevant debug info. Hence thisfacility isdisabled by default. To enableit, you need to givethe- - r ead- var -
i nf o=yes option to Helgrind.

The following section explains Helgrind's race detection algorithm in more detail.

7.4.2. Helgrind's Race Detection Algorithm

Most programmers think about threaded programming in terms of the basic functionality provided by the threading
library (POSIX Pthreads): thread creation, thread joining, locks, condition variables, semaphores and barriers.

The effect of using these functions is to impose constraints upon the order in which memory accesses can happen.
Thisimplied ordering is generally known as the "happens-before relation”. Once you understand the happens-before
relation, it is easy to see how Helgrind finds races in your code. Fortunately, the happens-before relation isitself easy
to understand, and is by itself auseful tool for reasoning about the behaviour of parallel programs. We now introduce
it using asimple example.

Consider first the following buggy program:

123

Helgrind: athread error detector

Par ent thread: Chil d thread:
int var;

/'l create child thread

pt hread_create(...)

var = 20; var = 10;
exit

/1 wait for child
pthread_join(...)
printf("%\n", var);

The parent thread creates a child. Both then write different values to some variable var , and the parent then waits
for the child to exit.

What is the value of var at the end of the program, 10 or 20? We don't know. The program is considered buggy (it
has a race) because the final value of var depends on the relative rates of progress of the parent and child threads.
If the parent is fast and the child is slow, then the child's assignment may happen later, so the final value will be 10;
and vice versaif the child is faster than the parent.

The relative rates of progress of parent vs child is not something the programmer can control, and will often change
from run to run. It depends on factors such as the load on the machine, what else is running, the kernel's scheduling
strategy, and many other factors.

Theobviousfix isto usealock to protect var . It ishowever instructive to consider asomewhat more abstract solution,
which isto send a message from one thread to the other:

Parent thread: Chil d thread:
int var;

/1 create child thread

pthread create(...)

var = 20;

/1 send nessage to child
/1 wait for nmessage to arrive
var = 10;
exit

/1 wait for child
pthread_join(...)
printf("%l\n", var);

Now the program reliably prints "10", regardless of the speed of the threads. Why? Because the child's assignment
cannot happen until after it receivesthe message. And the messageisnot sent until after the parent'sassignment isdone.

The message transmission creates a "happens-before” dependency between the two assignments: var = 20; must
now happen-beforevar = 10; . And so thereisno longer araceonvar .

Note that it's not significant that the parent sends a message to the child. Sending a message from the child (after its
assignment) to the parent (beforeits assignment) would al so fix the problem, causing the program to reliably print “20".

Helgrind's algorithm is (conceptually) very simple. It monitors all accesses to memory locations. If alocation -- in
thisexample, var , is accessed by two different threads, Helgrind checks to seeif the two accesses are ordered by the
happens-before relation. If so, that's fine; if not, it reports arace.

124

Helgrind: athread error detector

It is important to understand that the happens-before relation creates only a partial ordering, not a total ordering. An
example of atota ordering is comparison of numbers: for any two numbers x and y, either x is less than, equa to,
or greater thany. A partial ordering islike atotal ordering, but it can also express the concept that two elements are
neither equal, less or greater, but merely unordered with respect to each other.

In the fixed example above, we say that var = 20; "happens-before" var = 10; . But in the original version,
they are unordered: we cannot say that either happens-before the other.

What doesit mean to say that two accesses from different threads are ordered by the happens-before relation? It means
that thereis some chain of inter-thread synchronisation operations which cause those accesses to happen in aparticul ar
order, irrespective of the actual rates of progress of the individual threads. Thisis arequired property for areliable
threaded program, which iswhy Helgrind checks for it.

The happens-before relations created by standard threading primitives are as follows:

» When amutex isunlocked by thread T1 and later (or immediately) locked by thread T2, then the memory accesses
in T1 prior to the unlock must happen-before thosein T2 after it acquires the lock.

» The same idea applies to reader-writer locks, although with some complication so as to allow correct handling of
reads vs writes.

» When a condition variable (CV) is signalled on by thread T1 and some other thread T2 is thereby released from a
wait on the same CV, then the memory accessesin T1 prior to the signalling must happen-before those in T2 after
it returns from the wait. If no thread was waiting on the CV then there is no effect.

 If instead T1 broadcasts on a CV, then all of the waiting threads, rather than just one of them, acquire a happens-
before dependency on the broadcasting thread at the point it did the broadcast.

A thread T2 that continues after completing sem_wait on a semaphore that thread T1 posts on, acquires a happens-
before dependence on the posting thread, a hit like dependencies caused mutex unlock-lock pairs. However, sincea
semaphore can be posted on many times, it is unspecified from which of the post callsthe wait call getsits happens-
before dependency.

» For agroup of threads T1 .. Tn which arrive at a barrier and then move on, each thread after the call has a happens-
after dependency from all threads before the barrier.

» A newly-created child thread acquires an initial happens-after dependency on the point where its parent created it.
That is, all memory accesses performed by the parent prior to creating the child are regarded as happening-before
all the accesses of the child.

« Similarly, when an exiting thread is reaped viaacall to pt hr ead_j oi n, once the call returns, the reaping thread
acquires a happens-after dependency relative to all memory accesses made by the exiting thread.

In summary: Helgrind intercepts the above listed events, and builds a directed acyclic graph represented the collective
happens-before dependencies. It also monitors all memory accesses.

If alocation is accessed by two different threads, but Helgrind cannot find any path through the happens-before graph
from one access to the other, then it reports arace.

There are a couple of caveats:

» Helgrind doesn't check for arace in the case where both accesses are reads. That would be silly, since concurrent
reads are harmless.

» Two accesses are considered to be ordered by the happens-before dependency even through arbitrarily long chains
of synchronisation events. For example, if T1 accesses somelocation L, and then pt hr ead_cond_si gnal s T2,
which later pt hr ead_cond_si gnal s T3, which then accesses L, then a suitable happens-before dependency

125

Helgrind: athread error detector

exists between the first and second accesses, even though it involves two different inter-thread synchronisation
events.

7.4.3. Interpreting Race Error Messages

Helgrind's race detection algorithm collects a lot of information, and tries to present it in a helpful way when arace
is detected. Here's an example:

Thread #2 was created
at Ox511CO8E: clone (in /lib64/1ibc-2.8.s0)
by O0x4E333A4: do_clone (in /1ib64/1ibpthread-2.8.so0)
by Ox4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2.8.s0)
by 0x4C299D4: pthread_create@ (hg_intercepts.c:214)
by 0x4008F2: main (tc2l1 pthonce. c: 86)

Thread #3 was created
at Ox511CO8E: clone (in /lib64/1ibc-2.8.s0)
by O0x4E333A4: do_clone (in /1ib64/1ibpthread-2.8.so0)
by Ox4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2.8.s0)
by 0x4C299D4: pthread_create@ (hg_intercepts.c:214)
by 0x4008F2: main (tc2l1 pthonce. c: 86)

Possi bl e data race during read of size 4 at 0x601070 by thread #3
Locks hel d: none

at 0x40087A: child (tc2l1_pthonce. c: 74)

by Ox4C29AFF: nythread w apper (hg_intercepts.c:194)

by Ox4E3403F: start _thread (in /1ib64/1ibpthread-2.8.s0)

by 0x511CO0CC. clone (in /1ib64/1ibc-2.8.s0)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none
at 0x400883: child (tc2l1_pthonce. c: 74)
by Ox4C29AFF: nythread w apper (hg_intercepts.c:194)
by Ox4E3403F: start _thread (in /1ib64/1ibpthread-2.8.s0)
by 0x511CO0CC. clone (in /1ib64/1ibc-2.8.s0)

Locati on 0x601070 is O bytes inside local var "unprotected2"
declared at tc2l1 pthonce.c:51, in frame #0 of thread 3

Helgrind first announces the creation points of any threads referenced in the error message. Thisis so it can speak
concisely about threads without repeatedly printing their creation point call stacks. Each thread isonly ever announced
once, thefirst timeit appearsin any Helgrind error message.

The main error message begins at the text "Possi bl e data race during read". At the start isinformation
you would expect to see -- address and size of the racing access, whether aread or a write, and the call stack at the
point it was detected.

A second call stack is presented starting at thetext "Thi s conflicts with a previ ous wite". Thisshows
a previous access which also accessed the stated address, and which is believed to be racing against the accessin the
first call stack. Note that this second call stack is limited to a maximum of 8 entriesto limit the memory usage.

Finally, Helgrind may attempt to give a description of the raced-on address in source level terms. In this example, it
identifiesit asalocal variable, shows its name, declaration point, and in which frame (of the first call stack) it lives.
Note that this information is only shown when - - r ead- var - i nf o=yes is specified on the command line. That's

126

Helgrind: athread error detector

because reading the DWARF3 debug information in enough detail to capture variable type and location information
makes Helgrind much slower at startup, and also requires considerable amounts of memory, for large programs.

Once you have your two call stacks, how do you find the root cause of the race?

The first thing to do is examine the source locations referred to by each call stack. They should both show an access
to the same location, or variable.

Now figure out how how that location should have been made thread-safe;

* Perhaps the location was intended to be protected by a mutex? If so, you need to lock and unlock the mutex at both
access points, even if one of the accesses is reported to be a read. Did you perhaps forget the locking at one or
other of the accesses? To help you do this, Helgrind shows the set of locks held by each threads at the time they
accessed the raced-on location.

 Alternatively, perhaps you intended to use a some other scheme to make it safe, such as signalling on a condition
variable. Inall such cases, try to find asynchronisation event (or achain thereof) which separatesthe earlier-observed
access (as shown in the second call stack) from the later-observed access (as shown in the first call stack). In other
words, try to find evidence that the earlier access "happens-before" the later access. See the previous subsection for
an explanation of the happens-before relation.

The fact that Helgrind is reporting a race means it did not observe any happens-before relation between the two
accesses. |f Helgrind is working correctly, it should also be the case that you also cannot find any such relation,
even on detailed inspection of the source code. Hopefully, though, your inspection of the code will show where the
missing synchronisation operation(s) should have been.

7.5. Hints and Tips for Effective Use of Helgrind

Helgrind can be very helpful in finding and resolving threading-related problems. Like al sophisticated tools, it is
most effective when you understand how to play to its strengths.

Helgrind will be less effective when you merely throw an existing threaded program at it and try to make sense of any
reported errors. It will be more effective if you design threaded programs from the start in away that helps Helgrind
verify correctness. The sameistrue for finding memory errors with Memcheck, but applies more here, because thread
checking is a harder problem. Consequently it is much easier to write a correct program for which Helgrind falsely
reports (threading) errorsthan it isto write a correct program for which Memcheck falsely reports (memory) errors.

With that in mind, here are sometips, listed most important first, for getting reliable results and avoiding false errors.
Thefirst two are critical. Any violations of them will swamp you with huge numbers of false data-race errors.

1. Make sure your application, and all the libraries it uses, use the POSIX threading primitives. Helgrind needs to
be able to see all events pertaining to thread creation, exit, locking and other synchronisation events. To do so it
intercepts many POSIX pthreads functions.

Do not roll your own threading primitives (mutexes, etc) from combinations of the Linux futex syscall, atomic
counters, etc. These throw Helgrind's internal what's-going-on models way off course and will give bogus results.

Also, do not reimplement existing POSIX abstractions using other POSIX abstractions. For example, don't build
your own semaphore routines or reader-writer locks from POSIX mutexes and condition variables. Instead use
POSIX reader-writer locks and semaphores directly, since Helgrind supports them directly.

Helgrind directly supports the following POSIX threading abstractions. mutexes, reader-writer locks, condition
variables (but see below), semaphores and barriers. Currently spinlocks are not supported, although they could be
in future.

At the time of writing, the following popular Linux packages are known to implement their own threading
primitives:

127

Helgrind: athread error detector

e Qtversion4.X. Qt 3.X isharmlessin that it only uses POSIX pthreads primitives. Unfortunately Qt 4.X hasits
own implementation of mutexes (QMutex) and thread reaping. Helgrind 3.4.x contains direct support for Qt 4.X
threading, which is experimental but is believed to work fairly well. A side effect of supporting Qt 4 directly is
that Helgrind can be used to debug KDE4 applications. Asthisis an experimental feature, we would particularly
appreciate feedback from folks who have used Helgrind to successfully debug Qt 4 and/or KDE4 applications.

* Runtime support library for GNU OpenMP (part of GCC), at least for GCC versions 4.2 and 4.3. The GNU
OpenMP runtime library (I i bgonp. so) constructs its own synchronisation primitives using combinations of
atomic memory instructions and the futex syscall, which causes total chaos since in Helgrind since it cannot
"see" those.

Fortunately, this can be solved using a configuration-time option (for GCC). Rebuild GCC from source, and
configure using - - di sabl e- 1 i nux- f ut ex. This makes libgomp.so use the standard POSIX threading
primitives instead. Note that this was tested using GCC 4.2.3 and has not been re-tested using more recent GCC
versions. We would appreciate hearing about any successes or failures with more recent versions.

If you must implement your own threading primitives, there are a set of client request macrosin hel gri nd. h to
help you describe your primitives to Helgrind. Y ou should be able to mark up mutexes, condition variables, etc,
without difficulty.

It is aso possible to mark up the effects of thread-safe reference
counting using the ANNOTATE_HAPPENS BEFORE, ANNOTATE_HAPPENS_AFTER and
ANNOTATE_HAPPENS BEFORE FORGET_ALL, macros. Thread-safe reference counting using an atomically
incremented/decremented refcount variable causes Helgrind problems because a one-to-zero transition of the
reference count means the accessing thread has exclusive ownership of the associated resource (normally, a C++
object) and can therefore access it (normally, to run its destructor) without locking. Helgrind doesn't understand
this, and markup is essential to avoid false positives.

Here are recommended guidelines for marking up thread safe reference counting in C++. You only need to mark
up your release methods -- the ones which decrement the reference count. Given aclass like this;

class Myd ass {
unsi gned i nt nRef Count;

void Release (void) {
unsi gned int newCount = atom c_decrenent (&rRef Count) ;
if (newCount == 0) {
delete this;

}
}

the release method should be marked up as follows:

void Release (void) {

unsi gned i nt newCount = atom c_decrenent (&rRef Count) ;

if (newCount == 0) {
ANNCTATE_HAPPENS_AFTER(&rRef Count) ;
ANNOCTATE_HAPPENS_BEFORE_FORGET_ALL(&rRef Count) ;
delete this;

} else {
ANNOCTATE_HAPPENS_BEFORE(&nRef Count) ;

128

Helgrind: athread error detector

}

There are a number of complex, mostly-theoretical objections to this scheme. From a theoretical standpoint it
appears to be impossible to devise a markup scheme which is completely correct in the sense of guaranteeing to
remove al false races. The proposed scheme however works well in practice.

. Avoid memory recycling. If you can't avoid it, you must use tell Helgrind what is going on via the
VALGRI ND_HG CLEAN_MEMORY client request (in hel gri nd. h).

Helgrind is aware of standard heap memory allocation and deallocation that occurs via mal | oc/f r ee/new/
del et e and from entry and exit of stack frames. In particular, when memory is deallocated viaf r ee, del et e,
or function exit, Helgrind considers that memory clean, so when it iseventually reallocated, its history isirrelevant.

However, it is common practice to implement memory recycling schemes. In these, memory to be freed is not
handedtof r ee/del et e, butinstead put into apool of free buffersto be handed out again asrequired. The problem
is that Helgrind has no way to know that such memory is logically no longer in use, and its history is irrelevant.
Hence you must make that explicit, using the VALGRI ND_HG CLEAN MEMORY client request to specify the
relevant address ranges. It's easiest to put these requests into the pool manager code, and use them either when
memory is returned to the pool, or is allocated from it.

. Avoid POSIX condition variables. If you can, use POSIX semaphores (sem t , sem post,sem wai t) to do
inter-thread event signalling. Semaphores with an initial value of zero are particularly useful for this.

Helgrind only partially correctly handles POSIX condition variables. This is because Helgrind can
see inter-thread dependencies between a pt hread cond wait cal and a pt hread _cond_si gnal /
pt hr ead_cond_br oadcast call only if the waiting thread actually gets to the rendezvous first (so that it
actually callspt hr ead_cond_wai t). It can't see dependencies between the threads if the signaller arrivesfirst.
In the latter case, POSIX guidelines imply that the associated boolean condition still provides an inter-thread
synchronisation event, but one which isinvisible to Helgrind.

Theresult of Helgrind missing some inter-thread synchronisation eventsisto cause it to report false positives.

The root cause of this synchronisation lossage is particularly hard to understand, so an example is helpful. It was
discussed at length by Arndt Muehlenfeld ("Runtime Race Detection in Multi-Threaded Programs', Dissertation,
TU Graz, Austrid). The canonical POSIX-recommended usage scheme for condition variablesis as follows:

b is a Bool ean condition, which is Fal se nbst of the tine
cv is a condition variable
MK is its associated nutex

Signaller: Waiter:

I ock(nx) I ock(nx)

b = True while (b == Fal se)
si gnal (cv) wai t (cv, nx)

unl ock(nx) unl ock(nx)

Assume b is False most of the time. If the waiter arrives at the rendezvous firdt, it enters its while-loop, waits for
the signaller to signal, and eventually proceeds. Helgrind sees the signal, notes the dependency, and all iswell.

If thesignaller arrivesfirst, b is set to true, and the signal disappearsinto nowhere. When the waiter later arrives, it
does not enter its while-loop and simply carries on. But even in this case, the waiter code following the while-loop
cannot execute until the signaller setsb to True. Hence thereis still the same inter-thread dependency, but thistime
it isthrough an arbitrary in-memory condition, and Helgrind cannot seeiit.

129

Helgrind: athread error detector

By comparison, Helgrind's detection of inter-thread dependencies caused by semaphore operations is believed to
be exactly correct.

Asfar as| know, asolution to this problem that does not require source-level annotation of condition-variable wait
loops is beyond the current state of the art.

. Make sure you are using a supported Linux distribution. At present, Helgrind only properly supports glibc-2.3
or later. This in turn means we only support glibc's NPTL threading implementation. The old LinuxThreads
implementation is not supported.

. If your application is using thread local variables, helgrind might report false positive race conditions on these
variables, despite being very probably race free. On Linux, you can use - - si m hi nt s=deacti vat e-
pt hr ead- st ack- cache- vi a- hack to avoid such false positive error messages (see --sim-hints).

. Round up all finished threadsusing pt hr ead_j oi n. Avoid detaching threads: don't create threadsin the detached
state, and don't call pt hr ead_det ach on existing threads.

Using pt hr ead_j oi n to round up finished threads provides a clear synchronisation point that both Helgrind
and programmers can see. If you don't call pt hr ead_j oi n on athread, Helgrind has no way to know when it
finishes, relative to any significant synchronisation points for other threads in the program. So it assumes that the
thread lingers indefinitely and can potentially interfere indefinitely with the memory state of the program. It has
every right to assume that -- after al, it might really be the case that, for scheduling reasons, the exiting thread did
run very slowly in the last stages of itslife.

. Perform thread debugging (with Helgrind) and memory debugging (with Memcheck) together.

Helgrind tracks the state of memory in detail, and memory management bugs in the application are liable to cause
confusion. In extreme cases, applications which do many invalid reads and writes (particularly to freed memory)
have been known to crash Helgrind. So, ideally, you should make your application Memcheck-clean before using
Helgrind.

It may be impossible to make your application Memcheck-clean unless you first remove threading bugs. In
particular, it may be difficult to remove all reads and writes to freed memory in multithreaded C++ destructor
sequences at program termination. So, ideally, you should make your application Helgrind-clean before using
Memcheck.

Since this circularity is obviously unresolvable, at least bear in mind that Memcheck and Helgrind are to some
extent complementary, and you may need to use them together.

. POSIX requiresthat implementations of standard I/O (pri ntf ,fprintf,fwite,fread,etc) arethread safe.
Unfortunately GNU libc implements this by using internal locking primitives that Helgrind is unable to intercept.
Consequently Helgrind generates many false race reports when you use these functions.

Helgrind attempts to hide these errors using the standard Valgrind error-suppression mechanism. So, at least for
simple test cases, you don't see any. Nevertheless, some may slip through. Just something to be aware of.

. Helgrind's error checks do not work properly inside the system threading library itself (I i bpt hr ead. so), and
it usually observes large numbers of (false) errorsin there. Valgrind's suppression system then filters these out, so
you should not see them.

If you see any race errorsreported wherel i bpt hr ead. so or| d. so isthe object associated with the innermost
stack frame, please file a bug report at http://www.valgrind.org/.

130

http://www.valgrind.org/

Helgrind: athread error detector

7.6. Helgrind Command-line Options

The following end-user options are available:
--free-is-wite=no|yes [default: no]

When enabled (not the default), Helgrind treats freeing of heap memory asif the memory waswritten immediately
before the free. This exposes races where memory is referenced by one thread, and freed by another, but thereis
no observable synchronisation event to ensure that the reference happens before the free.

This functionality isnew in Valgrind 3.7.0, and is regarded as experimental. It is not enabled by default because
its interaction with custom memory allocators is not well understood at present. User feedback is welcomed.

--track-1 ockorders=no|yes [default: yes]

When enabled (the default), Helgrind performs lock order consistency checking. For some buggy programs, the
large number of lock order errors reported can become annoying, particularly if you're only interested in race
errors. You may therefore find it helpful to disable lock order checking.

--history-Ievel =none| approx| full [default: full]

--history-1evel =ful | (thedefault) causes Helgrind collects enough information about "old" accesses that
it can produce two stack traces in a race report -- both the stack trace for the current access, and the trace for
the older, conflicting access. To limit memory usage, "old" accesses stack traces are limited to a maximum of 8
entries, evenif - - num cal | er s valueisbigger.

Collecting such information is expensive in both speed and memory, particularly for programsthat do many inter-
thread synchronisation events (locks, unlocks, etc). Without such information, it ismore difficult to track down the
root causes of races. Nonethel ess, you may not need it in situations where you just want to check for the presence
or absence of races, for example, when doing regression testing of a previously race-free program.

--hi story-1 evel =none is the opposite extreme. It causes Helgrind not to collect any information about
previous accesses. This can be dramatically faster than - - hi st ory-1 evel =ful | .

--hi story-| evel =appr ox providesacompromise between these two extremes. It causes Helgrind to show
a full trace for the later access, and approximate information regarding the earlier access. This approximate
information consists of two stacks, and the earlier access is guaranteed to have occurred somewhere between
program points denoted by the two stacks. Thisis not as useful as showing the exact stack for the previous access
(as--history-1evel =ful | does), but it is better than nothing, and it is almost as fast as - - hi st or y-
| evel =none.

--del ta-stacktrace=no|yes [default: yes on |inux and64/x86]
Thisflag only hasany effect a - - hi story-1 evel =ful I .
--del t a- st ackt race configures the way Helgrind captures the stacktraces for the option - - hi st ory-
| evel =ful | . Such a stacktrace is typically needed each time a new piece of memory is read or written in a

basic block of instructions.

--del t a- st ackt race=no causes Helgrind to compute a full history stacktrace from the unwind info each
time a stacktrace is needed.

--del t a- st ackt r ace=yes indicatesto Helgrind to derive anew stacktrace from the previous stacktrace, as
long as there was no call instruction, no return instruction, or any other instruction changing the call stack since
the previous stacktrace was captured. If no such instruction was executed, the new stacktrace can be derived from

131

Helgrind: athread error detector

the previous stacktrace by just changing the top frame to the current program counter. This option can speed up
Helgrind by 25% when using - - hi st ory-1 evel =ful | .

The following aspects have to be considered when using - - del t a- st ackt race=yes :

* Insome cases (for examplein afunction prologue), the valgrind unwinder might not properly unwind the stack,
due to some limitations and/or due to wrong unwind info. When using --delta-stacktrace=yes, the wrong stack
trace captured in the function prologue will be kept till the next call or return.

« On the other hand, --delta-stacktrace=yes sometimes helps to obtain a correct stacktrace, for example when
the unwind info allows a correct stacktrace to be done in the beginning of the sequence, but not later on in the
instruction sequence.

» Determining which instructions are changing the callstack is partially based on platform dependent heuristics,
which have to be tuned/validated specifically for the platform. Also, unwinding in a function prologue must
be good enough to allow using --delta-stacktrace=yes. Currently, the option --delta-stacktrace=yes has been
reasonably validated only on linux x86 32 bits and linux amd64 64 bits. For more details about how to
validate --delta-stacktrace=yes, see debug option --hg-sanity-flags and the function check_cached _rcec ok in
libhb_core.c.

--conflict-cache-size=N [default: 1000000]

Thisflag only hasany effect at - - hi story-1 evel =ful | .

Information about "old" conflicting accessesis stored in acache of limited size, with L RU-style management. This
is hecessary because it isn't practical to store a stack trace for every single memory access made by the program.
Historical information on not recently accessed locations is periodically discarded, to free up space in the cache.

This option controls the size of the cache, in terms of the number of different memory addresses for which
conflicting accessinformationisstored. If you find that Helgrind is showing race errorswith only one stack instead
of the expected two stacks, try increasing this value.

The minimum value is 10,000 and the maximum is 30,000,000 (thirty times the default value). Increasing the
value by 1 increases Helgrind's memory requirement by very roughly 100 bytes, so the maximum value will easily
eat up three extra gigabytes or so of memory.

--check-stack-refs=no|yes [default: yes]

By default Helgrind checks all data memory accesses made by your program. This flag enables you to skip
checking for accesses to thread stacks (local variables). This can improve performance, but comes at the cost of
missing races on stack-allocated data.

gnor e-t hread- creati on=<yes| no> [defaul t: no]

Controlswhether all activitiesduring thread creation should beignored. By default enabled only on Solaris. Solaris
provides higher throughput, parallelism and scalability than other operating systems, at the cost of more fine-
grained locking activity. This means for example that when a thread is created under glibc, just one big lock is
used for all thread setup. Solarislibc uses several fine-grained locks and the creator thread resumesits activities as
soon as possible, leaving for example stack and TL S setup sequence to the created thread. This situation confuses
Helgrind asit assumesthereis somefal se ordering in place between creator and created thread; and therefore many
typesof race conditionsin the application would not bereported. To prevent such fal se ordering, thiscommand line
option isset to yes by default on Solaris. All activity (loads, stores, client requests) is therefore ignored during:

 pthread_create() call in the creator thread

« thread creation phase (stack and TLS setup) in the created thread

132

Helgrind: athread error detector

Also new memory alocated during thread creation is untracked, that is race reporting is suppressed there. DRD
does the same thing implicitly. This is necessary because Solaris libc caches many objects and reuses them for
different threads and that confuses Helgrind.

7.7. Helgrind Monitor Commands

The Helgrind tool provides monitor commands handled by Valgrind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver).

« info locks [l ock_addr] showsthelist of locks and their status. If | ock_addr isgiven, only shows the
lock located at this address.

In the following example, helgrind knows about onelock. Thislock islocated at the guest addressga 0x8049a20.
Thelock kind isr dwr indicating a reader-writer lock. Other possible lock kinds are nonRec (simple mutex, non
recursive) and nbRec (simple mutex, possibly recursive). The lock kind is then followed by the list of threads
helding thelock. Inthe below example, R1L: t hread #6 ti d 3 indicatesthat the helgrind thread #6 has acquired
(once, as the counter following the letter R is one) the lock in read mode. The helgrind thread nr isincremented for
each started thread. The presence of 'tid 3' indicates that the thread #6 is has not exited yet and is the valgrind tid
3. If athread has terminated, then thisisindicated with 'tid (exited)'.

(gdb) rmonitor info | ocks
Lock ga 0x8049a20 {

ki nd r dwr
{ Rl:thread #6 tid 3}
}
(gdb)

If you givetheoption - - r ead- var - i nf o=yes, then more information will be provided about the lock location,
such as the global variable or the heap block that contains the lock:

Lock ga 0x8049a20 {
Locati on 0x8049a20 is 0 bytes inside global var "s_rw ock"”
decl ared at rw ock race.c: 17
ki nd r dwr
{ RlL:thread #3 tid 3 }

}

* accesshistory <addr> [<Ien>] shows the access history recorded for <len> (default 1) bytes starting
at <addr>. For each recorded access that overlaps with the given range, accesshi st or y shows the operation
type (read or write), the address and size read or written, the helgrind thread nr/valgrind tid number that did the
operation and the locks held by the thread at the time of the operation. The oldest access is shown first, the most
recent access is shown last.

In the following example, we see first a recorded write of 4 bytes by thread #7 that has modified the given 2 bytes
range. The second recorded write is the most recent recorded write : thread #9 modified the same 2 bytes as part of
a4 byteswrite operation. Thelist of locks held by each thread at the time of the write operation are also shown.

(gdb) nonitor accesshistory 0x8049D8A 2

wite of size 4 at 0x8049D88 by thread #7 tid 3

==6319== Locks held: 2, at address 0x8049D8C (and 1 that can't be shown)
==6319== at 0x804865F: child_fnl (locked_vs_unl ocked2. c: 29)

==6319== by Ox400AE61: nythread_w apper (hg_intercepts.c:234)

133

Helgrind: athread error detector

==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S:130)

wite of size 4 at 0x8049D88 by thread #9 tid 2
==6319== Locks hel d: 2, at addresses 0x8049DA4 0x8049DD4

==6319== at 0x804877B: child_fn2 (Il ocked _vs_unl ocked2. c: 45)
==6319== by O0x400AE61: nyt hread_wr apper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S:130)

xtmenory [<fil enane> default xtnenory.kcg. %. %] requests Helgrind tool to produce an xtree
heap memory report. See Execution Trees for a detailed explanation about execution trees.

7.8. Helgrind Client Requests

The following client requests are defined in hel gri nd. h. Seethat file for exact details of their arguments.

VALGRI ND_HG_CLEAN_MEMORY

This makes Helgrind forget everything it knows about a specified memory range. This is particularly useful for
memory allocators that wish to recycle memory.

ANNOTATE_HAPPENS_BEFORE
ANNOTATE_HAPPENS_AFTER
ANNOTATE_NEW MEMORY
ANNOTATE_RW.OCK_CREATE
ANNOTATE_RW.OCK_DESTROY
ANNOTATE_RW.OCK_ACQUI RED
ANNOTATE_RW.OCK_RELEASED

These are used to describe to Helgrind, the behaviour of custom (non-POSIX) synchronisation primitives, which it
otherwise has no way to understand. See commentsin hel gri nd. h for further documentation.

7.9. A To-Do List for Helgrind

Thefollowingisalist of loose ends which should be tidied up some time.

For lock order errors, print the complete lock cycle, rather than only doing for size-2 cycles as at present.

The conflicting access mechanism sometimes mysteriously fails to show the conflicting access stack, even when
provided with unbounded storage for conflicting access info. This should be investigated.

Document races caused by GCC's thread-unsafe code generation for speculative stores. In the
interim see ht t p: / / gcc. gnu. org/ m / gcc/ 2007- 10/ nsg00266. ht Ml and http://I km . org/
| ki / 2007/ 10/ 24/ 673.

Don't update the lock-order graph, and don't check for errors, when a "try"-style lock operation happens (e.g.
pt hread_rut ex_tryl ock). Such calls do not add any real restrictions to the locking order, since they can

134

Helgrind: athread error detector

awaysfail to acquire the lock, resulting in the caller going off and doing Plan B (presumably it will have a Plan B).
Doing such checks could generate false lock-order errors and confuse users.

» Performance can be very poor. Slowdowns on the order of 100:1 are not unusual. There is limited scope for
performance improvements.

135

8. DRD: athread error detector

To usethistool, you must specify - - t ool =dr d on the Valgrind command line.

8.1. Overview

DRD isaValgrind tool for detecting errorsin multithreaded C and C++ programs. The tool worksfor any program that
uses the POSIX threading primitives or that uses threading concepts built on top of the POSIX threading primitives.

8.1.1. Multithreaded Programming Paradigms

There are two possible reasons for using multithreading in a program:

To model concurrent activities. Assigning one thread to each activity can be a great simplification compared to
multiplexing the states of multiple activities in a single thread. This is why most server software and embedded
software is multithreaded.

To use multiple CPU cores simultaneously for speeding up computations. This is why many High Performance
Computing (HPC) applications are multithreaded.

Multithreaded programs can use one or more of the following programming paradigms. Which paradigm isappropriate
depends e.g. on the application type. Some examples of multithreaded programming paradigms are:

Locking. Datathat is shared over threadsis protected from concurrent accesses vialocking. E.g. the POSIX threads
library, the Qt library and the Boost.Thread library support this paradigm directly.

Message passing. No datais shared between threads, but threads exchange data by passing messages to each other.
Examples of implementations of the message passing paradigm are MPI and CORBA.

Automatic parallelization. A compiler converts a sequential program into a multithreaded program. The original
program may or may not contain parallelization hints. One example of such parallelization hints is the OpenMP
standard. In this standard a set of directives are defined which tell acompiler how to parallelize a C, C++ or Fortran
program. OpenMP is well suited for computational intensive applications. As an example, an open source image
processing software package is using OpenM P to maximize performance on systemswith multiple CPU cores. GCC
supports the OpenM P standard from version 4.2.0 on.

Software Transactional Memory (STM). Any data that is shared between threads is updated via transactions. After
each transaction it is verified whether there were any conflicting transactions. If there were conflicts, the transaction
is aborted, otherwise it is committed. This is a so-called optimistic approach. There is a prototype of the Intel C++
Compiler available that supports STM. Research about the addition of STM support to GCC is ongoing.

DRD supports any combination of multithreaded programming paradigms as long as the implementation of these
paradigms is based on the POSIX threads primitives. DRD however does not support programs that use e.g. Linux'
futexes directly. Attempts to analyze such programs with DRD will cause DRD to report many false positives.

8.1.2. POSIX Threads Programming Model

POSIX threads, aso known as Pthreads, is the most widely available threading library on Unix systems.

The POSIX threads programming model is based on the following abstractions:

A shared address space. All threads running within the same process share the same address space. All data, whether
shared or not, isidentified by its address.

136

DRD: athread error detector

» Regular load and store operations, which allow to read values from or to write values to the memory shared by all
threads running in the same process.

» Atomic store and load-modify-store operations. While these are not mentioned in the POSI X threads standard, most
miCroprocessors support atomic memory operations.

» Threads. Each thread represents a concurrent activity.

» Synchronization objects and operations on these synchronization objects. The following types of synchronization
objects have been defined in the POSIX threads standard: mutexes, condition variables, semaphores, reader-writer
synchronization objects, barriers and spinlocks.

Which source code statements generate which memory accesses depends on the memory model of the programming
language being used. There is not yet a definitive memory model for the C and C++ languages. For a draft memory
model, see also the document WG21/N2338: Concurrency memory model compiler conseguences.

For more information about POSIX threads, see also the Single UNIX Specification version 3, also known as |EEE
Std 1003.1.

8.1.3. Multithreaded Programming Problems

Depending on which multithreading paradigm is being used in a program, one or more of the following problems
can occur:

» Dataraces. One or more threads access the same memory location without sufficient locking. Most but not all data
races are programming errors and are the cause of subtle and hard-to-find bugs.

 Lock contention. One thread blocks the progress of one or more other threads by holding alock too long.

 Improper use of the POSIX threads API. Most implementations of the POSIX threads APl have been optimized for
runtime speed. Such implementations will not complain on certain errors, e.g. when amutex is being unlocked by
another thread than the thread that obtained alock on the mutex.

» Deadlock. A deadlock occurs when two or more threads wait for each other indefinitely.

» False sharing. If threads that run on different processor cores access different variables located in the same cache
line frequently, thiswill slow down the involved threads a lot due to frequent exchange of cache lines.

Although the likelihood of the occurrence of dataraces can be reduced through a disciplined programming style, atool
for automatic detection of data races is a necessity when developing multithreaded software. DRD can detect these,
aswell aslock contention and improper use of the POSIX threads API.

8.1.4. Data Race Detection

Theresult of load and store operations performed by a multithreaded program depends on the order in which memory
operations are performed. This order is determined by:

1. All memory operations performed by the same thread are performed in program order, that is, the order determined
by the program source code and the results of previous |oad operations.

2. Synchronization operations determine certain ordering constraints on memory operations performed by different
threads. These ordering constraints are called the synchronization order.

The combination of program order and synchronization order is called the happens-before relationship. This concept
was first defined by S. Adve et a in the paper Detecting data races on weak memory systems, ACM SIGARCH
Computer Architecture News, v.19 n.3, p.234-243, May 1991.

137

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html
http://www.opengroup.org/onlinepubs/000095399/idx/threads.html
http://www.opengroup.org/onlinepubs/000095399/idx/threads.html

DRD: athread error detector

Two memory operations conflict if both operations are performed by different threads, refer to the same memory
location and at least one of them is a store operation.

A multithreaded program is data-race free if al conflicting memory accesses are ordered by synchronization
operations.

A well known way to ensure that a multithreaded program is data-race free is to ensure that a locking discipline is
followed. It ise.g. possible to associate amutex with each shared dataitem, and to hold alock on the associated mutex
while the shared data is accessed.

All programs that follow a locking discipline are data-race free, but not all data-race free programs follow a locking
discipline. There exist multithreaded programs where access to shared data is arbitrated via condition variables,
semaphores or barriers. As an example, a certain class of HPC applications consists of a sequence of computation
steps separated in time by barriers, and where these barriers are the only means of synchronization. Although there
are many conflicting memory accesses in such applications and although such applications do not make use mutexes,
most of these applications do not contain data races.

There exist two different approachesfor verifying the correctness of multithreaded programs at runtime. The approach
of the so-called Eraser algorithm isto verify whether all shared memory accesses follow a consistent locking strategy.
And the happens-before data race detectors verify directly whether all interthread memory accesses are ordered by
synchronization operations. While the last approach is more complex to implement, and while it is more sensitive to
OS scheduling, it is a general approach that works for all classes of multithreaded programs. An important advantage
of happens-before data race detectors is that these do not report any false positives.

DRD is based on the happens-before a gorithm.

8.2. Using DRD
8.2.1. DRD Command-line Options

The following command-line options are available for controlling the behavior of the DRD tool itself:
- - check- st ack- var =<yes| no> [defaul t: no]

Controls whether DRD detects data races on stack variables. Verifying stack variables is disabled by default
because most programs do not share stack variables over threads.

--exclusive-threshol d=<n> [defaul t: off]

Print an error message if any mutex or writer lock has been held longer than the time specified in milliseconds.
This option enables the detection of lock contention.

--join-list-vol=<n> [default: 10]

Data races that occur between a statement at the end of one thread and another thread can be missed if memory
access information is discarded immediately after athread has been joined. This option alows one to specify for
how many joined threads memory access information should be retained.

--first-race-onl y=<yes|no> [default: no]

Whether to report only the first data race that has been detected on a memory location or all data races that have
been detected on a memory location.

--free-is-wite=<yes|no> [default: no]

Whether to report races between accessing memory and freeing memory. Enabling this option may cause DRD
to run slightly slower. Notes:

138

DRD: athread error detector

e Don't enable this option when using custom memory alocators that use the
VG_USERREQ MALLCCLI KE_BLOCK and VG_USERREQ FREELI KE_BLOCK because that would
result in false positives.

» Don't enable this option when using reference-counted objects because that will result in false
positives, even when that code has been annotated properly with ANNOTATE_HAPPENS BEFORE and
ANNOTATE_HAPPENS_AFTER. See e.g. the output of the following command for an example: val gri nd
--tool=drd --free-is-wite=yes drd/tests/annotate_smart_pointer.

--report-signal -unl ocked=<yes| no> [defaul t: yes]

Whether to report calls to pt hr ead_cond_si gnal and pt hr ead_cond_br oadcast where the mutex
associated with the signal through pt hr ead_cond_wai t or pt hread_cond_ti ned_wai t is not locked
at the time the signal is sent. Sending a signal without holding a lock on the associated mutex is a common
programming error which can cause subtle race conditions and unpredictable behavior. There exist some
uncommon synchronization patterns however where it is safe to send a signal without holding a lock on the
associated mutex.

- -segnent - ner gi ng=<yes| no> [default: yes]

Controls segment merging. Segment merging is an algorithm to limit memory usage of the data race detection
algorithm. Disabling segment merging may improve the accuracy of the so-called 'other segments' displayed in
race reports but can also trigger an out of memory error.

--segnent - mergi ng-i nterval =<n> [defaul t: 10]

Perform segment merging only after the specified number of new segments have been created. Thisisan advanced
configuration option that allows one to choose whether to minimize DRD's memory usage by choosing a low
value or to let DRD run faster by choosing a dightly higher value. The optimal value for this parameter depends
on the program being analyzed. The default value works well for most programs.

--shared-threshol d=<n> [defaul t: off]

Print an error message if areader lock has been held longer than the specified time (in milliseconds). This option
enables the detection of lock contention.

--show confl - seg=<yes| no> [defaul t: yes]

Show conflicting segments in race reports. Since this information can help to find the cause of a data race, this
option is enabled by default. Disabling this option makes the output of DRD more compact.

- -show st ack- usage=<yes| no> [defaul t: no]

Print stack usage at thread exit time. When a program creates a large number of threads it becomes important
to limit the amount of virtual memory alocated for thread stacks. This option makes it possible to observe how
much stack memory has been used by each thread of the client program. Note: the DRD tool itself allocates some
temporary data on the client thread stack. The space necessary for this temporary data must be allocated by the
client program when it allocates stack memory, but is hot included in stack usage reported by DRD.

ghor e-t hread-creati on=<yes| no> [default: no]

Controlswhether all activitiesduring thread creation should beignored. By default enabled only on Solaris. Solaris
provides higher throughput, parallelism and scalability than other operating systems, at the cost of more fine-
grained locking activity. Thismeansfor examplethat when athread is created under glibc, just onebiglock isused
for all thread setup. Solarislibc uses several fine-grained locks and the creator thread resumesits activities as soon
as possible, leaving for example stack and TL S setup sequence to the created thread. This situation confuses DRD

139

DRD: athread error detector

as it assumes there is some false ordering in place between creator and created thread; and therefore many types
of race conditions in the application would not be reported. To prevent such false ordering, this command line
option isset to yes by default on Solaris. All activity (loads, stores, client requests) is therefore ignored during:
 pthread_create() call in the creator thread
* thread creation phase (stack and TLS setup) in the created thread
The following options are available for monitoring the behavior of the client program:
--trace-addr=<address> [defaul t: none]
Trace al load and store activity for the specified address. This option may be specified more than once.

--ptrace-addr=<address> [default: none]

Traceadl load and store activity for the specified address and keep doing that even after the memory at that address
has been freed and reallocated.

--trace-all oc=<yes|no> [default: no]
Trace all memory alocations and deallocations. May produce a huge amount of output.
--trace-barrier=<yes| no> [default: no]
Trace all barrier activity.
--trace-cond=<yes| no> [default: no]
Trace all condition variable activity.
--trace-fork-join=<yes|no> [default: no]
Trace all thread creation and all thread termination events.
--trace- hb=<yes| no> [default: no]

Trace execution of the ANNOTATE_HAPPENS_BEFORE(), ANNOTATE HAPPENS AFTER() and
ANNCTATE_HAPPENS_DONE() client requests.

--trace-nmut ex=<yes| no> [defaul t: no]
Trace all mutex activity.

--trace-rw ock=<yes| no> [default: no]
Trace all reader-writer lock activity.

--trace-senmaphore=<yes| no> [defaul t: no]

Trace all semaphore activity.

8.2.2. Detected Errors: Data Races

DRD prints a message every time it detects a data race. Please keep the following in mind when interpreting DRD's
output:

140

DRD: athread error detector

Every thread is assigned a thread ID by the DRD tool. A thread ID is a number. Thread ID's start at one and are
never recycled.

The term segment refers to a consecutive sequence of load, store and synchronization operations, all issued by the
same thread. A segment always starts and ends at a synchronization operation. Data race analysis is performed
between segments instead of between individual |oad and store operations because of performance reasons.

There are dways at |east two memory accessesinvolved in adatarace. Memory accessesinvolved in adatarace are
called conflicting memory accesses. DRD prints areport for each memory access that conflicts with a past memory
access.

Below you can find an example of a message printed by DRD when it detects a data race:

$ valgrind --tool =drd --read-var-info=yes drd/tests/rw ock_race

=9466== Thread 3:
=9466== Conflicting |oad by thread 3 at 0x006020b8 size 4

=9466== at 0x400B6C. thread_func (rw ock_race. c: 29)

=9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
=9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)
=9466== by 0x53250CC. clone (in /lib64/1ibc-2.8.s0)

=9466== Locati on 0x6020b8 is 0 bytes inside |ocal var "s_racy"
=9466== declared at rw ock _race.c:18, in frame #0 of thread 3
=9466== Ot her segnent start (thread 2)

=9466== at 0x4C2847D: pthread_rw ock_rdl ock* (drd_pthread_intercepts.c:813)
=9466== by 0x400B6B: thread func (rw ock _race. c: 28)

=9466== by 0x4C291DF: vg_thread_w apper (drd_pthread_intercepts.c: 186)
=9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

=9466== by 0x53250CC. clone (in /lib64/1ibc-2.8.s0)

=9466== Ot her segnent end (thread 2)

=9466== at 0x4C28B54: pthread_rw ock_unl ock* (drd_pthread_intercepts.c:912)
=9466== by 0x400B84: thread func (rw ock_race. c: 30)

=9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
=9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.s0)

=9466== by 0x53250CC. clone (in /lib64/1ibc-2.8.s0)

The above report has the following meaning:

The number in the column on the left is the process ID of the process being analyzed by DRD.
Thefirst line ("Thread 3") tells you the thread ID for the thread in which context the data race has been detected.

The next line tellswhich kind of operation was performed (load or store) and by which thread. On the same line the
start address and the number of bytesinvolved in the conflicting access are also displayed.

Next, the call stack of the conflicting accessisdisplayed. If your program has been compiled with debug information
(- 9), thiscall stack will include file names and line numbers. The two bottommost framesin thiscall stack (cl one
andst art _t hr ead) show how the NPTL startsathread. Thethird frame (vg_t hr ead_wr apper) isadded by
DRD. The fourth frame (t hr ead_f unc) isthe first interesting line because it shows the thread entry point, that
isthe function that has been passed as the third argument to pt hr ead_cr eat e.

Next, the allocation context for the conflicting address is displayed. For dynamically allocated data the allocation
call stack is shown. For static variables and stack variables the allocation context is only shown when the option - -
r ead- var - i nf o=yes has been specified. Otherwise DRD will print Al | ocati on cont ext: unknown.

141

DRD: athread error detector

* A conflicting accessinvolvesat least two memory accesses. For one of these accesses an exact call stack isdisplayed,
and for the other accesses an approximate call stack is displayed, namely the start and the end of the segments of
the other accesses. Thisinformation can be interpreted as follows:

1. Start at the bottom of both call stacks, and count the number stack frameswith identical function name, file name
and line number. In the above example the three bottommost frames are identical (cl one, start _t hr ead
andvg_t hread_wr apper).

2. The next higher stack frame in both call stacks now tells you between in which source code region the other
memory access happened. The above output tell sthat the other memory accessinvolved in the datarace happened
between source code lines 28 and 30 infiler Wl ock_r ace. c.

8.2.3. Detected Errors: Lock Contention

Threads must be able to make progress without being blocked for too long by other threads. Sometimes athread hasto
wait until amutex or reader-writer synchronization object is unlocked by another thread. Thisis called |ock contention.

Lock contention causes delays. Such delays should be as short as possible. The two command line options - -
excl usi ve-t hreshol d=<n> and - - shar ed- t hr eshol d=<n> make it possible to detect excessive lock
contention by making DRD report any lock that has been held longer than the specified threshold. An example:

$ valgrind --tool =drd --exclusive-threshol d=10 drd/tests/hold_lock -i 500

==10668== Acquired at:

==10668== at 0x4C267C8: pthread nutex | ock (drd _pthread intercepts.c: 395)
==10668== by 0x400D92: nmain (hold_I ock.c:51)

==10668== Lock on mutex Ox7fefffd50 was held during 503 ns (threshold: 10 mns).
==10668== at Ox4C26ADA: pt hread mutex_unlock (drd _pthread intercepts.c: 441)

==10668== by 0x400DB5: nain (hol d_I ock. c: 55)

Thehol d_I ock test program holdsalock aslong asspecified by the- i (interval) argument. The DRD output reports
that the lock acquired at line 51 in source filehol d_I| ock. ¢ and released at line 55 was held during 503 ms, while
athreshold of 10 mswas specified to DRD.

8.2.4. Detected Errors: Misuse of the POSIX threads API

DRD is able to detect and report the following misuses of the POSIX threads API:

 Passing the address of one type of synchronization object (e.g. amutex) to a POSIX API call that expects a pointer
to another type of synchronization object (e.g. a condition variable).

» Attempts to unlock a mutex that has not been locked.

» Attemptsto unlock a mutex that was locked by another thread.

» Attemptsto lock a mutex of type PTHREAD MUTEX_NCORMAL or a spinlock recursively.

* Destruction or deallocation of alocked mutex.

» Sending asignal to a condition variable while no lock is held on the mutex associated with the condition variable.

e Cdling pt hread_cond_wai t on amutex that is not locked, that is locked by another thread or that has been
locked recursively.

142

DRD: athread error detector

Associating two different mutexes with a condition variable through pt hr ead_cond_wai t .

Destruction or deallocation of a condition variable that is being waited upon.

Destruction or deallocation of alocked reader-writer synchronization object.

Attempts to unlock a reader-writer synchronization object that was not locked by the calling thread.

Attempts to recursively lock areader-writer synchronization object exclusively.

Attempts to pass the address of a user-defined reader-writer synchronization object to a POSIX threads function.

Attempts to pass the address of a POSIX reader-writer synchronization object to one of the annotations for user-
defined reader-writer synchronization objects.

Reinitialization of a mutex, condition variable, reader-writer lock, semaphore or barrier.
Destruction or deallocation of a semaphore or barrier that is being waited upon.
Missing synchronization between barrier wait and barrier destruction.

Exiting a thread without first unlocking the spinlocks, mutexes or reader-writer synchronization objects that were
locked by that thread.

Passing aninvalid thread ID to pt hr ead_j oi n or pt hr ead_cancel .

8.2.5. Client Requests

Just asfor other Valgrind toolsit is possibleto let aclient program interact with the DRD tool through client requests.
In addition to the client requests several macros have been defined that allow to use the client requestsin aconvenient

way.

The interface between client programs and the DRD tool is defined in the header file <val gri nd/ drd. h>. The
available macros and client requests are:

The macro DRD GET_VALGRIND THREADID and the corresponding client request
VG USERREQ DRD GET_VALGRI ND_THREAD | D. Query the thread ID that has been assigned by the
Valgrind core to the thread executing this client request. Valgrind's thread I D's start at one and are recycled in case
athread stops.

The macro DRD_GET_DRD_THREADI D and the corresponding client request
VG _USERREQ DRD GET_DRD THREAD | D. Query thethread ID that has been assigned by DRD to the thread
executing this client request. These are the thread 1D's reported by DRD in data race reports and in trace messages.
DRD'sthread ID's start at one and are never recycled.

The macros DRD | GNORE_VAR(x) , ANNOTATE TRACE_MEMORY(&x) and the corresponding client request
VG _USERREQ DRD START_SUPPRESSI ON. Some applications contain intentional races. There exist e.g.
applications where the same value is assigned to a shared variable from two different threads. It may be more
convenient to suppress such races than to solve these. This client request allows one to suppress such races.

The macro DRD_STOP_| GNORI NG_VAR(x) and the corresponding client request
VG USERREQ DRD FI NI SH SUPPRESSI ON. Tell DRD to no longer ignore data races for the address
range that was suppressed either via the macro DRD | GNORE _VAR(x) or via the client request
VG_USERREQ DRD START_SUPPRESSI ON.

The macro DRD_TRACE_VAR(x) . Trace al load and store activity for the address range starting at &< and
occupying si zeof (x) bytes. When DRD reports adatarace on aspecified variable, and it's not immediately clear

143

DRD: athread error detector

which source code statements triggered the conflicting accesses, it can be very helpful to trace all activity on the
offending memory location.

The macro DRD_STOP_TRACI NG_VAR(x) . Stop tracing load and store activity for the address range starting at
&x and occupying si zeof (x) bytes.

The macro ANNOTATE_TRACE _MEMORY(&x) . Trace all load and store activity that touches at least the single
byte at the address &x.

The client request VG_USERREQ DRD START_TRACE ADDR, which alows one to trace all load and store
activity for the specified address range.

The client request VG_USERREQ _DRD_STOP_TRACE_ADDR. Do no longer trace load and store activity for the
specified address range.

The macro ANNOTATE_HAPPENS BEFORE(addr) tells DRD to insert a mark. Insert this macro just after an
access to the variable at the specified address has been performed.

The macro ANNOTATE HAPPENS AFTER(addr) tells DRD that the next access to the variable at
the specified address should be considered to have happened after the access just before the latest
ANNOTATE_HAPPENS BEFORE(addr) annotation that references the same variable. The purpose of these two
macrosistotell DRD about the order of inter-thread memory accessesimplemented via atomic memory operations.
Seeasodrd/tests/annotate _snmart poi nter. cpp for an example.

The macro ANNOTATE_RW.OCK_CREATE(r w ock) tells DRD that the object at addressr Wl ock is areader-
writer synchronization object that isnot apt hr ead_rw ock_t synchronization object. Seeasodr d/ t est s/
annot at e_rw ock. ¢ for an example.

The macro ANNOTATE_RW.OCK_DESTROY(rw ock) tells DRD that the reader-writer synchronization object
at addressr wl ock has been destroyed.

The macro ANNOTATE_WRI TERLOCK_ACQUI RED(r Wl ock) tellsDRD that awriter lock has been acquired on
the reader-writer synchronization object at addressr W ock.

The macro ANNOTATE_READERLOCK_ACQUI RED(r W ock) tellsDRD that areader lock has been acquired on
the reader-writer synchronization object at addressr W ock.

The macro ANNOTATE_ RW.OCK_ACQUI RED(rwl ock, is_w) tellsDRD that awriter lock (whenis_w !
= 0) or that areader lock (wheni s_w == 0) has been acquired on the reader-writer synchronization object at
addressr wl ock.

The macro ANNOTATE_WRI TERLOCK_RELEASED(r Wl ock) tellsDRD that awriter lock has been released on
the reader-writer synchronization object at addressr W ock.

The macro ANNOTATE_READERLOCK_RELEASED(rw ock) tellsDRD that areader lock has been released on
the reader-writer synchronization object at addressr W ock.

The macro ANNOTATE_ RW.OCK_RELEASED(rw ock, is_w) tells DRD that awriter lock (whenis_w !
= 0) or that areader lock (wheni s_w == 0) has been released on the reader-writer synchronization object at
addressr wl ock.

The macro ANNOTATE_BARRI ER I NI T(barrier, count, reinitialization_allowed) tels
DRD that anew barrier object at the addressbar r i er hasbeen initialized, that count threads participate in each
barrier and also whether or not barrier reinitialization without intervening destruction should be reported asan error.
Seealsodrd/tests/annotate_barri er. c for an example.

Themacro ANNOTATE _BARRI ER_DESTROY(bar ri er) tellsDRD that abarrier object isabout to be destroyed.

144

DRD: athread error detector

The macro ANNOTATE_BARRI ER WAI T_BEFORE(barri er) tellsDRD that waiting for abarrier will start.
The macro ANNOTATE_BARRI ER WAI T_AFTER(barri er) tells DRD that waiting for abarrier has finished.

The macro ANNOTATE_BENI GN_RACE_SI ZED(addr, size, descr) tells DRD that any races detected
on the specified address are benign and hence should not be reported. The descr argument isignored but can be
used to document why data races on addr are benign.

The macro ANNOTATE_BENI GN_RACE_STATI C(var, descr) tells DRD that any races detected on the
specified static variable are benign and hence should not be reported. The descr argument is ignored but can be
used to document why data races on var are benign. Note: this macro can only be used in C++ programs and not
in C programs.

The macro ANNOTATE_| GNORE_READS BEG NtellsDRD to ignore all memory loads performed by the current
thread.

The macro ANNOTATE_| GNORE_READS END tells DRD to stop ignoring the memory loads performed by the
current thread.

The macro ANNOTATE | GNORE_WRI TES BEQ N tells DRD to ignore all memory stores performed by the
current thread.

The macro ANNOTATE | GNORE_WRI TES_END tells DRD to stop ignoring the memory stores performed by the
current thread.

The macro ANNOTATE | GNORE_READS AND WRI TES BEQ N tells DRD to ignore al memory accesses
performed by the current thread.

The macro ANNOTATE | GNORE_READS _AND WRI TES ENDtells DRD to stop ignoring the memory accesses
performed by the current thread.

The macro ANNOTATE_NEW MEMORY(addr, size) tells DRD that the specified memory range has been
alocated by acustom memory all ocator in the client program and that the client program will start using thismemory
range.

Themacro ANNOTATE_THREAD NAME(nane) tells DRD to associate the specified name with the current thread
and to include this name in the error messages printed by DRD.

The macros VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLQOCK from the Valgrind core
are implemented; they are described in The Client Request mechanism.

Note: if you compiled Valgrind yourself, the header file <val gri nd/ dr d. h> will have been installed in the
directory / usr /i ncl ude by thecommand make i nstal | . If you obtained Valgrind by installing it as a package
however, you will probably have to install another package with aname likeval gri nd- devel before Vagrind's

header files are available.

8.2.6. Debugging C++11 Programs

If you want to use the C++11 class std::thread you will need to do the following to annotate the std::shared_ptr<>
objects used in the implementation of that class:

» Add the following code at the start of a common header or at the start of each source file, before any C++ header
files are included:

#i ncl ude <val gri nd/ drd. h>

145

DRD: athread error detector

#defi ne _GLI BCXX_SYNCHRONI ZATI ON_HAPPENS_BEFCRE(addr) ANNOTATE_HAPPENS_BEFORE(addr)
#defi ne _GLI BCXX_SYNCHRONI ZATI ON_HAPPENS_AFTER(addr) ANNOTATE_HAPPENS_ AFTER(addr)

» Download the gcc source code and from source file libstdc++-v3/src/c++11/thread.cc copy the implementation
of the execute_native_thread routine() andstd::thread:: _Mstart_thread() functions
into a source file that is linked with your application. Make sure that also in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS *() macros are defined properly.

For more information, see also The GNU C++ Library Manual, Debugging Support (http://gcc.gnu.org/onlinedocs/
libstdc++/manual/debug.html).

8.2.7. Debugging GNOME Programs

GNOME applications use the threading primitives provided by thegl i b and gt hr ead libraries. Theselibraries are
built on top of POSIX threads, and hence are directly supported by DRD. Please keep in mind that you have to call
g_thread_init beforecreating any threads, or DRD will report several data races on glib functions. See also the
GLib Reference Manual for moreinformation aboutg_t hread init.

One of the many facilities provided by thegl i b library isablock allocator, called g_sl i ce. Youhaveto disablethis
block allocator when using DRD by adding the following to the shell environment variables: G_SLI CE=al ways-
mal | oc. See also the GLib Reference Manual for more information.

8.2.8. Debugging Boost.Thread Programs

The Boost.Thread library is the threading library included with the cross-platform Boost Libraries. This threading
library is an early implementation of the upcoming C++0x threading library.

Applications that use the Boost. Thread library should run fine under DRD.
More information about Boost. Thread can be found here;
» Anthony Williams, Boost.Thread Library Documentation, Boost website, 2007.

* Anthony Williams, What's New in Boost Threads?, Recent changes to the Boost Thread library, Dr. Dobbs
Magazine, October 2008.

8.2.9. Debugging OpenMP Programs

OpenMP stands for Open Multi-Processing. The OpenMP standard consists of a set of compiler directivesfor C, C+
+ and Fortran programs that allows a compiler to transform a sequential program into a parallel program. OpenMP is
well suited for HPC applications and allows one to work at a higher level compared to direct use of the POSIX threads
API. While OpenMP ensures that the POSIX API isused correctly, OpenM P programs can still contain dataraces. So
it definitely makes sense to verify OpenM P programs with a thread checking tool.

DRD supports OpenMP shared-memory programs generated by GCC. GCC supports OpenMP since version 4.2.0.
GCC's runtime support for OpenMP programs is provided by a library caled | i bgonp. The synchronization
primitives implemented in this library use Linux' futex system call directly, unless the library has been configured
with the- - di sabl e- | i nux- f ut ex option. DRD only supports libgomp libraries that have been configured with
this option and in which symbol information is present. For most Linux distributions this means that you will have
to recompile GCC. See also the script dr d/ scri pt s/ downl oad- and- bui | d- gcc inthe Vagrind source tree
for an example of how to compile GCC. You will also have to make sure that the newly compiled | i bgonp. so
library is loaded when OpenMP programs are started. This is possible by adding a line similar to the following to
your shell startup script:

146

http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://library.gnome.org/devel/glib/stable/glib-Threads.html
http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html
http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html
http://www.ddj.com/cpp/211600441

DRD: athread error detector

export LD LI BRARY_PATH=~/gcc-4.4.0/1i b64: ~/ gcc-4.4.0/1ib:

As an example, the test OpenMP test program dr d/ t est s/ onp_rmat i nv triggers a data race when the option -r
has been specified on the command line. The datarace is triggered by the following code:

#pragnma onp parallel for private(j)
for (j =0; j <rows; j++)

{
if (i '=1j)
{
const elemt factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -= a[i * cols + k] * factor;
}
}
}

The above code is racy because the variable k has not been declared private. DRD will print the following error
message for the above code:

$ valgrind --tool =drd --check-stack-var=yes --read-var-info=yes drd/tests/onp_matinv 3 -t

Conflicting store by thread 1/1 at Ox7fefffbc4 size 4
at 0x4014A0: gj.onp_fn.0 (onmp_nmatinv.c: 203)
by 0x401211: gj (onp_matinv.c: 159)
by Ox40166A: invert_matrix (onp_natinv.c: 238)
by 0x4019B4: main (onp_matinv. c: 316)
Locati on Ox7fefffbc4 is O bytes inside |ocal var "k"
declared at onp_matinv.c: 160, in frane #0 of thread 1

In the above output the function name gj . onp_f n. 0 has been generated by GCC from the function name gj . The
allocation context information shows that the data race has been caused by modifying the variable k.

Note: for GCC versions before 4.4.0, no allocation context information is shown. With these GCC versions the most
usable information in the above output is the source file name and the line humber where the data race has been
detected (onp_mati nv. c: 203).

For more information about OpenMP, see also openmp.org.

8.2.10. DRD and Custom Memory Allocators

DRD tracks all memory allocation events that happen via the standard memory allocation and deallocation functions
(mal | oc, free, newand del et e), viaentry and exit of stack frames or that have been annotated with Valgrind's
memory pool client requests. DRD uses memory alocation and deall ocation information for two purposes:

» To know where the scope ends of POSIX objects that have not been destroyed explicitly. It is e.g. not required by
the POSIX threads standard to call pt hr ead_nut ex_dest r oy before freeing the memory in which a mutex
object resides.

» To know where the scope of variables ends. If e.g. heap memory has been used by one thread, that thread frees that
memory, and another thread all ocates and starts using that memory, no dataraces must be reported for that memory.

147

http://openmp.org/

DRD: athread error detector

Itisessential for correct operation of DRD that the tool knows about memory allocation and deallocation events. When
analyzing a client program with DRD that uses a custom memory allocator, either instrument the custom memory
allocator with the VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI| KE_BLOCK macros or disable the
custom memory allocator.

As an example, the GNU libstdc++ library can be configured to use standard memory allocation functions instead
of memory pools by setting the environment variable GLI BCXX_FORCE_NEW For more information, see also the
libstdc++ manual.

8.2.11. DRD Versus Memcheck

It is essential for correct operation of DRD that there are no memory errors such as dangling pointers in the client
program. Which means that it is a good idea to make sure that your program is Memcheck-clean before you analyze
it with DRD. It is possible however that some of the Memcheck reports are caused by data races. In this case it makes
sense to run DRD before Memcheck.

So which tool should be run first? In case both DRD and Memcheck complain about a program, a possible approach
isto run both tools alternatingly and to fix as many errors as possible after each run of each tool until none of the two
tools prints any more error messages.

8.2.12. Resource Requirements

Therequirements of DRD with regard to heap and stack memory and the effect on the execution time of client programs
are asfollows:

* When running a program under DRD with default DRD options, between 1.1 and 3.6 times more memory will be
needed compared to a native run of the client program. More memory will be needed if 1oading debug information
has been enabled (- - r ead- var - i nf o=yes).

» DRD alocates some of its temporary data structures on the stack of the client program threads. Thisamount of data
islimited to 1 - 2 KB. Make sure that thread stacks are sufficiently large.

» Most applications will run between 20 and 50 times slower under DRD than a native single-threaded run. The
slowdown will be most noticeable for applications which perform frequent mutex lock / unlock operations.

8.2.13. Hints and Tips for Effective Use of DRD

The following information may be helpful when using DRD:

» Make sure that debug information is present in the executable being analyzed, such that DRD can print function
name and line number information in stack traces. Most compilers can be told to include debug information via
compiler option - g.

» Compilewith option - OL instead of - Q0. Thiswill reduce the amount of generated code, may reduce the amount of
debug info and will speed up DRD's processing of the client program. For moreinformation, see also Getting started.

* |f DRD reports any errors on libraries that are part of your Linux distribution likee.g. I i bc. so or | i bst dc+
+. s0, installing the debug packages for these libraries will make the output of DRD alot more detailed.

* When using C++, do not send output from more than onethread to st d: : cout . Doing so would not only generate
multiple data race reports, it could also result in output from several threads getting mixed up. Either use pri nt f
or do the following:

1. Deriveaclassfromst d: : ost r eambuf and let that class send output lineby lineto st dout . Thiswill avoid
that individual lines of text produced by different threads get mixed up.

148

https://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html

DRD: athread error detector

2. Create one instance of st d: : ost r eamfor each thread. This makes stream formatting settings thread-local.
Pass a per-thread instance of the class derived from st d: : ost r eanbuf to the constructor of each instance.

3. Let each thread send its output to its own instance of st d: : ost r eaminstead of st d: : cout .

8.3. Using the POSIX Threads API Effectively
8.3.1. Mutex types

The Single UNIX Specification version two defines the following four mutex types (see also the documentation of
pt hread_mut exattr_settype):

» normal, which means that no error checking is performed, and that the mutex is non-recursive.
* error checking, which means that the mutex is non-recursive and that error checking is performed.
* recursive, which means that a mutex may be locked recursively.

« default, which means that error checking behavior is undefined, and that the behavior for recursive locking is also
undefined. Or: portable code must neither trigger error conditions through the Pthreads API nor attempt to lock a
mutex of default type recursively.

In complex applications it is not always clear from beforehand which mutex will be locked recursively and which
mutex will not be locked recursively. Attempts lock a non-recursive mutex recursively will result in race conditions
that are very hard to find without a thread checking tool. So either use the error checking mutex type and consistently
check the return value of Pthread APl mutex calls, or use the recursive mutex type.

8.3.2. Condition variables

A condition variable allows one thread to wake up one or more other threads. Condition variables are often used to
notify one or more threads about state changes of shared data. Unfortunately it isvery easy to introduce race conditions
by using condition variables as the only means of state information propagation. A better approach is to let threads
poll for changes of a state variable that is protected by a mutex, and to use condition variables only as athread wakeup
mechanism. See also the sourcefiledr d/ t est s/ noni t or _exanpl e. cpp for an example of how to implement
this concept in C++. The monitor concept used in this example is a well known and very useful concept -- see also
Wikipedia for more information about the monitor concept.

8.3.3. pthread _cond_timedwait and timeouts

Historically thefunction pt hr ead_cond_t i medwai t only allowed the specification of an absolute timeout, that is
atimeout independent of the time when this function was called. However, almost every call to thisfunction expresses
a relative timeout. This typically happens by passing the sum of cl ock_getti nme(CLOCK_REALTI ME) and a
relative timeout as the third argument. This approach isincorrect since forward or backward clock adjustments by e.g.
ntpd will affect the timeout. A more reliable approach is as follows:

* When initializing a condition variable through pthread_cond_i nit, specify that the timeout of
pt hread_cond_t i nedwai t will usetheclock CLOCK MONOTONI Cinstead of CLOCK_REALTI ME. You can
dothisviapt hread_condattr_setcl ock(..., CLOCK MONOTON C).

» When calling pt hread_cond_ti nedwai t, passthe sum of cl ock_getti me(CLOCK_MONOTONI C) and
arelative timeout as the third argument.

Seealsodrd/ t est s/ noni t or _exanpl e. cpp for an example.

149

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html
http://en.wikipedia.org/wiki/Monitor_(synchronization)

DRD: athread error detector

8.4. Limitations

DRD currently has the following limitations:

* DRD, justlike Memcheck, will refuseto start on Linux distributionswhere all symbol information has been removed
from| d. so. Thisise.g. the case for the PPC editions of openSUSE and Gentoo. Y ou will haveto install the glibc
debuginfo package on these platforms before you can use DRD. See also openSUSE bug 396197 and Gentoo bug
214065.

» Withgcc 4.4.3 and before, DRD may report dataracesonthe C++ classst d: : st ri ng inamultithreaded program.
Thisisaknow | i bst dc++ issue -- see also GCC bug 40518 for more information.

* If you compile the DRD source code yourself, you need GCC 3.0 or later. GCC 2.95 is not supported.

» Of thetwo POSIX threadsimplementationsfor Linux, only the NPTL (Native POSIX Thread Library) is supported.
The older LinuxThreads library is not supported.

8.5. Feedback

If you have any comments, suggestions, feedback or bug reports about DRD, feel free to either post a message on the
Vagrind users mailing list or to file a bug report. See also http://www.valgrind.org/ for more information.

150

http://bugzilla.novell.com/show_bug.cgi?id=396197
http://bugs.gentoo.org/214065
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518
http://www.valgrind.org/

9. Massif: a heap profiler

To usethistool, you must specify - - t ool =massi f onthe Valgrind command line.

9.1. Overview

Massif isaheap profiler. It measures how much heap memory your program uses. Thisincludes both the useful space,
and the extra bytes allocated for book-keeping and alignment purposes. It can also measure the size of your program's
stack(s), athough it does not do so by default.

Heap profiling can help you reduce the amount of memory your program uses. On modern machines with virtual
memory, this provides the following benefits:

* It can speed up your program -- asmaller program will interact better with your machine's caches and avoid paging.
« If your program uses lots of memory, it will reduce the chance that it exhausts your machine's swap space.

Also, there are certain space leaksthat aren't detected by traditional |eak-checkers, such asMemcheck's. That's because
the memory isn't ever actually lost -- apointer remainsto it -- but it's not in use. Programs that have leaks like this can
unnecessarily increase the amount of memory they are using over time. Massif can help identify these leaks.

Importantly, Massif tells you not only how much heap memory your program is using, it also gives very detailed
information that indicates which parts of your program are responsible for allocating the heap memory.

Massif also provides Execution Trees memory profiling using the command line option - - xt r ee- menor y and the
monitor command Xt nenory.

9.2. Using Massif and ms_print

First off, as for the other Valgrind tools, you should compile with debugging info (the - g option). It shouldn't matter
much what optimisation level you compile your program with, asthisis unlikely to affect the heap memory usage.

Then, you need to run Massif itself to gather the profiling information, and then run ms_print to present it in areadable
way.

9.2.1. An Example Program

An example will make things clear. Consider the following C program (annotated with line numbers) which allocates
anumber of different blocks on the heap.

1 #i ncl ude <stdlib. h>
2

3 voi d g(voi d)

4 {

5 mal | oc(4000) ;
6 }

7

8 voi d f(void)

9 {

10 mal | oc(2000) ;
11 g();

151

Massif: a heap profiler

12 }

13

14 i nt mai n(voi d)

15 {

16 int i;

17 int* a[10];

18

19 for (i =0; i < 10; i++) {
20 a[i] = mall oc(1000);
21 }

22

23 f();

24

25 9();

26

27 for (i =0; i < 10; i++) {
28 free(a[i]);

29 }

30

31 return O;

32 }

9.2.2. Running Massif

To gather heap profiling information about the program pr og, type:

val grind --tool =nassif prog

The program will execute (slowly). Upon completion, no summary statistics are printed to Vagrind's commentary; all
of Massif's profiling data is written to afile. By default, thisfileis called massi f . out . <pi d>, where <pi d> is
the process ID, although this filename can be changed with the - - massi f - out - fi | e option.

9.2.3. Running ms_print

To see the information gathered by Massif in an easy-to-read form, use ms_print. If the output file's name is
massi f. out . 12345, type:

ms_print massif.out.12345

ms_print will produce (a) a graph showing the memory consumption over the program's execution, and (b) detailed
information about the responsible all ocation sites at various pointsin the program, including the point of peak memory
allocation. The use of a separate script for presenting the results is deliberate: it separates the data gathering from its
presentation, and means that new methods of presenting the data can be added in the future.

9.2.4. The Output Preamble

After running this program under Massif, the first part of ms_print's output contains a preamble which just states how
the program, Massif and ms_print were each invoked:

152

Massif: a heap profiler

Massi f arguments: (none)
ms_print argunents: massif.out. 12797

9.2.5. The Output Graph

The next part is the graph that shows how memory consumption occurred as the program executed:

KB
19. 63" #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
[e T T >ki

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

Why is most of the graph empty, with only a couple of bars at the very end? By default, Massif uses "instructions
executed" as the unit of time. For very short-run programs such as the example, most of the executed instructions
involve the loading and dynamic linking of the program. The execution of mai n (and thus the heap allocations) only
occur at the very end. For a short-running program like this, we can usethe - - t i me- uni t =B option to specify that
we want the time unit to instead be the number of bytes allocated/deall ocated on the heap and stack(s).

If we re-run the program under Massif with this option, and then re-run ms_print, we get this more useful graph:

19. 637 #H#

HHHHHHHH

153

Massif: a heap profiler

@@@@@@@@@
HHHHHHHE R H A
Y POROO000®

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

The size of the graph can be changed with ms_print's - - x and - - y options. Each vertical bar represents a snapshot,
i.e. ameasurement of the memory usage at a certain point in time. If the next snapshot is more than one column away,
ahorizontal line of characters is drawn from the top of the snapshot to just before the next snapshot column. The text
at the bottom show that 25 snapshots were taken for this program, which is one per heap all ocation/deall ocation, plus
acouple of extras. Massif starts by taking snapshots for every heap allocation/deallocation, but as a program runs for
longer, it takes snapshots less frequently. It also discards older snapshots as the program goes on; when it reaches the
maximum number of snapshots (100 by default, although changeable with the - - max- snapshot s option) half of
them are deleted. This means that a reasonable number of snapshots are always maintained.

Most snapshots are normal, and only basic information is recorded for them. Normal snapshots are represented in the
graph by bars consisting of "' characters.

Some snapshots are detailed. Information about where allocations happened are recorded for these snapshots, as we
will see shortly. Detailed snapshots are represented in the graph by bars consisting of ‘@' characters. The text at the
bottom show that 3 detailed snapshots were taken for this program (snapshots 9, 14 and 24). By default, every 10th
snapshot is detailed, although this can be changed viathe - - det ai | ed- f r eq option.

Finally, there is at most one peak snapshot. The peak snapshot is a detailed snapshot, and records the point where
memory consumption was greatest. The peak snapshot is represented in the graph by abar consisting of '# characters.
The text at the bottom shows that snapshot 14 was the peak.

Massif's determination of when the peak occurred can be wrong, for two reasons.

» Peak snapshots are only ever taken after a deallocation happens. This avoids lots of unnecessary peak snapshot
recordings (imagine what happens if your program allocates alot of heap blocks in succession, hitting a new peak
every time). But it meansthat if your program never deallocates any blocks, no peak will be recorded. It also means
that if your program does deallocate blocks but later allocates to a higher peak without subsequently deallocating,
the reported peak will be too low.

» Even with this behaviour, recording the peak accurately is slow. So by default Massif records a peak whose size
iswithin 1% of the size of the true peak. This inaccuracy in the peak measurement can be changed with the - -
peak-i naccur acy option.

The following graph is from an execution of Kongueror, the KDE web browser. It shows what graphs for larger
programs look like.

VB
3. 9527 #

154

Massif: a heap profiler

8888888888
@eReReReR®.. ..
ssess05880050g
B8890588085880
9999895808952089885

Nunber of snapshots: 63
Detail ed snapshots: [3, 4, 10, 11, 15, 16, 29, 33, 34, 36, 39, 41,
42, 43, 44, 49, 50, 51, 53, 55, 56, 57 (peak)]

Note that the larger size units are KB, MB, GB, etc. Asis typical for memory measurements, these are based on a

multiplier of 1024, rather than the standard SI multiplier of 1000. Strictly speaking, they should be written KiB, MiB,
GiB, etc.

9.2.6. The Snapshot Details

Returning to our example, the graph isfollowed by the detailed information for each snapshot. The first nine snapshots
are normal, so only asmall amount of information is recorded for each one:

n ti me(B) total (B) usef ul - heap(B) extra-heap(B) st acks(B)
0 0 0 0 0 0
1 1,008 1,008 1, 000 8 0
2 2,016 2,016 2,000 16 0
3 3,024 3,024 3, 000 24 0
4 4,032 4,032 4, 000 32 0
5 5, 040 5, 040 5, 000 40 0
6 6, 048 6, 048 6, 000 48 0
7 7,056 7, 056 7, 000 56 0
8 8, 064 8, 064 8, 000 64 0

Each normal snapshot records several things.
* [tsnumber.

e Thetimeit wastaken. In this case, the time unit is bytes, dueto theuseof - -t i me- uni t =B.

155

Massif: a heap profiler

e Thetotal memory consumption at that point.
» The number of useful heap bytes allocated at that point. This reflects the number of bytes asked for by the program.

» Thenumber of extraheap bytes allocated at that point. This reflects the number of bytes allocated in excess of what
the program asked for. There are two sources of extra heap bytes.

First, every heap block has administrative bytes associated withit. The exact number of administrative bytes depends
on the details of the allocator. By default Massif assumes 8 bytes per block, as can be seen from the example, but
this number can be changed viathe - - heap- adni n option.

Second, allocators often round up the number of bytes asked for to alarger number, usually 8 or 16. Thisisrequired
to ensure that elements within the block are suitably aligned. If N bytes are asked for, Massif rounds N up to the
nearest multiple of the value specified by the- - al i gnnment option.

» The size of the stack(s). By default, stack profiling is off as it slows Massif down greatly. Therefore, the stack
column is zero in the example. Stack profiling can be turned on with the - - st acks=yes option.

The next snapshot is detailed. As well as the basic counts, it gives an alocation tree which indicates exactly which
pieces of code were responsible for alocating heap memory:

9 9,072 9,072 9, 000 72 0
99. 21% (9, 000B) (heap allocation functions) mall oc/newnew], --alloc-fns, etc.
->99.21% (9, 000B) 0x804841A: main (exanple.c: 20)

Theallocation tree can beread from the top down. Thefirst lineindicatesall heap allocation functionssuchasmal | oc
and C++ new. All heap allocations go through these functions, and so all 9,000 useful bytes (which is 99.21% of all
allocated bytes) go through them. But how were nal | oc and new called? At this point, every alocation so far has
beenduetoline20insidenai n, hencethe second lineinthetree. The- > indicatesthat main (line 20) called nal | oc.

L et's see what the subsequent output shows happened next:

n ti me(B) t ot al (B) usef ul - heap(B) extra-heap(B) st acks(B)
10 10, 080 10, 080 10, 000 80 0
11 12,088 12,088 12, 000 88 0
12 16, 096 16, 096 16, 000 96 0
13 20, 104 20, 104 20, 000 104 0
14 20, 104 20, 104 20, 000 104 0

99. 48% (20, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc

->49. 74% (10, 000B) 0x804841A: mai n (exanpl e. c: 20)
|

->39. 79% (8, 000B) 0x80483C2: g (exanple.c:5)

| ->19.90% (4, 000B) 0x80483E2: f (exanple.c:11)

| | ->19.90% (4, 000B) 0x8048431: nmi n (exanple.c:23)
| |

| ->19.90% (4, 000B) 0x8048436: main (exanple.c: 25)

|

>09. 95% (2, 000B) 0x80483DA: f (exanple.c:10)
->09. 95% (2, 000B) 0x8048431: nmmin (exanple.c: 23)

Thefirst four snapshots are similar to the previous ones. But then the global allocation peak is reached, and a detailed
snapshot (number 14) istaken. Its allocation tree shows that 20,000B of useful heap memory has been allocated, and

156

Massif: a heap profiler

the lines and arrows indicate that thisis from three different code locations: line 20, which is responsible for 10,000B
(49.74%); line 5, which is responsible for 8,000B (39.79%); and line 10, which is responsible for 2,000B (9.95%).

We can then drill down further in the allocation tree. For example, of the 8,000B asked for by line 5, half of it was
dueto acall from line 11, and half was due to acall from line 25.

In short, Massif collates the stack trace of every single allocation point in the program into a single tree, which gives
acomplete picture at a particular point in time of how and why all heap memory was allocated.

Note that the tree entries correspond not to functions, but to individual code locations. For example, if function A calls
mal | oc, and function B calls A twice, once on line 10 and once on line 11, then the two callswill result in two distinct
stack traces in the tree. In contrast, if B calls A repeatedly from line 15 (e.g. due to aloop), then each of those calls
will be represented by the same stack tracein the tree.

Note also that each tree entry with children in the example satisfies an invariant: the entry's size is equal to the sum
of its children's sizes. For example, the first entry has size 20,000B, and its children have sizes 10,000B, 8,000B, and
2,000B. In general, thisinvariant almost always holds. However, in rare circumstances stack traces can be malformed,
in which case a stack trace can be a sub-trace of another stack trace. This means that some entries in the tree may not
satisfy the invariant -- the entry's size will be greater than the sum of its children's sizes. Thisis not abig problem, but
could make the results confusing. Massif can sometimes detect when this happens; if it does, it issues a warning:

Warni ng: Mal formed stack trace detected. In Massif's output,
the size of an entry's child entries may not sum up
to the entry's size as they nornally do.

However, Massif does not detect and warn about every such occurrence. Fortunately, malformed stack traces are rare
in practice.

Returning now to ms_print's output, the final part is similar:

n ti me(B) t ot al (B) usef ul - heap(B) extra-heap(B) st acks(B)
15 21,112 19, 096 19, 000 96 0
16 22,120 18, 088 18, 000 88 0
17 23,128 17, 080 17, 000 80 0
18 24,136 16, 072 16, 000 72 0
19 25, 144 15, 064 15, 000 64 0
20 26, 152 14, 056 14, 000 56 0
21 27, 160 13, 048 13, 000 48 0
22 28, 168 12, 040 12, 000 40 0
23 29, 176 11, 032 11, 000 32 0
24 30, 184 10, 024 10, 000 24 0

99. 76% (10, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc.

->79.81% (8, 000B) 0x80483C2: g (exanpl e. c: 5)
| ->39.90% (4,000B) 0x80483E2: f (exanple.c:11)
| ->39.90% (4, 000B) 0x8048431: main (exanpl e. c: 23)

|
->39. 90% (4, 000B) 0x8048436: main (exanpl e. c: 25)

>19. 95% (2, 000B) 0x80483DA: f (exanpl e. c: 10)

|
|
|
|
| ->19.95% (2, 000B) 0x8048431: main (exanple. c: 23)
|

157

Massif: a heap profiler

->00.00% (0B) in 1+ places, all below ns_print's threshold (01.00%

Thefinal detailed snapshot shows how the heap looked at termination. The 00.00% entry represents the code locations
for which memory was allocated and then freed (line 20 in this case, the memory for which was freed on line 28).
However, no code location details are given for thisentry; by default, Massif only records the detailsfor code locations
responsible for more than 1% of useful memory bytes, and ms_print likewise only prints the details for code locations
responsible for more than 1%. The entries that do not meet this threshold are aggregated. This avoids filling up the
output with large numbers of unimportant entries. The thresholds can be changed with the- - t hr eshol d option that
both Massif and ms_print support.

9.2.7. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

If the output file format string (controlled by - - massi f - out - f i | €) doesnot contain %p, then the outputs from the
parent and child will beintermingledin asingleoutput file, which will almost certainly makeit unreadableby ms_print.

9.2.8. Measuring All Memory in a Process

It is worth emphasising that by default Massif measures only heap memory, i.e. memory allocated with mal | oc,
cal l oc,real |l oc, nermal i gn, new, new], and afew other, similar functions. (And it can optionally measure
stack memory, of course.) This means it does not directly measure memory allocated with lower-level system calls
such as mmap, nt emap, and br k.

Heap allocation functions such as mal | oc are built on top of these system calls. For example, when needed, an
allocator will typically call mmap to allocate a large chunk of memory, and then hand over pieces of that memory
chunk to the client program in response to callsto mal | oc et a. Massif directly measures only these higher-level
mal | oc et a cals, not the lower-level system calls.

Furthermore, a client program may use these lower-level system calls directly to allocate memory. By default, Massif
does not measure these. Nor doesit measure the size of code, dataand BSS segments. Therefore, the numbers reported
by Massif may be significantly smaller than those reported by tools such ast op that measure a program'’s total size
in memory.

However, if you wish to measure all the memory used by your program, you can usethe- - pages- as- heap=yes.
When this option is enabled, Massif's normal heap block profiling is replaced by lower-level page profiling. Every
page allocated via nmrap and similar system calls is treated as a distinct block. This means that code, data and BSS
segments are all measured, as they are just memory pages. Even the stack is measured, sinceit is ultimately allocated
(and extended when necessary) via nmap; for this reason - - st acks=yes is not allowed in conjunction with - -

pages- as- heap=yes.

After - - pages- as- heap=yes isused, ms_print's output is mostly unchanged. One difference is that the start of
each detailed snapshot says:

(page all ocation syscalls) mmp/ nremap/ brk, --alloc-fns, etc.
instead of the usual:
(heap allocation functions) malloc/new new], --alloc-fns, etc.

The stack traces in the output may be more difficult to read, and interpreting them may require some detailed
understanding of the lower levels of a program like the memory alocators. But for some programs having the full
information about memory usage can be very useful.

158

Massif: a heap profiler

9.2.9. Acting on Massif's Information

Massif'sinformation is generally fairly easy to act upon. The obvious place to start looking is the peak snapshot.

It can also be useful to look at the overall shape of the graph, to see if memory usage climbs and falls as you expect;
spikesin the graph might be worth investigating.

The detailed snapshots can get quite large. It is worth viewing them in a very wide window. It's also a good idea to
view them with atext editor. That makesit easy to scroll up and down while keeping the cursor in aparticular column,
which makes following the all ocation chains easier.

9.3. Using massif-visualizer

massif-visualizer is a graphical viewer for Massif data that is often easier to use than ms_print. massif-visualizer is
not shipped within Valgrind, but is available in various places online.

9.4. Massif Command-line Options

M assif-specific command-line options are:

- -heap=<yes| no> [default: yes]
Specifies whether heap profiling should be done.

- - heap- adm n=<si ze> [defaul t: 8]

If heap profiling is enabled, gives the number of administrative bytes per block to use. This should be an estimate
of the average, sinceit may vary. For example, the allocator used by glibc on Linux requires somewhere between
4 to 15 bytes per block, depending on various factors. That allocator aso requires admin space for freed blocks,
but Massif cannot account for this.

--stacks=<yes| no> [default: no]

Specifieswhether stack profiling should be done. This option slows Massif down greatly, and so is off by default.
Note that Massif assumes that the main stack has size zero at start-up. This is not true, but doing otherwise
accurately is difficult. Furthermore, starting at zero better indicates the size of the part of the main stack that a
user program actualy has control over.

- - pages- as- heap=<yes| no> [defaul t: no]
Tells Massif to profile memory at the page level rather than at the malloc'd block level. See above for details.
- -dept h=<nunber > [defaul t: 30]

Maximum depth of the allocation trees recorded for detailed snapshots. Increasing it will make Massif run
somewhat more slowly, use more memory, and produce bigger output files.

--al |l oc-f n=<nane>

Functions specified with thisoption will betreated asthough they were aheap allocation functionsuchasnal | oc.
This is useful for functions that are wrappers to mal | oc or new, which can fill up the alocation trees with
uninteresting information. This option can be specified multiple times on the command line, to name multiple
functions.

Note that the named function will only betreated thisway if it isthetop entry in astack trace, or just bel ow another
function treated thisway. For example, if you have afunctionmal | oc1 that wrapsmal | oc, andmal | oc2 that

159

https://github.com/KDE/massif-visualizer

Massif: a heap profiler

wrapsnal | ocl, just specifying- - al | oc- f n=nml | oc2 will have no effect. Y ou need to specify - - al | oc-
fn=mal | oc1 aswell. Thisis alittle inconvenient, but the reason is that checking for alocation functions is
dow, and it saves alot of timeif Massif can stop looking through the stack trace entries as soon as it finds one
that doesn't match rather than having to continue through all the entries.

Note that C++ names are demangled. Note also that overloaded C++ names must be written in full. Single quotes
may be necessary to prevent the shell from breaking them up. For example:

--all oc-fn="operator newunsi gned, std::nothrow t const&)'

gnor e- f n=<nane>

Any direct heap alocation (i.e. acall to mal | oc, new, etc, or acall to afunction named by an--al | oc-fn
option) that occursin afunction specified by this option will beignored. Thisismostly useful for testing purposes.
This option can be specified multiple times on the command line, to name multiple functions.

Any real | oc of anignored block will also beignored, evenif ther eal | oc call does not occur in an ignored
function. This avoids the possibility of negative heap sizesif ignored blocks are shrunk withr eal | oc.

Therules for writing C++ function names are the same asfor - - al | oc- f n above.
--threshol d=<m n> [defaul t: 1.0]

The significance threshold for heap allocations, as a percentage of total memory size. Allocation tree entries that
account for less than thiswill be aggregated. Note that this should be specified in tandem with ms_print's option
of the same name.

- - peak-inaccuracy=<m n> [defaul t: 1.0]

Massif does not necessarily record the actual global memory allocation peak; by default it records a peak only
when the global memory allocation size exceeds the previous peak by at least 1.0%. Thisis because there can be
many local alocation peaks along the way, and doing a detailed snapshot for every one would be expensive and
wasteful, as all but one of them will be later discarded. This inaccuracy can be changed (even to 0.0%) viathis
option, but Massif will run drastically slower as the number approaches zero.

--tinme-unit=<i|ns| B> [default: i]

Thetime unit used for the profiling. There are three possihilities: instructions executed (i), which is good for most
cases; real (wallclock) time (ms, i.e. milliseconds), which is sometimes useful; and bytes allocated/deallocated on
the heap and/or stack (B), which is useful for very short-run programs, and for testing purposes, because it is the
most reproducible across different machines.

--detail ed-freq=<n> [default: 10]
Frequency of detailed snapshots. With - - det ai | ed- f r eq=1, every snapshot is detailed.
- - max- snapshot s=<n> [defaul t: 100]

The maximum number of snapshots recorded. If set to N, for al programs except very short-running ones, the
final number of snapshots will be between N/2 and N.

--massif-out-file=<file> [default: massif.out. %]

Write the profile data to f i | e rather than to the default output file, massi f. out . <pi d>. The %p and %q
format specifiers can be used to embed the process I D and/or the contents of an environment variablein the name,
asisthe casefor thecoreoption--1o0g-fil e.

160

Massif: a heap profiler

9.5. Massif Monitor Commands

The Massif tool provides monitor commands handled by the Valgrind gdbserver (see Monitor command handling by
the Valgrind gdbserver).

snapshot [<filename>] requests to take a snapshot and save it in the given <filename> (default
massif.vgdb.out).

det ai | ed_snapshot [<fil enane>] requeststo take adetailed snapshot and saveit in the given <filename>
(default massif.vgdb.out).

al | _snapshots [<fil ename>] requests to take all captured snapshots so far and save them in the given
<filename> (default massif.vgdb.out).

xtrmenory [<filename> default xtnenory. kcg. %. %] requests Massif tool to produce an xtree
heap memory report. See Execution Trees for a detailed explanation about execution trees.

9.6. Massif Client Requests

Massif does not have a nassif.h file, but it does implement two of the core client requests
VALGRI ND_MALLOCLI KE_BLOCKand VALGRI ND_FREELI KE_BLOCK; they aredescribed in The Client Request
mechanism.

9.7. ms_print Command-line Options

ms_print's options are;

-h --help

Show the help message.

--version

Show the version number.

--threshol d=<m n> [defaul t: 1.0]

Same as Massif's- - t hr eshol d option, but applied after profiling rather than during.

--x=<4..1000> [default: 72]

Width of the graph, in columns.

--y=<4..1000> [default: 20]

Height of the graph, in rows.

9.8. Massif's Output File Format

Massif's file format is plain text (i.e. not binary) and deliberately easy to read for both humans and machines.
Nonetheless, the exact format is not described here. This is because the format is currently very Massif-specific. In
the future we hope to make the format more general, and thus suitable for possible use with other tools. Once this has
been done, the format will be documented here.

161

10. DHAT: a dynamic heap analysis
tool

To usethistool, you must specify - - t ool =dhat on the Valgrind command line.

10.1. Overview

DHAT isprimarily atool for examining how programs use their heap allocations.

It tracks the allocated blocks, and inspects every memory access to find which block, if any, it is to. It presents, on
aprogram point basis, information about these blocks such as sizes, lifetimes, numbers of reads and writes, and read
and write patterns.

Using thisinformation it is possible to identify program points with the following characteristics:

« potential process-lifetimeleaks: blocksallocated by the point just accumulate, and arefreed only at the end of therun.
* excessive turnover: points which chew through alot of heap, even if it is not held onto for very long

» excessively transient: points which alocate very short lived blocks

* useless or underused allocations: blocks which are alocated but not completely filled in, or are filled in but not
subsequently read.

* blocks with inefficient layout -- areas never accessed, or with hot fields scattered throughout the block.

Aswith the Massif heap profiler, DHAT measures program progress by counting instructions, and so presents all age/
time related figures as instruction counts. This sounds alittle odd at first, but it makes runs repeatable in away which
isnot possible if CPU timeis used.

DHAT &l so has support for copy profiling and ad hoc profiling. These are described below.

10.2. Using DHAT

First off, asfor normal Valgrind use, you probably want to compilewith debugging info (the- g option). But by contrast
with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your program as
it will be normally run.

Second, you need to run your program under DHAT to gather the profiling information. Y ou might need to reduce the
--num cal | er s value to get reasonably-sized output files, especialy if you are profiling a large program; some
trial and error might be needed to find a good value.

Finally, you need to use DHAT's viewer (in aweb browser) to get a detailed presentation of that information.

10.2.1. Running DHAT

Torun DHAT on aprogram pr og, run:

val grind --tool =dhat prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

162

DHAT: adynamic heap analysis tool

==11514== Tot al : 823,849, 731 bytes in 3,929, 133 bl ocks
==11514== At t-gmax: 133,485,082 bytes in 436,521 bl ocks
==11514== At t-end: 258,002 bytes in 2,129 bl ocks
==11514== Reads: 2,807, 182, 810 bytes

==11514== Wi tes: 1, 149, 617, 086 bytes

The first line shows how many heap blocks and bytes were alocated over the entire execution.

The second line shows how many heap blocks and bytes were alive at t - gmax, i.e. the time when the heap size
reached its global maximum (as measured in bytes).

The third line shows how many heap blocks and byteswere aliveat t - end, i.e. the end of execution. In other words,
how many blocks and bytes were not explicitly freed.

The fourth and fifth lines show how many bytes within heap blocks were read and written during the entire execution.

These lines are moderately interesting at best. More useful information can be seen with DHAT's viewer.

10.2.2. Output File

Aswell as printing summary information, DHAT also writes more detailed profiling information to afile. By default
thisfileisnamed dhat . out . <pi d> (where <pi d> isthe program's process I D), but its name can be changed with
the- - dhat - out - f i | e option. Thisfileis JSON, and intended to be viewed by DHAT's viewer, which is described
in the next section.

The default . <pi d> suffix on the output file name serves two purposes. Firstly, it means you don't have to rename
old log files that you don't want to overwrite. Secondly, and more importantly, it allows correct profiling with the - -
trace-chi | dr en=yes option of programs that spawn child processes.

The output file can be big, many megabytes for large applications built with full debugging information.

10.3. DHAT's Viewer

DHAT's viewer can be run in aweb browser by loading the filedh_vi ew. ht nl . Use the "Load" button to choose
aDHAT output file to view.

If loading takes along time, it might be worth re-running DHAT with asmaller - - num cal | er s value to reduce
the stack depths, because this can significantly reduce the size of DHAT's output files.

10.3.1. The Output Header

Thefirst part of the output shows the mode, program command and process ID. For example:

I nvocation {
Mode: heap
Conmmand: /hone/ nj n/ moz/rust 0/ buil d/ x86_64- unknown- | i nux- gnu/ st age2/ bi n/rustc --crate-nan
PI D 18816

}

The second part of the output showsthet - gmax andt - end values again. For example:

Ti mes {
t-gmax: 8,138, 210,673 instrs (86.92% of program durati on)
t-end: 9,362,544,994 instrs

163

DHAT: adynamic heap analysis tool

}
10.3.2. The PP Tree

Thethird part of the output is the largest and most interesting part, showing the program point (PP) tree.

10.3.2.1. Structure

Thefollowing image shows a screenshot of part of aPPtree. Thefont isvery small because this screenshot isintended
to demonstrate the high-level structure of the tree rather than the details within the text. (It is also dightly out-of-date,
and doesn't quite match the current output produced by DHAT's viewer.)

Like any tree, it has a root node, leaf nodes, and non-leaf nodes. The structure of the tree is shown by the lines
connecting nodes. Child nodes are beneath their parent and indented one level.

The sub-trees beneath a non-leaf node can be collapsed or expanded by clicking on the node. It is useful to collapse
sub-trees that you aren't interested in.

Colours are meaningful, and are intended to ease tree navigation, but the information they represent is also present
within the text. (This means that colour-blind users are not denied any information.)

Each leaf nodeis coloured green. Each non-leaf nodeis coloured blue and has adown arrow (#) next to it when its sub-
treeisexpanded. Each non-leaf nodeis coloured yellow and hasaleft arrow (#) next to it when its sub-treeis collapsed.

Theshade of green, blueor yellow used for anodeindicateitssignificance. Darker shadesrepresent greater significance
(in terms of bytes or blocks).

Note that the entire output is text, even the arrows and lines connecting nodes. This means you can copy and paste
any part of the output easily into an email, bug report, etc.

10.3.2.2. The Root Node

The root node looks like this:

PP 1/1 (25 children) {
Tot al : 1, 355, 253, 987 bytes (100% 67,454.81/Mnstr) in 5,943,417 bl ocks (100% 295.8
At t-gmax: 423,930,307 bytes (100% in 1,575,682 blocks (100%, avg size 269.05 bhytes
At t-end: 258,002 bytes (100% in 2,129 blocks (100%, avg size 121.18 hytes

Reads: 5,478, 606, 988 bytes (100% 272,685.7/Mnstr), 4.04/byte
Wites: 2,040, 294, 800 bytes (100% 101,551.22/M nstr), 1.51/byte
Al l ocated at {

#0: [root]
}

}

The root node covers the entire execution. The information is a superset of the information shown when DHAT ran,
adding details such as allocation rates, average block sizes, block lifetimes, and read and writeratios. The next example
will explain these in more detail.

10.3.2.3. Interior Nodes

PP nodes further down the tree show information about a subset of allocations. For example:

164

DHAT: adynamic heap analysis tool

PP 1.1/25 (2 children) {

Tot al : 54,533,440 bytes (4.02% 2,714.28/Mnstr) in 458,839 blocks (7.72%

At t-gmax: O bytes (0% in O blocks (0%, avg size O bytes
At t-end: O bytes (0% in O blocks (0%, avg size O bytes
Reads: 15,993,012 bytes (0.29% 796.02/Mnstr), 0.29/byte
Wites: 20,974,752 bytes (1.03% 1,043.97/Mnstr), 0.38/byte
Al l ocated at {

#1: O0x95CACC9: alloc (alloc.rs:72)

#2: O0x95CACC9: alloc (alloc.rs:148)

22.84/ M n

#3: Ox95CACC9O: reserve_internal <syntax::tokenstream: TokenStream alloc::all oc::d obal >
#4: 0x95CACCIO: reserve<syntax::tokenstream: TokenStreamalloc::alloc::d obal> (raw vec

#5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreanms (vec.rs: 460)
#6: O0x95CACCI9: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
#7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

#8: Ox95CACCIO: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::|exer::StringRea

}
}

Thefirst line indicates the node's position in the tree. The 1. 1 isaunique identifier for the node and also saysthat it
isthe first child node 1 (which isthe root). The/ 25 saysthat it is one of 25 children, i.e. it has 24 siblings. The (2
chi | dr en) saysthat this node node has two children of its own.

Allocations are aggregated by their allocation stack trace. The Al | ocat ed at section shows the alocation stack
trace that is shared by al the blocks covered by this node.

The Tot al line shows that this node accounts for 4.02% of all bytes allocated during execution, and 7.72% of all
blocks. These percentages are useful for comparing the significance of different nodes within a single profile; a PP
that accounts for 10% of bytes alocated is likely to be more interesting than one that accounts for 2%.

The Tot al line also shows alocation rates, measured in bytes and blocks per million instructions. These rates are
useful for comparing the significance of nodes across profiles made with different workloads.

Finally, the Tot al line shows the average size and lifetimes of these blocks.

TheAt t - gnax line says showsthat no blocks from this PP were alive when the global heap peak occurred. In other
words, these blocks do not contribute at all to the global heap peak.

The At t - end line shows that no blocks were from this PP were dive at shutdown. In other words, all those blocks
were explicitly freed before termination.

The Reads and Wi t es lines show how many bytes were read within this PP's blocks, the fraction this represents
of all heap reads, and the read rate. Finally, it shows the read ratio, which is the number of reads per byte. In this
case the number is 0.29, which is quite low -- if no byte was read twice, then only 29% of the alocated bytes, which
means that at least 71% of the bytes were never read! This suggests that the blocks are being underutilized and might
be worth optimizing.

The Wi t es linesis similar to the Reads line. In this case, at most 38% of the bytes are ever written, and at |east
62% of the bytes were never written.

The Reads and Wit es measurements suggest that the blocks are being under-utilised and might be worth
optimizing. Having said that, this kind of under-utilisation is common in data structures that grow, such as vectors
and hash tables, and isn't always fixable.

10.3.2.4. Leaf Nodes

Thisisaleaf node:

165

DHAT: adynamic heap analysis tool

PP 1.1.1.1/2 {

Tot al : 31, 460, 928 bytes (2.32% 1,565.9/Mnstr) in 262,171 bl ocks (4.41%

Max: 16, 779, 136 bytes in 65,543 bl ocks, avg size 256 bytes
At t-gmax: O bytes (0% in O blocks (0%, avg size O bytes
At t-end: O bytes (0% in O blocks (0%, avg size O bytes
Reads: 5,964, 704 bytes (0.11% 296.88/Mnstr), 0.19/byte
Wites: 10, 487,200 bytes (0.51% 521.98/Mnstr), 0.33/byte
Al l ocated at {

N1: Ox95CACC9: alloc (alloc.rs:72)

N2: Ox95CACC9: alloc (alloc.rs:148)

13. 05/ M ns

N3: O0x95CACCIO: reserve_internal <syntax::tokenstream: TokenStream alloc::all oc::d obal >
N4: Ox95CACCIO: reserve<syntax::tokenstream: TokenStream alloc::alloc::d obal> (raw vec

N5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreanms (vec.rs: 460)
N6: Ox95CACCIO: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
NT7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

N8: Ox95CACCIO: syntax::parse::lexer::tokentrees::<inpl syntax::parse::|exer::StringRea

N9: Ox95CAC39: parse_token_trees until _cl ose _delim (tokentrees.rs: 26)

N10: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::StringRe

#11: Ox95CAC39: parse_token trees_until_close_delim (tokentrees.rs: 26)

#12: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::StringRe

}
}

The 1. 1. 1. 1/ 2 indicates that this node is a great-grandchild of the root; is the first grandchild of the node in the
previous example; and has no children.

Leaf nodes contain an additional Max line, indicating the peak memory use for the blocks covered by this PP. (This
peak may have occurred at a time other than t - gnax.) In this case, 31,460,298 bytes were allocated from this PP,
but the maximum size alive at once was 16,779,136 bytes.

Stack frames that begin with a” rather than a# are copied from ancestor nodes. (In this example, the first 8 frames
are identical to those from the node in the previous example.) These frames could be found by tracing back through
ancestor nodes, but that can be annoying, which is why they are duplicated. This also means that each node makes
complete sense on its own.

10.3.2.5. Access Counts

If all blocks covered by a PP node have the same size, an additional Accesses field will be present. It indicates how
the reads and writes within these blocks were distributed. For example:

Tot al : 8,388,672 bytes (0.62% 417.53/Mnstr) in 262,146 bl ocks (4.41% 13.05/Mnstr),

At t-gmax: 8,388,672 bytes (1.98% in 262,146 bl ocks (16.64%, avg size 32 bytes

At t-end: O bytes (0% in O blocks (0%, avg size O bytes
Reads: 9,109, 682 bytes (0.17% 453.41/Mnstr), 1.09/byte
Wites: 7,340, 088 bytes (0.36% 365.34/Mnstr), 0.88/byte
Accesses: {

[O] 65547 7 8 4 65529 # # # 16 # # # 12 # # # # # # # # # # # 65542 # # # -

}

Every block covered by this PP was 32 bytes. Within all of those blocks, byte 0 was accessed (read or written) 65,547
times, byte 1 was accessed 7 times, byte 2 was accessed 8 times, and so on.

The ditto symbol (#) means "same access count as the previous byte".

166

DHAT: adynamic heap analysis tool

A dash (-) means "zera". (It isused instead of 0 because it makes unaccessed regions more easily identifiable.)
Theinfinity symbol (#, not present in this example) means "exceeded the maximum tracked count".

Block layout can often be inferred from counts. For example, these blocks probably have four separate byte-sized
fields, followed by afour-byte field, and so on.

Access counts can be useful for identifying data alignment holes or other layout inefficiencies.

10.3.2.6. Aggregate Nodes

The PP tree is very large and many nodes represent tiny numbers of blocks and bytes. Therefore, DHAT's viewer
aggregates insignificant nodes like this:

PP 1.14.2/2 {
Tot al : 5,175 bl ocks (0.09% O0.26/ M nstr)
Al l ocated at {
[5 insignificant]
}
}

Much of the detail is stripped away, leaving only basic measurements, along with an indication of how many nodes
were aggregated together (5 in this case).

10.3.3. The Output Footer

Below the PP treeis alinelike this:

PP significance threshold: total >= 59,434.17 bl ocks (1%

It shows the function used to determine if a PP node is significant. All nodes that don't satisfy this function are
aggregated. It is occasionally useful if you don't understand why a PP node has been aggregated. The exact threshold
depends on the sort metric (see below).

Finally, the bottom of the page shows a legend that explains some of the terms, abbreviations and symbols used in
the output.

10.3.4. Sort Metrics

The order in which sub-trees are sorted can be changed via the " Sort metric" drop-down menu at the top of DHAT's
viewer. Different sort metrics can be useful for finding different things. Some sort metrics also incorporate some
filtering, so that only nodes meeting a particular criteria are shown.

Total (bytes)

The total number of bytes allocated during the execution. Highly useful for evaluating heap churn, though not
quite as useful as"Tota (blocks)".

Total (blocks)
Thetotal number of blocks all ocated during the execution. Highly useful for evaluating heap churn; reducing the

number of callsto the allocator can significantly speed up a program. Thisisthe default sort metric.

167

DHAT: adynamic heap analysis tool

Total (blocks), tiny

Like "Total (blocks)", but shows only very small blocks. Moderately useful, because such blocks are often easy
to avoid allocating.

Total (blocks), short-lived

Like"Total (blocks)", but shows only very short-lived blocks. Moderately useful, because such blocks are often
easy to avoid allocating.

Total (bytes), zero reads or zero writes

Like"Total (bytes)", but showsonly blocksthat are never read or never written to (or both). Highly useful, because
such blocks indicate poor use of memory and are often easy to avoid allocating. For example, sometimes a block
is allocated and written to but then only read if a condition C is true; in that case, it may be possible to delay
creating the block until condition C is true. Alternatively, sometimes blocks are created and never used; such
blocks are trivial to remove.

Total (blocks), zero reads or zero writes
Like "Total (bytes), zero reads or zero writes" but for blocks. Highly useful.
Total (bytes), low-access

Like "Total (bytes)", but shows only blocks that have low numbers of reads or low numbers of writes (or both).
Moderately useful, because such blocks indicate poor use of memory.

Total (blocks), low-access
Like "Total (bytes), low-access', but for blocks.
At t-gmax (bytes)

This shows the breakdown of memory at the point of peak heap memory usage. Highly useful for reducing peak
memory usage.

At t-end (bytes)

Thisshowsthe breakdown of memory at program termination. Highly useful for identifying process-lifetimeleaks.
Reads (bytes)

The number of bytes read within heap blocks. Occasionally useful.
Reads (bytes), high-access

Like "Reads (bytes)", but only shows blocks with high read ratios. Occasionally useful for identifying hot areas
of memory.

Writes (bytes)
Like "Reads (bytes)", but for writes. Occasionally useful.
Writes (bytes), high-access
Like "Reads (bytes), high-access', but for writes. Occasionally useful.
The values within a node that represent the chosen sort metric are shown in bold, so they stand out.

Here is part of a PP node found with "Total (blocks), tiny", showing blocks with an average size of only 8.67 bytes:

168

DHAT: adynamic heap analysis tool

Tot al : 3,407, 848 bytes (0.25% 169.62/Mnstr) in 393,214 bl ocks (6.62% 19.57/Mnstr),

Here is part of a PP node found with "Total (blocks), short-lived", showing blocks with an average lifetime of only
181.75 instructions:

Tot al : 23,068,584 bytes (1.7% 1,148.19/Mnstr) in 262,143 bl ocks (4.41% 13.05/ M nstr

Hereisan example of aPPidentified with "Total (blocks), zero reads or zero writes", showing blocksthat are allocated
but never touched:

Tot al : 7,339,920 bytes (0.54% 365.33/Mnstr) in 262,140 bl ocks (4.41% 13.05/Mnstr),
Max: 3,669, 960 bytes in 131,070 bl ocks, avg size 28 bytes

At t-gmax: 3,336,400 bytes (0.79% in 119, 157 bl ocks (7.56%, avg size 28 bytes

At t-end: O bytes (0% in O blocks (0%, avg size O bytes

Reads: O bytes (0% O/Mnstr), 0/byte

Wites: O bytes (0% O/Mnstr), 0/byte

All the blocks identified by these PPs are good candidates for optimization.

10.4. Treatment of realloc

r eal | oc isatricky function and there are several different waysthat DHAT could handle it.

Imagineanal | oc(100) call followedby ar eal | oc(200) call. Thiscombination is considered to add two to the
total block count, and 300 bytes to the total bytes count. (An aternative would be to only add one to the total block
count, and 200 bytes to the total bytes count, asif asingle mal | oc(200) call had occurred. While this would be
defensible from a semantic point of view, it is silly from an operational point of view, because making two calls to
allocator functions is more expensive than one call, and DHAT is aprofiler that aimsto help with runtime costs.)

Furthermore, the implicit copying of the 100 bytes is added to the reads and writes counts. Without this, the read and
write counts would be under-measured and misleading.

However, DHAT only increases the current heap size by 100 bytes for this combination, and does not change the
current block count. (As opposed to increasing the current heap size by 200 bytes and then decreasing it by 100 bytes.)
Asaresult, it can only increase the global heap peak (if indeed, this resultsin a new peak) by 100 bytes.

Finally, the program point assigned to the block alocated by the mal | oc(100) call is retained once the block is
reallocated. Which means that al 300 bytes are attributed to that program point, and no separate program point is
created for ther eal | oc(200) call. Thismay be surprising, but it has one large benefit.

I magine some codethat startswith an empty buffer, and then gradually adds datato that buffer from numerousdifferent
pointsinthe code, reall ocating the buffer eachtimeit getsfull. (E.g. code generation inacompiler might work thisway.)
With the described approach, the first heap block and all subsequent heap blocks are attributed to the same program
point. While this is something of alie -- the first program point isn't actually responsible for the other allocations
-- it isarguably better than having the program points spread around in a distribution that unpredictably depends on
whenever the reall ocations were triggered.

10.5. Copy profiling

If DHAT is invoked with - - nbde=copy, instead of profiling heap operations (allocations and deallocations), it
profiles copy operations, such asnmentpy, menmove, st r cpy, and bcopy. Thisis sometimes useful.

169

DHAT: adynamic heap analysis tool

Here is an example PP node from this mode:

PP 1.1.2/5 (4 children) {
Tot al : 1,210,925 bytes (10.03% 4,358.66/Mnstr) in 112,717 bl ocks (35.2%
Copi ed at {
N1: 0x4842524: nmemmove (vg_replace_strnmem c: 1289)
#2: Ox1FOAOD: copy_nonover| appi ng<u8> (intrinsics.rs: 1858)
#3: Ox1FOAOD: copy_fromslice<u8> (nod.rs:2524)
#4: Ox1FOAOD: spec_extend<u8> (vec.rs: 2227)
#5: Ox1FOAOD: extend fromslice<u8> (vec.rs: 1619)
#6: Ox1FOAOD: push_str (string.rs:821)
#7: Ox1FOAOD: write str (string.rs:2418)
#8: Ox1FOAOD: <&mut Was core::fnt::Wite> :wite_str (nod.rs:195)
}
}

Itisvery similar to the PP nodes for heap profiling, but with less information, because copy profiling doesn't involve
any tracking of memory regions with lifetimes.

10.6. Ad hoc profiling

If DHAT isinvoked with - - nrode=ad- hoc, instead of profiling heap operations (allocations and deallocations), it
profiles callsto the DHAT _AD HOC EVENT client request, which is declared in dhat / dhat . h.

Here is an example PP node from this mode:

PP 1.1.1.1/2 {
Tot al : 30 units (17.65% 115.97/Mnstr) in 1 events (14.29% 3.87/Mnstr),
QCccurred at {
Al: 0x109407: g (ad-hoc.c: 4)
A2: 0x109425: f (ad-hoc.c: 8)
#3: 0x109497: main (ad-hoc.c: 14)
}
}

Thiskind of profiling is useful when you know a code path is hot but you want to know more about it.

For example, you might want to know which callsites of a hot function account for most of the calls. Y ou could put
aDHAT_AD HOC EVENT(1); call at the start of that function.

Alternatively, you might want to know the typical length of a vector in a hot location. You could put a
DHAT_AD HOC_EVENT(| en) ; cal at the appropriate location, when | en isthe length of the vector.

10.7. DHAT Command-line Options

DHAT-specific command-line options are;
--dhat-out-file=<file>

Writethe profiledatato f i | e rather than to the default output file, dhat . out . <pi d>. The %p and %g format
specifiers can be used to embed the process ID and/or the contents of an environment variable in the name, asis
the case for thecoreoption- -1 og-fil e.

170

405. 72/ M

avg si ze

DHAT: adynamic heap analysis tool

- - node=<heap| copy| ad- hoc> [defaul t: heap]
The profiling mode: heap profiling, copy profiling, or ad hoc profiling.

Note that stacks by default have 12 frames. This may be more than necessary, in which casethe- - num cal | er s
flag can be used to reduce the number, which may make DHAT run slightly faster.

171

11. Lackey: an example tool

To usethistool, you must specify - - t ool =l ackey on the Valgrind command line.

11.1. Overview

Lackey isasimple Valgrind tool that does various kinds of basic program measurement. It adds quite alot of simple
instrumentation to the program's code. It is primarily intended to be of use as an example tool, and consequently
emphasises clarity of implementation over performance.

11.2. Lackey Command-line Options

L ackey-specific command-line options are:
- - basi c- count s=<no| yes> [defaul t: yes]
When enabled, Lackey prints the following statistics and information about the execution of the client program:

1. The number of callsto the function specified by the - - f nnane option (the default is mai n). If the program
has had its symbols stripped, the count will always be zero.

2. The number of conditional branches encountered and the number and proportion of those taken.

3. The number of superblocks entered and completed by the program. Note that due to optimisations done by the
JIT, thisisnot at all an accurate value.

4. The number of guest (x86, amd64, ppc, etc.) instructions and IR statements executed. IR is Valgrind's RISC-
like intermediate representation viawhich al instrumentation is done.

5. Ratios between some of these counts.
6. The exit code of the client program.
--detai |l ed-count s=<no| yes> [default: no]

When enabled, Lackey printsatable containing counts of loads, storesand AL U operations, differentiated by their
IR types. The IR types are identified by their IR name (11", "18", ... "1128", "F32", "F64", and "V 128").

--trace-menr<no| yes> [default: no]

When enabled, Lackey prints the size and address of almost every memory access made by the program. See the
comments at the top of the filel ackey/ | k_mai n. ¢ for details about the output format, how it works, and
inaccuracies in the address trace. Note that this option produces immense amounts of output.

--trace-superbl ocks=<no| yes> [defaul t: no]

When enabled, Lackey prints out the address of every superblock (a single entry, multiple exit, linear chunk of
code) executed by the program. This is primarily of interest to Valgrind developers. See the comments at the
top of the filel ackey/ | k_mai n. c for details about the output format. Note that this option produces large
amounts of output.

- -f nnane=<name> [defaul t: nmain]

Changes the function for which calls are counted when - - basi c- count s=yes is specified.

172

12. Nulgrind: the minimal Valgrind tool

To use thistool, you must specify - - t ool =none on the Valgrind command line.

12.1. Overview

Nulgrind is the simplest possible Valgrind tool. It performs no instrumentation or analysis of a program, just runs it
normally. It is mainly of use for Valgrind's developers for debugging and regression testing.

Nonetheless you can run programs with Nulgrind. They will run roughly 5 times more slowly than normal, for no
useful effect. Note that you need to use the option - - t ool =none to run Nulgrind (ie. not - - t ool =nul gri nd).

173

13. BBV: an experimental basic block
vector generation tool

To usethistool, you must specify - - t ool =exp- bbv on the Vagrind command line.

13.1. Overview

A basic block is alinear section of code with one entry point and one exit point. A basic block vector (BBV) isalist
of al basic blocks entered during program execution, and a count of how many times each basic block was run.

BBV isatool that generates basic block vectors for use with the SimPoint analysis tool. The SimPoint methodol ogy
enables speeding up architectural simulations by only running a small portion of a program and then extrapolating
total behavior from thissmall portion. Most programs exhibit phase-based behavior, which meansthat at varioustimes
during execution a program will encounter intervals of time where the code behaves similarly to apreviousinterval. If
you can detect these interval s and group them together, an approximation of thetotal program behavior can be obtained
by only simulating a bare minimum number of intervals, and then scaling the results.

In computer architecture research, running a benchmark on a cycle-accurate simulator can cause slowdowns on the
order of 1000 times, making it take days, weeks, or even longer to run full benchmarks. By utilizing SimPoint this can
be reduced significantly, usually by 90-95%, while still retaining reasonable accuracy.

A more complete introduction to how SimPoint works can be found in the paper "Automatically Characterizing Large
Scale Program Behavior" by T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

13.2. Using Basic Block Vectors to create
SimPoints

To quickly create abasic block vector file, you will call Vagrind like this:
val grind --tool =exp-bbv /bin/ls

In this case we are running on / bi n/ | s, but this can be any program. By default afile called bb. out . Pl D will
be created, where PID is replaced by the process ID of the running process. This file contains the basic block vector.
For long-running programs this file can be quite large, so it might be wise to compress it with gzip or some other
Compression program.

To create actual SimPoint results, you will need the SimPoint utility, available from the SimPoint webpage. Assuming
you have downloaded SimPoint 3.2 and compiled it, create SimPoint results with a command like the following:

./ Si mPoi nt . 3. 2/ bi n/ si npoi nt -i nput Vect ors&zi pped \
-l oadFVFi | e bb.out.1234.gz \
-k 5 -saveSi npoints results.sinpts \
- saveSi npoi nt Wei ghts resul ts. wei ghts

where bb.out.1234.gz is your compressed basic block vector file generated by BBV.
The SimPoint utility does random linear projection using 15-dimensions, then does k-mean clustering to calculate

which intervals are of interest. In this example we specify 5 intervals with the -k 5 option.

174

http://www.cse.ucsd.edu/~calder/simpoint/
http://www.cse.ucsd.edu/~calder/simpoint/

BBV: an experimental basic block vector generation tool

The outputs from the SimPoint run arether esul t s. si npt s andr esul t s. wei ght s files. The first holds the
5 most relevant intervals of the program. The seconds holds the weight to scale each interval by when extrapolating
full-program behavior. The intervals and the weights can be used in conjunction with a simulator that supports fast-
forwarding; you fast-forward to the interval of interest, collect stats for the desired interval length, then use statistics
gathered in conjunction with the weights to calculate your resullts.

13.3. BBY Command-line Options

BBV -specific command-line options are:
--bb-out-file=<nanme> [default: bb. out. %p]

This option selects the name of the basic block vector file. The %p and %g format specifiers can be used to embed
the process ID and/or the contents of an environment variable in the name, as is the case for the core option - -
| og-file.

--pc-out-file=<name> [default: pc.out. %]

This option selects the name of the PC file. This file holds program counter addresses and function name info
for the various basic blocks. This can be used in conjunction with the basic block vector file to fast-forward via
function names instead of just instruction counts. The %p and % format specifiers can be used to embed the
process | D and/or the contents of an environment variable in the name, asisthe case for the core option - - | og-
file.

nt erval - si ze=<nunber > [defaul t: 100000000]

Thisoption selectsthe size of theinterval to use. The default is 100 million instructions, which isacommonly used
value. Other sizes can be used; smaller intervals can help programs with finer-grained phases. However smaller
interval size can lead to accuracy issues due to warm-up effects (When fast-forwarding the various architectural
features will be un-initialized, and it will take some number of instructions before they "warm up" to the state a
full simulation would be at without the fast-forwarding. Large interval sizes tend to mitigate this.)

nstr-count-only [default: no]
This option tells the tool to only display instruction count totals, and to not generate the actual basic block vector

file. Thisisuseful for debugging, and for gathering instruction count info without generating the large basic block
vector files.

13.4. Basic Block Vector File Format

The Basic Block Vector is dumped at fixed intervals. Thisis commonly done every 100 million instructions; the - -
i nt erval - si ze option can be used to change this.

The output file looks like this:

T:45: 1024 :189: 99343

T:11: 78573 :15:1353 :56:1

T:18:45 :12:135353 :56: 78 314: 4324263

Each new interval starts with a T. This is followed on the same line by a series of basic block and frequency pairs,

one for each basic block that was entered during the interval. The format for each block/frequency pair is a colon,
followed by a number that uniquely identifies the basic block, another colon, and then the frequency (which is the

175

BBV: an experimental basic block vector generation tool

number of times the block was entered, multiplied by the number of instructionsin the block). The pairs are separated
from each other by a space.

The frequency count is multiplied by the number of instructionsthat arein the basic block, in order to weigh the count
so that instructions in small basic blocks aren't counted as more important than instructions in large basic blocks.

The SimPoint program only processes lines that start with a"T". All other lines are ignored. Traditionally comments
areindicated by starting alinewith a"#' character. Some other BBV generation tools, such as PinPoints, generatelines
beginning with letters other than "T" to indicate more information about the program being run. We do not generate
these, as the SimPoint utility ignores them.

13.5. Implementation

Vagrind provides all of the information necessary to create BBV files. In the current implementation, all instructions
are instrumented. Thisis slower (by approximately afactor of two) than a method that instruments at the basic block
level, but there are some complications (especially with rep prefix detection) that make that method more difficult.

Vagrind actually provides instrumentation at a superblock level. A superblock has one entry point but unlike basic
blocks can have multiple exit points. Once abranch occurs into the middle of ablock, it issplit into anew basic block.
Because Valgrind cannot produce "true" basic blocks, the generated BBV vectorswill be different than those generated
by other tools. In practice this does not seem to affect the accuracy of the SimPoint results. We do internally force the
- - vex- guest - chase=no option to Valgrind which forces a more basic-block-like behavior.

When asuperblock is run for thefirst time, it isinstrumented with our BBV routine. A block info (bbinfo) structureis
allocated which holds the various information and statistics for the block. A unique block ID is assigned to the block,
and then the structure is placed into an ordered set. Then each native instruction in the block isinstrumented to call an
instruction counting routine with a pointer to the block info structure as an argument.

At run-time, our instruction counting routines are called once per native instruction. The relevant block info structure
is accessed and the block count and total instruction count is updated. If the total instruction count overflows the
interval size then we walk the ordered set, writing out the statistics for any block that was accessed in the interval,
then resetting the block counters to zero.

On the x86 and amd64 architectures the counting code has extra code to handle rep-prefixed string instructions. This
is because actual hardware counts arep-prefixed instruction as oneinstruction, while anaive Valgrind implementation
would count it as many (possibly hundreds, thousands or even millions) of instructions. We handle rep-prefixed
instructions specially, in order to make the results match those obtained with hardware performance counters.

BBV also countsthe fldcw instruction. Thisinstruction is used on x86 machinesin variousways; it ismost commonly
found when converting floating point values into integers. On Pentium 4 systems the retired instruction performance
counter counts this instruction as two instructions (all other known processors only count it as one). This can affect
results when using SimPoint on Pentium 4 systems. We provide the fldcw count so that users can evaluate whether it
will impact their results enough to avoid using Pentium 4 machines for their experiments. It would be possible to add
an option to thistool that mimicsthe double-counting so that the generated BBV fileswould be usable for experiments
using hardware performance counters on Pentium 4 systems.

13.6. Threaded Executable Support

BBV supportsthreaded programs. When aprogram has multiple threads, an additional basic block vector fileiscreated
for each thread (each additional fileis the specified filename with the thread number appended at the end).

Thereisno official method of using SimPoint with threaded workloads. The most common method isto run SimPoint
on each thread's results independently, and use some method of deterministic execution to try to match the original
workload. This should be possible with the current BBV.

176

BBV: an experimental basic block vector generation tool

13.7. Validation

BBV has been tested on x86, amd64, and ppc32 platforms. An earlier version of BBV was tested in detail using
hardware performance counters, this work is described in a paper from the HiPEAC'08 conference, "Using Dynamic
Binary Instrumentation to Generate Multi-Platform SimPoints: Methodology and Accuracy" by V.M. Weaver and
SA. McKee.

13.8. Performance

Using this program slows down execution by roughly a factor of 40 over native execution. This varies depending on
the machine used and the benchmark being run. On the SPEC CPU 2000 benchmarks running on a 3.4GHz Pentium
D processor, the slowdown ranges from 24x (mcf) to 340x (vortex.2).

177

Valgrind FAQ

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Vagrind FAQ

Table of Contents

Valgrind Frequently ASKEd QUESLIONSuuuieiitietieii ettt e et ettt e e et et e et e e e et eeeaaa e eennes 1

clxxix

Valgrind Frequently Asked Questions

Valgrind Frequently Asked Questions

O = =T (o 010 oo [P 1
1.1. How do you pronounCe "Valgringd™? ... e 1
1.2. Where does the name "Valgrind" come from?oiiiiiiiii e 1
2. Compiling, installing @and CONFIQUITNGuiiei e et e e e e et eeaeees 2
2.1. When building Valgrind, ‘'make’ dies partway with an assertion failure, something likethis: 2
2.2. When building Valgrind, 'make’ fails with this: ..., 2
3. Valgrind abortS UNEXPECIEAIYceu ittt et et e e e e et e e e e ean s 2
3.1. Programs run OK on Valgrind, but at exit produce a bunch of errorsinvolving __|i bc_freeres
and then die with a segmentation fault. ... 2
3.2. My (buggy) program dies [IKe thiS:oiiueii e e 2
3.3. My program dies, printing a message like thisalong theway:c.oooiiiiiiiiiii e, 2
3.4. 1 tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind
but something went wrong. Does Valgrind handle such programs?ccoovieiiiiiiieiiineeeineeenn. 3
4. Valgrind behaves UNEXPECLEAIYiiie et et e et e e e e e e et e e e e eannas 3
4.1. My program uses the C++ STL and string classes. Valgrind reports 'still reachable’ memory leaks
involving these classes at the exit of the program, but there should be none.cocee. 3
4.2. The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them? 4
4.3. The stack traces given by Memcheck (or another tool) seem to have the wrong function namein
them. What's happening? et et e e et eaans 5
4.4. My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening? 5
4.5. Memcheck doesn't report any errors and | know my program has errors.occeoveeiineiiinieiineeennnnns 5
4.6. Why doesn't Memcheck find the array overrunsin this program?cccocoiiiiiiiiiiniieeee 6
5. IMISCRITANEOUS ...ttt et et e et et et et e e 6
5.1. | tried writing a suppression but it didn't work. Can you write my suppression for me? 6
5.2. With Memcheck's memory leak detector, what's the difference between "definitely lost", "indirectly
lost", "possibly lost", "still reachable”, and "SUpPPressad”? oveviiiiiee e 6

5.3. Memcheck's uninitialised value errors are hard to track down, because they are often reported some
time after they are caused. Could Memcheck record atrail of operationsto better link the cause

to the effect? Or maybe just eagerly report any copies of uninitialised memory values? 7

5.4. Isit possible to attach Valgrind to a program that is already running?coooeeiiiiiiiiiineeinneeennn. 7

6. HOW TO Get FUIMNEr ASSISIANCE .. .eeiiiieeiit ettt et ettt ettt et e e e e e enees 7
6.1. Where can | get MOre hEIP? ... e et e e 7

1. Background
1.1. How do you pronounce "Valgrind"?

The "Va" asin the word "value'. The "grind" is pronounced with a short 'i* -- ie. "grinned" (rhymes with
"tinned") rather than "grined" (rhymes with "find").

Don't feel bad: almost everyone getsit wrong at first.

12. Where does the name"Vagrind" come from?
From Nordic mythology. Originally (before release) the project was named Heimdall, after the watchman of
the Nordic gods. He could "see ahundred miles by day or night, hear the grass growing, see the wool growing
on a sheep's back", etc. This would have been a great name, but it was aready taken by a security package
"Heimda".

Keeping with the Nordic theme, Valgrind was chosen. Valgrind is the name of the main entrance to Vahalla
(the Hall of the Chosen Slain in Asgard). Over this entrance there resides awolf and over it there is the head

Valgrind Frequently Asked Questions

of aboar and on it perches a huge eagle, whose eyes can see to the far regions of the nine worlds. Only those
judged worthy by the guardians are allowed to pass through Valgrind. All others are refused entrance.

It's not short for "value grinder", although that's not a bad guess.

2. Compiling, installing and configuring
2.1. When building Valgrind, 'make' dies partway with an assertion failure, something like this:
% nmake: expand.c:489: allocated vari abl e_append:
Assertion 'current _variable set list->next !'= 0" failed.
It'sprobably abugin'make'. Some, but not all, instances of version 3.79.1 have this bug, seethis. Try upgrading
to a more recent version of 'make’. Alternatively, we have heard that unsetting the CFLAGS environment
variable avoids the problem.
2.2. When building Vagrind, 'make’ fails with this:
{fusr/bin/ld: cannot find -lc

collect2: Id returned 1 exit status

Y ou need to install the glibc-static-devel package.

3. Valgrind aborts unexpectedly

3.1. Programsrun OK on Valgrind, but at exit produce a bunch of errorsinvolving __| i bc_fr eer es and then
die with a segmentation fault.

When the program exits, Valgrind runsthe procedure | i bc_freer es inglibc. Thisisahook for memory
debuggers, so they can ask glibc to free up any memory it has used. Doing that is needed to ensurethat Valgrind
doesn't incorrectly report space leaksin glibc.

Theproblemisthat running __ | i bc_freer es inolder glibc versions causes this crash.

Workaround for 1.1.X and later versions of Valgrind: usethe- - run- | i bc- f r eer es=no option. Y ou may
then get space leak reports for glibc alocations (please don't report these to the glibc people, since they are
not real leaks), but at least the program runs.

3.2. My (buggy) program dies like this:

val grind: mnmallocfree.c:248 (get _bszB as is): Assertion 'bszB lo == bszB hi' failed.
or like this:
val grind: mnmallocfree.c:442 (nk_i nuse_bszB): Assertion 'bszB != 0" failed.

or otherwise aborts or crashesin m_mallocfree.c.

If Memcheck (the memory checker) shows any invalid reads, invalid writes or invalid freesin your program,
the above may happen. Reason is that your program may trash Valgrind's low-level memory manager, which
then dies with the above assertion, or something similar. The cure isto fix your program so that it doesn't do
any illegal memory accesses. The above failure will hopefully go away after that.

3.3. My program dies, printing a message like this along the way:

http://www.mail-archive.com/bug-make@gnu.org/msg01658.html

Valgrind Frequently Asked Questions

34.

vex x86->I R unhandl ed instruction bytes: 0x66 OxF Ox2E 0x5

One possibility is that your program has a bug and erroneously jumps to a non-code address, in which case
you'll get a SIGILL signal. Memcheck may issue a warning just before this happens, but it might not if the
jump happens to land in addressable memory.

Another possibility isthat Valgrind does not handle the instruction. If you are using an older Valgrind, anewer
version might handle theinstruction. However, al instruction sets have some obscure, rarely used instructions.
Also, on amd64 there are an almost limitless number of combinations of redundant instruction prefixes, many
of them undocumented but accepted by CPUs. So Valgrind will still have decoding failures from timeto time.
If this happens, please file a bug report.

| tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind but
something went wrong. Does Valgrind handle such programs?

Vagrind can handle dynamically generated code, so long as none of the generated code is later overwritten
by other generated code. If this happens, though, things will go wrong as Valgrind will continue running
its trandlations of the old code (this is true on x86 and amd64, on PowerPC there are explicit cache flush
instructions which Valgrind detects and honours). Y ou should try running with - - snt- check=al | inthis
case. Valgrind will run much more slowly, but should detect the use of the out-of-date code.

Alternatively, if you have the source code to the JT compiler you can insert calls to the
VALGRI ND_DI SCARD_TRANSLATI ONS client request to mark out-of-date code, saving you from using - -
snt- check=al | .

Apart fromthis, in theory Valgrind can run any Java program just fine, even those that use NI and are partially
implemented in other languages like C and C++. In practice, Javaimplementations tend to do nasty things that
most programs do not, and Valgrind sometimes falls over these corner cases.

If your Java programs do not run under Valgrind, even with - - snc- check=al | , please file a bug report
and hopefully wel'll be able to fix the problem.

4. Valgrind behaves unexpectedly

4.1.

My program uses the C++ STL and string classes. Valgrind reports 'still reachable’ memory leaks involving
these classes at the exit of the program, but there should be none.

First of all: relax, it's probably not a bug, but a feature. Many implementations of the C++ standard libraries
use their own memory pool alocators. Memory for quite a number of destructed objects is not immediately
freed and given back to the OS, but kept in the pool(s) for later re-use. The fact that the pools are not freed at
the exit of the program cause Valgrind to report this memory as still reachable. The behaviour not to free pools
at the exit could be called a bug of the library though.

Using GCC, you can force the STL to use malloc and to free memory as soon as possible by globally disabling
memory caching. Beware! Doing so will probably slow down your program, sometimes drastically.

» With GCC 2.91, 2.95, 3.0 and 3.1, compile all source using the STL with- D __USE MALLCC. Beware!
Thiswas removed from GCC starting with version 3.3.

» With GCC 3.2.2 and later, you should export the environment variable GLI BCPP_FORCE_NEWbefore
running your program.

» With GCC 3.4 and later, that variable has changed name to GLI BCXX_FORCE_NEW

There are other ways to disable memory pooling: using themal | oc_al | oc template with your objects (hot
portable, but should work for GCC) or even writing your own memory alocators. But all this goes beyond the

Valgrind Frequently Asked Questions

4.2,

scope of this FAQ. Start by reading http://gcc.gnu.org/onlinedocs/libstdc++/fag/index.html#4_4 leak if you
absolutely want to do that. But beware: allocators belong to the more messy parts of the STL and people went
to great lengths to make the STL portable across platforms. Chances are good that your solution will work on
your platform, but not on others.

The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them?
If they're not long enough, use - - num cal | er s to make them longer.

If they're not detailed enough, make sure you are compiling with - g to add debug information. And don't strip
symbol tables (programs should be unstripped unless you run 'strip' on them; some libraries ship stripped).

Also, for leak reportsinvolving shared objects, if the shared object is unloaded before the program terminates,
Valgrind will discard the debug information and the error message will be full of ??? entries. If you use the
option - - keep- debugi nf o=yes, then Valgrind will keep the debug information in order to show the stack
traces, at the price of increased memory. An alternateworkaroundisto avoid callingdl cl ose onthese shared
objects.

Also, - f oni t - f rame- poi nt er and- f st ack- check can make stack traces worse.
Some exampl e sub-traces:

» With debug information and unstripped (best):

Invalid wite of size 1
at 0x80483BF: really (nmallocl.c: 20)
by 0x8048370: main (nallocl.c:9)

With no debug information, unstripped:

Invalid wite of size 1
at 0x80483BF: really (in /auto/homes/njn25/grind/ head5/a. out)
by 0x8048370: main (in /auto/homes/njn25/grind/ head5/a. out)

With no debug information, stripped:

Invalid wite of size 1
at 0x80483BF: (w thin /auto/hones/njn25/grind/ head5/ a. out)
by 0x8048370: (within /auto/hones/njn25/grind/ head5/a. out)
by 0x42015703: _ libc_start_main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. (wi thin /auto/hones/njn25/grind/ head5/a. out)

With debug information and -fomit-frame-pointer:

Invalid wite of size 1
at 0x80483C4: really (nmallocl.c: 20)
by 0x42015703: _ libc_start _main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. ??? (start.S:81)

A leak error message involving an unloaded shared object:

84 bytes in 1 bl ocks are possibly lost in loss record 488 of 713

http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak

Valgrind Frequently Asked Questions

4.3.

4.4.

4.5.

at O0x1B9036DA: operator newunsi gned) (vg_replace_malloc.c:132)
by Ox1DB63EEB: ?7??

by 0x1DB4B800: ?7?7?

by O0x1D65E007: ?7?7?

by Ox8049EE6: main (main.cpp: 24)

The stack traces given by Memcheck (or another tool) seem to have the wrong function name in them. What's
happening?

Occasionaly Valgrind stack traces get the wrong function names. This is caused by glibc using aliases
to effectively give one function two names. Most of the time Valgrind chooses a suitable name, but very
occasiondly it getsit wrong. Examples we know of are printing bcnp instead of mencnp, i ndex instead of
strchr,andri ndex instead of strrchr.

My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening?

When aprogram runsunder Valgrind, itsenvironment isdlightly different towhenit runsnatively. For example,
the memory layout is different, and the way that threads are scheduled is different.

Most of thetimethisdoesn't makeany difference, but it can, particularly if your programisbuggy. For example,
if your program crashes because it erroneously accesses memory that is unaddressable, it's possible that this
memory will not be unaddressable when run under Valgrind. Alternatively, if your program has data races,
these may not manifest under Valgrind.

There isn't anything you can do to change this, it's just the nature of the way Valgrind works that it cannot
exactly replicate a native execution environment. In the case where your program crashes due to a memory
error when run natively but not when run under Valgrind, in most cases Memcheck should identify the bad
memory operation.

Memcheck doesn't report any errors and | know my program has errors.
There are two possible causes of this.

First, by default, Valgrind only traces the top-level process. So if your program spawns children, they won't
be traced by Valgrind by default. Also, if your program is started by a shell script, Perl script, or something
similar, Valgrind will trace the shell, or the Perl interpreter, or equivalent.

To trace child processes, usethe- -t r ace- chi | dr en=yes option.

If you are tracing large trees of processes, it can be less disruptive to have the output sent over the network.
Give Vagrind the option - - | 0g- socket =127. 0. 0. 1: 12345 (if you want logging output sent to port
12345 onl ocal host). You can use the valgrind-listener program to listen on that port:

val grind-1istener 12345
Obviously you have to start the listener process first. See the manual for more details.

Second, if your program is staticaly linked, most Valgrind tools will only work well if they are able to
replace certain functions, such as nmal | oc, with their own versions. By default, statically linked mal | oc
functi ons arenot replaced. A key indicator of thisisif Memcheck says:

Al'l heap bl ocks were freed -- no | eaks are possible

when you know your program calls mal | oc. The workaround is to use the option - - sonarre-
synonyns=sonal | oc=NONE or to avoid statically linking your program.

Valgrind Frequently Asked Questions

4.6.

Therewill also be no replacement if you use an aternativenal | oc | i br ary suchastcmalloc, jemalloc, ...
In such a case, the option - - sonane- synonyns=sonal | oc=zzzz (where zzzz is the soname of the
alternative malloc library) will allow Valgrind to replace the functions.

Why doesn't Memcheck find the array overrunsin this program?

int static[5];

i nt mai n(voi d)

{
i nt stack[5];
static[5] = O;
stack [5] = O;
return O;

}

Unfortunately, Memcheck doesn't do bounds checking on global or stack arrays. We'd like to, but it's just not
possible to do in areasonable way that fits with how Memcheck works. Sorry.

5. Miscellaneous

51

5.2

| tried writing a suppression but it didn't work. Can you write my suppression for me?
Yes! Usethe- - gen- suppr essi ons=yes featureto spit out suppressions automatically for you. Y ou can

then edit them if you like, eg. combining similar automatically generated suppressions using wildcards like

"X

If you really want to write suppressions by hand, read the manual carefully. Note particularly that C++ function
names must be mangled (that is, not demangled).

With Memcheck's memory leak detector, what's the difference between "definitely lost”, "indirectly lost",
"possibly lost", "still reachable”, and "suppressed"?

The details are in the Memcheck section of the user manual.
In short:
» "definitely lost" means your program is leaking memory -- fix those leaks!

* "indirectly lost" means your program is leaking memory in a pointer-based structure. (E.g. if the root node
of abinary treeis "definitely lost", all the children will be "indirectly lost".) If you fix the "definitely lost"
leaks, the "indirectly lost" leaks should go away.

» "possibly lost" means your program is leaking memory, unless you're doing unusual things with pointers
that could cause them to point into the middle of an allocated block; see the user manual for some possible
causes. Use - - show- possi bl y- | ost =no if you don't want to see these reports.

« "dtill reachable" meansyour program isprobably ok -- it didn't free some memory it could have. Thisisquite
common and often reasonable. Don't use- - show- r eachabl e=yes if you don't want to seethesereports.

» "suppressed” means that a leak error has been suppressed. There are some suppressions in the default
suppression files. Y ou can ignore suppressed errors.

Valgrind Frequently Asked Questions

53.

54.

Memcheck's uninitialised value errors are hard to track down, because they are often reported some time after
they are caused. Could Memcheck record atrail of operations to better link the cause to the effect? Or maybe
just eagerly report any copies of uninitialised memory values?

Prior to version 3.4.0, the answer was "we don't know how to do it without huge performance penalties'. As of
3.4.0, try using the - - t r ack- or i gi ns=yes option. It will run slower than usual, but will give you extra
information about the origin of uninitialised values.

Or if you want to do it the old fashioned way, you can use the client request
VALGRI ND_CHECK_VALUE_I S_DEFI NED to help track these errors down -- work backwards from the
point where the uninitialised error occurs, checking suspect values until you find the cause. This requires
editing, compiling and re-running your program multiple times, which isapain, but still easier than debugging
the problem without Memcheck's help.

As for eager reporting of copies of uninitialised memory values, this has been suggested multiple times.
Unfortunately, amost all programs legitimately copy uninitialised memory values around (because compilers
pad structsto preserve alignment) and eager checking leadsto hundreds of false positives. Therefore Memcheck
does not support eager checking at thistime.

Isit possible to attach Valgrind to a program that is already running?

No. The environment that VValgrind provides for running programs is significantly different to that for normal
programs, e.g. dueto different layout of memory. ThereforeValgrind hasto havefull control fromthevery start.

It is possible to achieve something like this by running your program without any instrumentation (which
involves a slow-down of about 5x, less than that of most tools), and then adding instrumentation once you get
to apoint of interest. Support for this must be provided by the tool, however, and Callgrind isthe only tool that
currently has such support. Seetheinstructionsonthecal | gri nd_cont r ol program for details.

6. How To Get Further Assistance

6.1.

Where can | get more help?
Read the appropriate section(s) of the Valgrind Documentation.

Search the valgrind-users mailing list archives, using the group name
gmane. conp. debuggi ng. val gri nd.

If you think an answer in this FAQ isincomplete or inaccurate, please e-mail valgrind@valgrind.org.

If you havetried all of these things and are still stuck, you can try mailing the valgrind-users mailing list. Note
that an email has a better change of being answered usefully if it is clearly written. Also remember that, despite
the fact that most of the community are very helpful and responsive to emailed questions, you are probably
requesting help from unpaid volunteers, so you have no guarantee of receiving an answer.

http://www.valgrind.org/docs/manual/index.html
http://search.gmane.org
http://news.gmane.org/gmane.comp.debugging.valgrind
mailto:valgrind@valgrind.org
http://www.valgrind.org/support/mailing_lists.html

Valgrind Technical Documentation

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind Technical Documentation

Table of Contents

1. The Design and Implementation of Valgrindooooiiuiiiiiii e 1
2. Writing @ New Valgrind TOOIccoouuiiiiiii ettt ettt e e 2
2% W [oo (8 1o o EO TSSO SPPTTT 2
A =T S Lo ST TUPPPTRPPPPP 2
2.2.1. HOW TOOIS WOFK ...ttt ettt e ettt e e et e e et et e e e e enb e e e enbnaeeees 2
2.2.2. GELLING the COUR ... ittt et e e e e 2
2.2.3. GELLING SEAMTEAe ettt 2
224, WIIEING The COUE ... it e e 3
2.2.5, INITIAHSAIION «.eeetiee ettt ettt ettt e e et ettt e e e e et n e e e e eee 4
2.2.6. INSITUMENTBLIONeeeeit ettt ettt e et e et e et et e e e e et e e e et e e e e eba s 4
2.2.7. FINAIISALION ...ttt 4
2.2.8. Other Important INfOMMELIONiiiiii e e e e e 4

2.3, AGVENCET TOPICS .. eeettueeeitt ettt ettt ettt ettt ettt et ettt e et eb s et e et e et e ea e et e e b et e e a e renaans 5
2.3.1. DEDUGOING TIPS - ttettueteetti ettt ettt ettt ettt ettt et ettt e et e et eb et e e e e e an e e enaas 5
2.3.2. SUPPIESSIONS ...ttt ettt ettt e ettt e ettt e et e et e e et eh e et e et e et e e b et e e et e e e e na e e enan s 5
2.3.3. DOCUMENTALION ... eeett ettt ettt ettt e e e e e et et e et et e e e e naa e e e eneas 5
2.3.4, REGIESSION TOSES ...uuiiiiiie ettt ettt ettt ettt ettt et e et et e e e e et e e e 6
2,35, PrOFIHING ..ottt n e eae 7
2.3.6. Other MaKefile HACKEIYviiiiiii et et 7
2.3.7. The Coreftool INTEITACEuu ittt e et e e e e eees 7

24, FINBI WOPAS ...ttt e ettt e e et et e ettt e et e n e et e e e ena e aees 7
3. Callgrind FOrmat SPECITICAIIONiieiii ettt e e et e e e e e e 8
L. OVEIVIBIW .ttt ettt et et e e e e e aa s 8
311 BASIC SITUCIUIE ...ttt ettt e et e ettt e e et e e et et e e et et e e e e nba s 8

3. 1.2, SIMPIE EXAMPIE ...t et ettt et e 8
31,3, ASSOCIBLIONS ...ttt ettt et e e e e 9

3. 1.4, EXtended EXAMPIE ... 9

3. 1.5, NAME COMPIESSION ...eeevteeeeti ettt e ettt et e eb e et et e e e e et e et e et e et e sb e e e e et e e e enba e e eenanns 10
3.1.6. SUDPOSITION COMPIESSIONieetteeeett ettt e ettt e ettt e e e et e e et et e e e eebt e e e eetbaeeeennaeeenn 11
317, MISCEITANEOUS ...ttt ettt e et e et e e e e et e e e eaba e eeees 12

I = 1= 1= 1o PP PP PPPPTI 12
N T € =01 1= PP 12
3.2.2. Description Of HEBAEr LiNESiiiiiii ittt 14
3.2.3. DesCription Of BOOY LINESccouuuiiiiiiiieeeiit ettt e e et e e e et e e enba e eees 15

1. The Design and Implementation of
Valgrind

A number of academic publications nicely describe many aspects of Valgrind's design and implementation. Online
copies of all of them, and others, are available on the Valgrind publications page.

The following paper gives a good overview of Valgrind, and explains how it differs from other dynamic binary
instrumentation frameworks such as Pin and DynamoRI O.

e Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. Nicholas Nethercote and
Julian Seward. Proceedings of ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PL DI 2007), San Diego, California, USA, June 2007.

The following two paperstogether give acomprehensive description of how most of Memcheck works. Thefirst paper
describesin detail how Memcheck's undefined value error detection (a.k.a. V bits) works. The second paper describes
in detail how Memcheck's shadow memory isimplemented, and compares it to other alternative approaches.

» Using Valgrind to detect undefined value errorswith bit-precision. Julian Seward and Nicholas Nether cote.
Proceedings of the USENI X'05 Annual Technical Conference, Anaheim, California, USA, April 2005.

How to Shadow Every Byte of Memory Used by a Program. Nicholas Nethercote and Julian Seward.
Proceedings of the Third International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE 2007), San Diego, California, USA, June 2007.

The following paper describes Callgrind.

* A Tool Suite for Simulation Based Analysis of Memory Access Behavior. Josef Weidendorfer, Markus
Kowarschik and Car sten Trinitis. Proceedingsof the4th I nter national Confer ence on Computational Science
(ICCS2004), Krakow, Poland, June 2004.

The following dissertation describes Valgrind in some detail (many of these details are now out-of-date) as well as
Cachegrind, Annelid and Redux. It also covers some underlying theory about dynamic binary analysisin general and
what al these tools have in common.

* Dynamic Binary Analysis and Instrumentation. Nicholas Nethercote. PhD Dissertation, University of
Cambridge, November 2004.

http://www.valgrind.org/docs/pubs.html

2. Writing a New Valgrind Tool

So you want to write a Valgrind tool ? Here are some instructions that may help.

2.1. Introduction

The key idea behind Valgrind's architecture is the division between its core and tools.

Thecoreprovidesthe common low-level infrastructureto support programinstrumentation, including the JIT compiler,
low-level memory manager, signal handling and a thread scheduler. It also provides certain services that are useful to
some but not all tools, such as support for error recording, and support for replacing heap allocation functions such
asmal | oc.

But the core leaves certain operations undefined, which must befilled by tools. Most notably, tools define how program

code should be instrumented. They can also call certain functions to indicate to the core that they would like to use
certain services, or be notified when certain interesting events occur. But the core takes care of all the hard work.

2.2. Basics

2.2.1. How tools work

Toolsmust define variousfunctionsfor instrumenting programsthat are called by Valgrind's core. They arethen linked
against Valgrind's core to define a complete Vagrind tool which will be used when the - - t ool option is used to
select it.

2.2.2. Getting the code

To write your own tool, you'll need the Valgrind source code. You'll need a clone from the git repository for the
automake/autoconf build instructions to work. See the information about how to do clone from the repository at the
Valgrind website.

2.2.3. Getting started

Valgrind uses GNU aut omake and aut oconf for the creation of Makefiles and configuration. But don't worry,
these instructions should be enough to get you started even if you know nothing about those tools.

In what follows, al filenames are relative to Valgrind's top-level directory val gri nd/ .

1. Choose a name for the tool, and a two-letter abbreviation that can be used as a short prefix. We'll use f oobar
and f b asan example.

2. Make three new directoriesf oobar / ,f oobar/ docs/ andf oobar/tests/.
3. Create an empty filef oobar/t est s/ Makefil e. am

4. Copy none/ Makefi | e. amintof oobar /. Edit it by replacing all occurrences of the strings™ none”, " nl _
and"nl -" with"foobar”,"fb_" and" f b-" respectively.

5. Copy none/ nl _mai n. c intof oobar/, renamingit asf b_nmai n. c. Edit it by changing thedet ai | s lines
innl _pre_cl o_init tosomething appropriate for thetool. These fields are used in the startup message, except

http://www.valgrind.org/downloads/repository.html
http://www.valgrind.org/downloads/repository.html

Writing a New Valgrind Tool

for bug_reports_t o whichisused if atool assertion fails. Also, replace the string " nl _" throughout with
"fb_" agan.

6. Edit Makef i | e. am adding the new directory f oobar tothe TOOLS or EXP_TOOLS variables.
7. Editconfi gure. ac,addingf oobar/ Makefi | e andf oobar/t est s/ Makefi | e tothe AC_QUTPUT list.
8. Run:

aut ogen. sh

./configure --prefix=" pwd /inst
nmake

make install

It should automake, configure and compile without errors, putting copies of thetool inf oobar/ andi nst/ i b/
val grind/.

9. You can test it with acommand like:

i nst/bin/val grind --tool =f oobar date

(almost any program should work; dat e isjust an example). The output should be something like this:

==738== foobar-0.0.1, a foobarring tool.

==738== Copyright (C 2002-2017, and GNU GPL'd, by J. Progranmer.

==738== Using Valgrind-3.14.0.d T and Li bVEX; rerun with -h for copyright info
==738== Commund: date

==738==

Tue Nov 27 12:40:49 EST 2017

==738==

The tool does nothing except run the program uninstrumented.

These stepsdon't haveto befollowed exactly -- you can choose different namesfor your sourcefiles, and useadifferent
--prefixfor./configure.

Now that we've setup, built and tested the simplest possible tool, onto the interesting stuff...

2.2.4. Writing the code

A tool must define at least these four functions:

pre_clo_init()
post _clo_init()
i nstrument ()
fini()

The names can be different to the above, but these are the usual names. The first one is registered using the macro
VG _DETERM NE_| NTERFACE_VERSI ON. The last three are registered using the VG _(basi ¢_t ool _funcs)
function.

In addition, if a tool wants to use some of the optiona services provided by the core, it may have to define other
functions and tell the core about them.

Writing a New Valgrind Tool

2.2.5. Initialisation

Most of theinitialisation should bedoneinpre_cl o_i nit.Onlyusepost _cl o_i ni t if atool providescommand
line options and must do some initialisation after option processing takes place (" ¢l 0" stands for "command line
options").

First of al, various "details' need to be set for a tool, using the functions VG (detail s_*). Some are all
compulsory, some aren't. Some are used when constructing the startup message, det ai | _bug _reports_to is
used if VG _(t ool _pani c) isever called, or atool assertion fails. Others have other uses.

Second, various "needs' can be set for atool, using thefunctionsVG_(needs_*) . They aremostly booleans, and can
be left untouched (they default to Fal se). They determine whether atool can do variousthings such as: record, report
and suppress errors, process command line options; wrap system calls; record extrainformation about heap blocks; etc.

For example, if a tool wants the core's help in recording and reporting errors, it must call
VG_(needs_t ool _errors) and provide definitions of eight functions for comparing errors, printing out errors,
reading suppressions from a suppressions file, etc. While writing these functions requires some work, it's much less
than doing error handling from scratch because the core is doing most of the work.

Third, the tool can indicate which eventsin core it wants to be notified about, using the functions VG _(track_*).
These include things such as heap blocks being allocated, the stack pointer changing, a mutex being locked, etc. If a
tool wants to know about this, it should provide a pointer to a function, which will be called when that event happens.

For example, if the tool want to be notified when a new heap block is allocated, it should cal
VG (track_new _nmem heap) with an appropriate function pointer, and the assigned function will be called each
time this happens.

More information about "details', "needs' and "trackable events' can be found in i ncl ude/
pub_tool tooliface.h.

2.2.6. Instrumentation

i nstrunent istheinteresting one. It alows you to instrument VEX IR, which is Valgrind's RISC-like intermediate
language. VEX IR is described in the comments of the header file VEX/ pub/ | i bvex_ir. h.

The easiest way to instrument VEX IR isto insert calls to C functions when interesting things happen. See the tool
"Lackey" (I ackey/ | k_mai n. c) for a simple example of this, or Cachegrind (cachegri nd/ cg_nmmai n. c) for
amore complex example.

2.2.7. Finalisation

This is where you can present the final results, such as a summary of the information collected. Any log files should
be written out at this point.

2.2.8. Other Important Information

Please note that the coreftool split infrastructure is quite complex and not brilliantly documented. Here are some
important points, but there are undoubtedly many othersthat | should note but haven't thought of .

The filesi ncl ude/ pub_t ool _*. h contain all the types, macros, functions, etc. that a tool should (hopefully)
need, and are the only . h files atool should need to #i ncl ude. They have a reasonable amount of documentation
in it that should hopefully be enough to get you going.

Note that you can't use anything from the C library (there are deep reasons for this, trust us). Valgrind provides an
implementation of areasonable subset of the C library, details of whichareinpub_t ool _|i bc*. h.

Writing a New Valgrind Tool

When writing atool, in theory you shouldn't need to look at any of the code in Valgrind's core, but in practice it might
be useful sometimes to help understand something.

Thei ncl ude/ pub_t ool _basi cs. h and VEX/ pub/ | i bvex_basi ct ypes. h files have some basic types
that are widely used.

Ultimately, the tools distributed (Memcheck, Cachegrind, Lackey, etc.) are probably the best documentation of all,
for the moment.

The VG_ macro is used heavily. This just prepends a longer string in front of names to avoid potential namespace
clashes. It isdefinedini ncl ude/ pub_t ool _basi cs. h.

There are some assorted notes about various aspects of the implementationin docs/ i nt er nal s/ . Much of it isn't
that relevant to tool-writers, however.

2.3. Advanced Topics

Once atool becomes more complicated, there are some extra things you may want/need to do.

2.3.1. Debugging Tips

Writing and debugging toolsis not trivial. Here are some suggestions for solving common problems.

If you are getting segmentation faultsin C functions used by your tool, the usual GDB command:

gdb <prog> core
usually gives the location of the segmentation fault.

If you want to debug C functions used by your tool, there are instructions on how to do so in the file
READVE_DEVEL OPERS.

If you are having problems with your VEX IR instrumentation, it's likely that GDB won't be able to help at all. In this
case, Vagrind's- -trace-f| ags option isinvaluable for observing the results of instrumentation.

If you just want to know whether a program point has been reached, using the O NK macro (in i ncl ude/
pub_t ool _|ibcprint. h)canbeeaser than using GDB.

The other debugging command line options can be useful too (runval gri nd - - hel p- debug for thelist).

2.3.2. Suppressions

If your tool reports errors and you want to suppress some common ones, you can add suppressions to the suppression
files. Therelevant filesare* . supp; thefinal suppression fileisaggregated from these files by combining the relevant
. supp files depending on the versions of linux, X and glibc on a system.

Suppression types have the form t ool _nan®e: suppr essi on_nane. The t ool _nane here is the name you
specify for the tool during initidisation with VG _(det ai | s_nane) .

2.3.3. Documentation

If you are feeling conscientious and want to write some documentation for your tool, please use XML as the rest of
Vagrind does. Thefiledocs/ README has more details on getting the XML toolchain to work; this can be difficult,
unfortunately.

Writing a New Valgrind Tool

To write the documentation, follow these steps (using f oobar as the example tool name again):

1

2.

Thedocsgoinf oobar/ docs/ , which you will have created when you started writing the tool.

Copy the XML documentation file for the tool Nulgrind from none/ docs/ nl - manual . xm to f oobar/
docs/, and renameittof oobar/ docs/ f b- manual . xm .

Note: thereis atetex bug involving underscoresin filenames, so don't use' .

. Write the documentation. There are some helpful bits and pieces on using XML markup in docs/ xmi /

xm _hel p. t xt.

. Includeit inthe User Manual by adding therelevant entry todocs/ xmi / manual . xm . Copy and edit an existing

entry.

. Include it in the man page by adding the relevant entry to docs/ xmi / val gri nd- manpage. xmi . Copy and

edit an existing entry.

. Validatef oobar/ docs/ f b- manual . xm using the following command from within docs/ :

make valid

You may get errorsthat look like this:

I xm /index.xm :5: element chapter: validity error : No declaration for
attribute base of element chapter

Ignore (only) these -- they're not important.

Because the XML toolchain is fragile, it is important to ensure that f b- manual . xm won't break the
documentation set build. Note that just because an XML file happily transforms to html does not necessarily mean
the same holds true for pdf/ps.

. You can (re-)generate the HTML docs while you are writing f b- manual . xm to help you see how it's looking.

The generated filesend up indocs/ ht m / . Use the following command, withindocs/ :

make htnl - docs

. When you have finished, try to generate PDF and PostScript output to check all iswell, from withindocs/ :

make print-docs
Check the output . pdf and. ps filesindocs/ print/.

Note that the toolchain is even more fragile for the print docs, so don't feel too bad if you can't get it working.

2.3.4. Regression Tests

Valgrind has some support for regression tests. If you want to write regression tests for your tool:

1.

2.

Thetestsgoinf oobar/t est s/, which you will have created when you started writing the tool.

Writef oobar/t est s/ Makefi |l e. am Usenentheck/ t est s/ Makef i | e. amasan example.

Writing a New Valgrind Tool

3. Writethetests, . vgt est test descriptionfiles, . st dout . exp and. st derr. exp expected output files. (Note
that Valgrind's output goes to stderr.) Some details on writing and running tests are given in the comments at the
top of thetesting scriptt est s/ vg_regt est.

4. Write afilter for stderr results f oobar/tests/filter _stderr. It cancal the existing filtersint est s/ .
Seenmentheck/tests/filter_stderr for an example; in particular note the $di r trick that ensures the
filter works correctly from any directory.

2.3.5. Profiling

Lots of profiling tools have trouble running Valgrind. For example, trying to use gprof is hopeless.
Probably the best way to profile atool iswith OProfile on Linux.

You can aso use Cachegrind on it. Read README DEVEL OPERS for details on running Valgrind under Valgrind;
it'sabit fragile but can usually be made to work.

2.3.6. Other Makefile Hackery

If you add any directories under f oobar/, you will need to add an appropriate Makefi | e. amto it, and add a
corresponding entry to the AC_OUTPUT listin conf i gur e. ac.

If you add any scripts to your tool (see Cachegrind for an example) you need to add them to the bi n_SCRI PTS
variableinf oobar / Makef i | e. amand possible also to the AC_OUTPUT listinconf i gur e. ac.

2.3.7. The Core/tool Interface

The core/tool interface evolves over time, but it's pretty stable. We deliberately do not provide backward compatibility
with old interfaces, because it is too difficult and too restrictive. We view this as a good thing -- if we had to be
backward compatible with earlier versions, many improvements now in the system could not have been added.

Because tools are statically linked with the core, if atool compiles successfully then it should be compatible with
the core. We would not deliberately violate this property by, for example, changing the behaviour of a core function
without changing its prototype.

2.4. Final Words

Writing a new Valgrind tool is not easy, but the tools you can write with Valgrind are among the most powerful
programming tools there are. Happy programming!

3. Callgrind Format Specification

This chapter describes the Callgrind Format, Version 1.

The format description is meant for the user to be able to understand the file contents; but more important, it is given
for authors of measurement or visualization tools to be able to write and read this format.

3.1. Overview

The profile dataformat is ASCII based. It iswritten by Callgrind, and it is upwards compatible to the format used by
Cachegrind (ie. Cachegrind uses a subset). It can be read by callgrind_annotate and K Cachegrind.

This chapter gives on overview of format features and examples. For detailed syntax, look at the format reference.

3.1.1. Basic Structure

To uniquely specify that afileis a callgrind profile, it should add "# callgrind format" as first line. This is optional
but recommended for easy format detection.

Each file has aheader part of an arbitrary number of lines of theformat "key: value". After the header, lines specifying
profile costs follow. Everywhere, comments on own lines starting with '# are alowed. The header lines with keys
"positions” and "events" define the meaning of cost linesin the second part of thefile: the value of "positions” isalist
of subpositions, and the value of "events' isalist of event type names. Cost lines consist of subpositions followed by
64-bit counters for the events, in the order specified by the "positions" and "events' header line.

The "events' header line is always required in contrast to the optional line for "positions’, which defaults to "line",
i.e. aline number of some source file. In addition, the second part of the file contains position specifications of the
form "spec=name". "spec" can be e.g. "fn" for a function name or "fI" for a file name. Cost lines are aways related
to the function/file specifications given directly before.

3.1.2. Simple Example

The event names in the following example are quite arbitrary, and are not related to event names used by Callgrind.
Especially, cycle counts matching real processors probably will never be generated by any Valgrind tools, as these
are bound to simulations of simple machine models for acceptable slowdown. However, any profiling tool could use
the format described in this chapter.

call grind format

events: Cycles Instructions Flops
fl=file.f

f n=mai n

15 90 14 2

16 20 12

The above example gives profile information for event types "Cycles', "Instructions', and "Flops'. Thus, cost lines
give the number of CPU cycles passed by, number of executed instructions, and number of floating point operations
executed while running code corresponding to some source position. As there is no line specifying the vaue of
"positions”, it defaults to "line", which means that the first number of a cost line is aways aline number.

Thus, thefirst cost line specifiesthat inline 15 of sourcefilef i | e. f thereiscode belonging to function mai n. While
running, 90 CPU cycles passed by, and 2 of the 14 instructions executed were floating point operations. Similarly, the

Callgrind Format Specification

next line specifies that there were 12 instructions executed in the context of function mai n which can be related to
linel6infilefil e. f,taking 20 CPU cycles. If acost line specifiesless event counts than givenin the "events' line,
therest is assumed to be zero. |.e. there was no floating point instruction executed relating to line 16.

Note that regular cost lines always give self (also called exclusive) cost of code at a given position. If you specify
multiple cost lines for the same position, these will be summed up. On the other hand, in the example above thereis
no specification of how many times function mai n actually was called: profile data only contains sums.

3.1.3. Associations

The most important extension to the original format of Cachegrind is the ability to specify call relationship among
functions. More generally, you specify associations among positions. For this, the second part of the file also can
contain association specifications. These look similar to position specifications, but consist of two lines. For calls,
the format looks like

cal I s=(Call Count) (Target position)
(Source position) (lnclusive cost of call)

Thedestination only specifies subpositionslikeline number. Therefore, to be ableto specify acall to another functionin
another sourcefile, you have to precede the above lineswith a"cfn=" specification for the name of the called function,
and optionally a"cfi=" specification if the function is in another source file ("cfl=" is an alternative specification for
"cfi=" because of historical reasons, and both should be supported by format readers). The second line looks like a
regular cost line with the difference that inclusive cost spent inside of the function call hasto be specified.

Other associations are for example (conditional) jumps. See the reference below for details.

3.1.4. Extended Example

The following example shows 3 functions, mai n, f uncl, andf unc2. Function mai n callsf unc1 onceandf unc2
3times. f uncl callsf unc2 2times.

callgrind format
events: Instructions

fl=filel.c
fn=mai n

16 20
cfn=funcl
cal I s=1 50
16 400
cfi=file2.c
cfn=func2
cal I s=3 20
16 400

fn=funcl

51 100
cfi=file2.c
cfn=func2
cal I s=2 20
51 300

Callgrind Format Specification

fl=file2.c
f n=func2
20 700

One can see that in mai n only code from line 16 is executed where al so the other functions are called. Inclusive cost
of mai n is 820, which is the sum of self cost 20 and costs spent in the calls: 400 for the single call to f unc1 and
400 as sum for the three callsto f unc2.

Functionf uncl islocated infi | el. c, the same as mai n. Therefore, a"cfi=" specification for the call to f unc1
isnot needed. The function f unc1 only consists of codeat line51of fi | el. ¢, wheref unc?2 iscalled.

3.1.5. Name Compression

With the introduction of association specifications like calls it is needed to specify the same function or same file
name multiple times. As absolute filenames or symbol namesin C++ can be quitelong, it is advantageousto be able to
specify integer IDs for position specifications. Here, the term "position” corresponds to a file name (source or object
file) or function name.

To support name compression, a position specification can be not only of the format " spec=name”, but also "spec=(ID)
name" to specify amapping of an integer ID to aname, and "spec=(I1D)" to reference apreviously defined ID mapping.
Thereisaseparate ID mapping for each position specification, i.e. you can use ID 1 for both afile name and a symbol
name.

With string compression, the example from above looks like this:

call grind format
events: Instructions

fl=(1) filel.c
fn=(1) main

16 20

cfn=(2) funcl
cal I s=1 50

16 400

cfi=(2) file2.c
cfn=(3) func2
cal I s=3 20

16 400

fn=(2)
51 100
cfi=(2)
cfn=(3)
cal l s=2 20
51 300

fl=(2)
fn=(3)
20 700

As position specifications carry no information themselves, but only change the meaning of subsequent cost lines or
associations, they can appear everywhere in the file without any negative consequence. Especially, you can define
name compression mappings directly after the header, and before any cost lines. Thus, the above example can also
be written as

10

Callgrind Format Specification

callgrind format
events: Instructions

define file | D mapping
fl=(1) filel.c

fl=(2) file2.c

define function I D mappi ng
fn=(1) main

fn=(2) funcl

fn=(3) func2

fl=(1)
fn=(1)
16 20

3.1.6. Subposition Compression

If aCallgrind datafile should hold costs for each assembler instruction of aprogram, you specify subposition "instr in
the"positions:" header line, and each cost line has to include the address of someinstruction. Addresses are allowed to
have asize of 64 hitsto support 64-bit architectures. Thus, repeating similar, long addressesfor almost every lineinthe
datafile can enlarge the file size quite significantly, and motivates for subposition compression: instead of every cost
line starting with a 16 character long address, one is allowed to specify relative addresses. This relative specification
is not only allowed for instruction addresses, but also for line numbers; both addresses and line numbers are called
"subpositions”.

A relative subposition always is based on the corresponding subposition of the last cost line, and starts with a"+" to
specify apositive difference, a"-" to specify a negative difference, or consists of "*" to specify the same subposition.
Because absolute subpositions always are positive (ie. never prefixed by "-"), any relative specification is non-
ambiguous; additionally, absolute and relative subposition specifications can be mixed freely. Assume the following
exampl e (subpositions can always be specified as hexadecimal numbers, beginning with "0x"):

call grind format
positions: instr line
events: ticks

f n=f unc

0x80001234 90 1
0x80001237 90 5
0x80001238 91 6

With subposition compression, this looks like

callgrind formt
positions: instr line
events: ticks

f n=f unc
0x80001234 90 1
+3 * 5
+1 +1 6

Remark: For assembler annotation to work, instruction addresses have to be corrected to correspond to addresses found
inthe original binary. |.e. for relocatable shared objects, often aload offset has to be subtracted.

11

Callgrind Format Specification

3.1.7. Miscellaneous

3.1.7.1. Cost Summary Information

For the visualization to be able to show cost percentage, a sum of the cost of the full run has to be known. Usually,
it is assumed that thisis the sum of al cost linesin afile. But sometimes, thisis not correct. Thus, you can specify a
"summary:" line in the header giving the full cost for the profile run. An import filter may use thisto show a progress
bar while loading alarge datafile.

3.1.7.2. Long Names for Event Types and inherited Types

Event typesfor cost linesare specified in the "events:" line with an abbreviated name. For visualization, it makes sense
to be able to specify some longer, more descriptive name. For an event type "Ir" which means "Instruction Fetches',
this can be specified the header line

event: Ir : Instruction Fetches
events: Ir Dr

In this example, "Dr" itself has no long name associated. The order of "event:" lines and the "events:" line is of no
importance. Additionally, inherited event types can be introduced for which no raw data is available, but which are
calculated from given types. Suppose the last example, you could add

event: Sum=Ir + Dr

to specify an additional event type "Sum", which is calculated by adding costs for "Ir and "Dr".

3.2. Reference

3.2.1. Grammar

Profil eDataFil e : = Format Spec? Format Versi on? Creator? Part Dat a*
Format Spec := "# callgrind format\n"

For mat Version : = "version: 1\n"

Creator := "creator:" NoNewLi neChar* "\n"

PartData : = (HeaderLine "\n")+ (BodyLine "\n")+

HeaderLine := (enpty |ine)
| ('# NoNewlLi neChar*)

| PartDetail
| Description
| Event Specification
| Cost Li neDef
PartDetail := TargetCommand | TargetlD
Target Command : = "cnd: " Space* NoNewlLi neChar*
TargetID := ("pid"|"thread"|"part") ":" Space* Nunber
Description := "desc:" Space* Name Space* ":" NoNewlLi neChar*

12

Callgrind Format Specification

Event Specification := "event:" Space* Nane |nheritedDef? LongNameDef ?
I nheritedDef := "=" I|nheritedExpr

| nheritedExpr := Nane
| Number Space* ("*" Space*)? Nane
| I'nheritedExpr Space* "+" Space* |nheritedExpr

LongNameDef := ":" NoNewLi neChar*
Cost Li neDef := "events:" Space* Nane (Space+ Nane)*
| "positions:" "instr"? (Space+ "line")?

BodyLi ne : = (enpty line)
| ('# NoNewLi neChar*)
| CostLine
| PositionSpec
| Call Spec
| UncondJunpSpec
| CondJunpSpec

Cost Li ne : = SubPosi tionList Costs?

SubPosi tionLi st := (SubPosition+ Space+) +

SubPosition := Nunber | "+" Nunber | "-" Nunber | "*"

Costs := (Nunber Space+)+

Posi tionSpec := Position "=" Space* PositionNane

Position := CostPosition | CalledPosition

Cost Position := "ob" | "“fl" | "fi" | "fe" | "fn"

Cal l edPosition :=" "cob" | "cfi" | "cfl" | "cfn"

PositionNane := ("(" Nunmber ")")? (Space* NoNewLi neChar*)?

Cal | Spec := CallLine "\n" CostLine

CallLine := "calls=" Space* Nunber Space+ SubPositi onLi st

UncondJunpSpec : = "junp=" Space* Nunber Space+ SubPositi onLi st
CondJunmpSpec : = "jcnd=" Space* Nunber Space+ Number Space+ SubPositi onLi st
Space := " " | "\t"

Nunber := HexNunber | (Digit)+

Digit :="0" | ... | "9"
HexNunber := "0x" (Digit | HexChar)+
HexChar :="a" | ... | "f" | "A" | ... | "F"

Nane = Al pha (Digit | Al pha)*

13

Callgrind Format Specification

Alpha ="a" | ... | "z" | "A" | ... | "Z"

NoNewLi neChar := all characters without "\n"

A profile datafile ("ProfileDataFile") starts with basic information such as a format marker, the version and creator
information, and then has a list of parts, where each part has its own header and body. Parts typically are different

threads and/or time spans/phases within a profiled application run.

Note that callgrind_annotate currently only supports profile data files with one part. Callgrind may produce multiple
parts for one profile run, but defaults to one output file for each part.

3.2.2. Description of Header Lines

Basic information in the first lines of a profile datafile:

o« # callgrind formt [Calgrind]
This line specifies that the file is a callgrind profile, and it has to be the first line. It was added late to the format
(with Valgrind 3.13) and is optional, as all readers also should work with older callgrind profiles not including this
line. However, generation of thislineis recommended to allow desktop environments and file managersto uniquely
detect the format.

e version: nunber [Calgrind]
Thisisused to distinguish future profile dataformats. A major version of O or 1 issupposed to be upwards compatible
with Cachegrind's format. It is optional; if not appearing, version 1 is assumed. Otherwise, it hasto follow directly
after the format specification (i.e. be thefirst line if the optional format specification is skipped).

e creator: string]/[Cadlgrind]
Thisisan arbitrary string to denote the creator of thisfile. Optional.

The header for each part has an arbitrary number of lines of the format "key: value". Possible key values for the header
are:

e pid: process id][Cdlgrind]
Optional. This specifies the process ID of the supervised application for which this profile was generated.
e cnd: program nane + args [Cachegrind]
Optional. This specifiesthe full command line of the supervised application for which this profile was generated.
e part: nunber [Calgrind]
Optional. This specifies a sequentially incremented number for each dump generated, starting at 1.
» desc: type: val ue [Cachegrind]

This specifies various information for this dump. For some types, the semantic is defined, but any description type
is allowed. Unknown types should be ignored.

There are the types "I1 cache", "D1 cache", "LL cache", which specify parameters used for the cache simulator.
These are the only types originaly used by Cachegrind. Additionaly, Callgrind uses the following types:
"Timerange" gives arough range of the basic block counter, for which the cost of this dump was collected. Type
"Trigger" states the reason of why this trace was generated. E.g. program termination or forced interactive dump.

14

Callgrind Format Specification

e positions: [instr] [line] [Calgrind]

For cost lines, this defines the semantic of the first numbers. Any combination of "instr", "bb" and "line" is allowed,
but has to be in this order which corresponds to position numbers at the start of the cost lines later in thefile.

If "instr* is specified, the position is the address of an instruction whose execution raised the events given later on
the line. This addressis relative to the offset of the binary/shared library file to not have to specify relocation info.
For "line", the position is the line number of a source file, which is responsible for the events raised. Note that the
mapping of "instr" and "line" positions are given by the debugging line information produced by the compiler.

This header lineis optional, defaulting to "positions: ling" if not specified.
* events: event type abbreviations [Cachegrind]

A list of short names of the event typeslogged in cost linesin this part of the profile datafile. Arbitrary short names
are allowed. The order given specifiestherequired order in cost lines. Thus, thefirst event typeisthe second or third
number in a cost line, depending on the value of "positions’. Required to appear for each header part exactly once.

e summary: costs [Cdlgrind]

Optional. This header line specifies a summary cost, which should be equal or larger than atotal over al self costs.
It may be larger as the cost lines may not represent all cost of the program run.

* totals: costs [Cachegrind]

Optional. Should appear at the end of the file (although looking like a header line). Must give the total of all cost
lines, to allow for a consistency check.

3.2.3. Description of Body Lines

Theregular body lineisacost line consisting of one or two position numbers (depending on "positions." header line,
see above) and an array of cost numbers. A position number either isaline numbersinto a source file or an instruction
address within binary code, with source/binary file names specified as position names (see below). The cost numbers
get mapped to event typesin the same order as specified in the "events." header line. If less numbers than event types
are given, the costs default to zero for the remaining event types.

Further, there exist linesspec=posi ti on nane. A position nameis an arbitrary string. If it starts with "(" and a
digit, it'sastring in compressed format. Otherwise it's the real position string. This allows for file and symbol names
as position strings, as these never start with "(" + digit. The compressed format is either "(" number ")" space position
or only "(" number ")". The first relates position to number in the context of the given format specification from this
line to the end of the file; it makes the (number) an alias for position. Compressed format is always optional .

Position specifications allowed:
» ob=[Cdlgrind]
The ELF object where the cost of next cost lines happens.
e f | =[Cachegrind]
o fi = [Cachegrind]
» f e=[Cachegrind]
The source file including the code which is responsible for the cost of next cost lines. "fi="/"fe=" is used when the

source file changesinside of afunction, i.e. for inlined code.

15

Callgrind Format Specification

f n=[Cachegrind]
The name of the function where the cost of next cost lines happens.
e cob=[Callgrind]
The ELF object of the target of the next call cost lines.
» cfi=[Calgrind]
The source file including the code of the target of the next call cost lines.
e cfl =[Cadlgrind]
Alternative spelling for cf i = specification (because of historical reasons).
o cf n=[Calgrind]
The name of the target function of the next call cost lines.

The last type of body line provides specific costs not just related to one position as regular cost lines. It starts with
specific strings similar to position name specifications.

» cal I s=count target-position[Cdlgrind]

Call executed "count" times to "target-position”. After a"calls=" line there MUST be a cost line. This provides the
source position of the call and the cost spent in the called function in total.

e junp=count target-position][Calgrind]
Unconditional jump, executed "count" times, to "target-position”.
e jcnd=exe-count junp-count target-position[Calgrind]

Conditional jump, executed "exe-count” times with "jump-count” jumps happening (rest is fall-through) to "target-
position".

16

Valgrind Distribution Documents

Release 3.20.0 24 Oct 2022
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind Distribution Documents

Table of Contents

N O I (0 PP 1
2 | PP 3
I O B T | PP 89
] N B PP 127
5. README_MISSING_SYSCALL _OR _TOCTL .ttuiiiiieiiti ettt e e et e e e een s 130
6. README _DEVELOPERSottt ettt et et e et e e et e et a e et e e et e e et e eetn e eanaaes 135
7. README_PACKAGERS ... ot e et e et e e e e e e e eeans 142
8. README.S300 ... ittt ettt ettt et e et e e e e et e et e e et e et e e eanns 144
LS I Y B 1Y = o o oo PP 146
10. README.@NAFOiA_EMUIBLOTc.uieee ettt e et e e e e e e e e e e et e e et e e et aeeaaeeenneeeens 151
T N B 1Y o 1 o PPN 153
12, README.SOIAIS ...ttt ettt et e et e e et e et e et e e e et et aa e aan s 155
13, READMEFIEEDSUeiiiiieiii ettt e aa s 160

XViii

1. AUTHORS

Julian Seward was the original founder, designer and author of

Valgrind, created the dynamic translation frameworks, wrote Memcheck,
the 3.X versions of Helgrind, SGCheck, DHAT, and did lots of other
things.

Nicholas Nethercote did the core/tool generalisation, wrote
Cachegrind and Massif, and tons of other stuff.

Tom Hughes did a vast number of bug fixes, helped out with support for
more recent Linux/glibc versions, set up the present build system, and has
helped out with test and build machines.

Jeremy Fitzhardinge wrote Helgrind (in the 2.X line) and totally
overhauled low-level syscall/signal and address space layout stuff,
among many other things.

Josef Weidendorfer wrote and maintains Callgrind and the associated
K Cachegrind GUI.

Paul Mackerras did alot of theinitial per-architecture factoring

that forms the basis of the 3.0 line and was also seen in 2.4.0.

He also did UCode-based dynamic translation support for PowerPC, and
created a set of ppc-linux derivatives of the 2.X release line.

Greg Parker wrote the Mac OS X port.

Dirk Mueller contributed the malloc/free mismatch checking
and other bits and pieces, and acts as our KDE liaison.

Robert Walsh added file descriptor leakage checking, new library
interception machinery, support for client allocation pools, and minor
other tweakage.

Bart Van Assche wrote and maintains DRD.

Cerion Armour-Brown worked on PowerPC instruction set support in the
Vex dynamic-trandlation framework. Maynard Johnson improved the
Power6 support.

Kirill Batuzov and Dmitry Zhurikhin did the NEON instruction set
support for ARM. Donna Robinson did the v6 media instruction support.

Donna Robinson created and maintains the very excellent
http://www.valgrind.org.

Vince Weaver wrote and maintains BBV.

Frederic Gobry helped with autoconf and automake.

AUTHORS

Daniel Berlin modified readelf's dwarf2 source line reader, written by Nick
Clifton, for usein Valgrind.

Michael Matz and Simon Hausmann modified the GNU binutils demangler(s) for
usein Valgrind.

David Woodhouse has helped out with test and build machines over the course
of many releases.

Florian Krohm and Christian Borntraeger wrote the initial S390X/Linux
port. Andreas Arnez is the current maintainer and developer of it.

Florian improved and ruggedised the regression test system during 2011.
Philippe Waroquiers wrote and maintains the embedded GDB server. He
also made a bunch of performance and memory-reduction fixes across
diverse parts of the system.

Carl Love and Maynard Johnson contributed IBM Power6 and Power7
support, and generally deal with ppc{ 32,64} -linux issues.

Petar Jovanovic and Dejan Jevtic wrote and maintain the mips32-linux
port.

Dragos Tatulea modified the arm-android port so it also works on
x86-android.

Jakub Jelinek helped out extensively with the AVX and AV X2 support.

Mark Wielaard fixed a bunch of bugs and acts as our Fedora/RHEL
liaison.

Assad Hashmi contributed support for AArch64 v8.1 and later.

Maran Pakkirisamy implemented support for decimal floating point on
s390.

Rhys Kidd updated and maintains the macOS port.

Many, many people sent bug reports, patches, and helpful feedback.
Development of Valgrind was supported in part by the Tri-Lab Partners
(Lawrence Livermore National Laboratory, Los Alamos National

Laboratory, and Sandia National Laboratories) of the U.S. Department
of Energy's Advanced Simulation & Computing (ASC) Program.

2. NEWS

Release 3.20.0 (24 Oct 2022)

This release supports X86/Linux, AMD®64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoMIPS/Linux.

* CORE CHANGES

* The option "--vgdb-stop-at=event1,event2,..." accepts the new value abexit.
Thisindicates to invoke gdbserver when your program exits abnormally
(i.e. with anon zero exit code).

* Fix Rust vO name demangling.

* The Linux rseq syscall is now implemented as (silently) returning ENOSY S.

* Add FreeBSD syscall wrappersfor __ specialfd and __realpathat.

* Remove FreeBSD dependencies on COMPAT10, which fixes compatibility with
HardenedBSD

* The option --enable-debuginfod=<nolyes> [default: yes] has been added on
Linux.

* More DWARF5 support as generated by clangl4.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got a bugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter_bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzilla tend to get forgotten about or ignored.

131186 writev reports error in (vector]...])
434764 iconv_open causes Id.so v2.28+ to use optimised strncmp
446754 Improve error codes from alloc functions under memcheck
452274 memcheck crashes with Assertion 'sci->status.what == Ssldl€' failed
452779 Vagrind failsto build on FreeBSD 13.0 with [lvm-devel (15.0.0)
453055 shared timed mutex drd test fails with "Lock shared failed" message
453602 Missing command line option to enable/disable debuginfod
452802 Handlelld 9+ split RW PT_LOAD segments correctly
454040 s390x: False-positive memcheck:cond in memmem on arch13 systems
456171 [PATCH] FreeBSD: Don't record address errors when accessing the 'kern.ps_strings' sysctl struct
n-i-bz Implement vgdb invoker on FreeBSD
458845 PowerPC: The L field for the debf and sync instruction should be

3 bitsin ISA 3.1.
458915 Remove register cache to fix 458915 gdbserver causes wrong syscall return
459031 Documentation on --error-exitcode incompl ete
450477 XERROR messages lacks ending \n' in vgdb

NEWS

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.20.0.RC1: 20 Oct 2022)

Release 3.19.0 (11 Apr 2022)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* Fix Rust vO name demangling.

* The Linux rseq syscall is now implemented as (silently) returning ENOSY S.

* Add FreeBSD syscall wrappersfor _ speciafd and __ realpathat.

* Remove FreeBSD dependencies on COMPAT10, which fixes compatibility with HardenedBSD

* PLATFORM CHANGES

* arm64:

- ignore the "v8.x" architecture levels, only look at actual CPU features
present. Fixes mismatch detected between RDMA and atomics features
preventing startup on some QEMU configurations.

- Implement LD{,A}XP and ST{,L} XP

- Fix incorrect code emitted for doubleword CAS.

* s390:
- Fix sys_ipc semtimedop syscall
- Fix VFLRX and WFLRX instructions
- Fix EXRL instruction with negative offset

* ppc64:

- Reimplement the vbpermgq instruction support to generate less lops and
avoid overflowing internal buffers.

- Fix checking for scv support to avoid "Facility 'SCV' unavailable (12),
exception” messagesin dmsg.

- Fix setting condition code for Vector Compare quad word instructions.

- Fix fix Ixsibzx, Ixsihzx and Ixsihzx instructions so they only load
their respective sized data.

- Fix the prefixed stq instruction in PC relative mode.

* TOOL CHANGES

* Memcheck:
- Speed up --track-origins=yes for large (in the range of hundreds to
thousands of megabytes) mmap/munmaps.

NEWS

* DRD/Helgrind:
- Several fixesfor new versions of libstd++ using new posix try_lock
functions

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

403802 leak cpp_interior fails with some reachable blocks different than expected
435732 memcheck/tests/leak _cpp_interior fails with gccll
444242 s390x: Valgrind crashes on EXRL with negative offset
444399 arm64: unhandled instruction 0xC87F2D89 (LD{,A} XP and ST{,L} XP).
== 434283
444481 gdb_server test failures on s390x
444495 dhat/tests/copy fails on s390x
444552 memcheck/tests/sem fails on s390x with glibc 2.34
444571 PPC, fix the Ixsibzx and Ixsihzx so they only load their respective
sized data.
444836 PPC, pstq instruction for R=1 is not storing to the correct address.
444925 fexecve syscall wrapper not properly implemented
445032 valgrind/memcheck crash with SIGSEGV when SIGVTALRM timer used and
libthr.so associated
445211 Fix out of tree builds
445300 [PATCH] Fix building tests with Musl
445011 SIGCHLD is sent when valgrind uses debuginfod-find
445354 arm64 backend: incorrect code emitted for doubleword CAS
445415 arm64 front end: alignment checks missing for atomic instructions
445504 Using C++ condition_variable results in bogus "mutex is locked simultaneously by two threads" warning
445607 Unhandled amd64-freebsd syscall: 247
445668 Inline stack frame generation is broken for Rust binaries
445916 Demangle Rust vO symbols with .Ilvm suffix
446139 DRD/Helgrind with std::shared timed_mutex::try lock until and try lock shared until false positives
446138 DRD/Helgrind with std::timed _mutex::try lock_until false positives
446281 Add a DRD suppression for fwrite
446103 Memcheck: “--track-origins=yes’ causes extreme slowdowns for large mmap/munmap
446139 DRD/Helgrind with std::shared timed_mutex::try_lock until and try lock shared until false
446251 TARGET_SIGNAL_THR added to enum target_signal
446823 FreeBSD - missing syscalls when using libzm4
447991 s390x: Valgrind indicatesillegal instruction on wflrx
447995 Valgrind segfault on power10 due to hwcap checking code
449483 Powerpc: vempgtsg., vempgtug,, vempequg. instructions not setting the
condition code correctly.
449672 ppcb4 --track-origins=yes failures because of bad cmov addHRegUse
449838 sigsegv liburing the 'impossible’ happened for io_uring_setup
450025 Powerc: ACC file not implemented as alogical overlay of the VSR
registers.
450437 Warn for execve syscall with argv or argv[0] being NULL
450536 Powerpc: valgrind throws 'facility scv unavailable exception'
451626 Syscall param bpf(attr->raw_tracepoint.name) points to unaddressable byte(s)

NEWS

451827 [ppc6dle] VEX temporary storage exhausted with several vbpermq instructions
451843 valgrind failsto start on a FreeBSD system which enforces WX

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.
(3.19.0.RC1: 02 Apr 2022)
(3.19.0.RC2: 08 Apr 2022)

Release 3.18.0 (15 Oct 2021)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* The libiberty demangler has been updated, which brings support for
Rust vO name demangling. [Update: alas, due to a bug, this support
isn't working in 3.18.0.]

* libc_freeresisn't called anymore after the program recieves a
fatal signal. Causing someinternal glibc resources to hang around,
but preventing any crashes after the program has ended.

* The DWARF reader is now very much faster at startup when just
--read-inline-info=yes (the default in most cases) is given.

* glibc 2.34, which moved various functions from libpthread.so into
libc.so, is now supported.

* PLATFORM CHANGES

* armo4.

- v8.2 scalar and vector FABD, FACGE, FACGT and FADD.
- v8.2 FP compare & conditional compare instructions.
- Zero variants of v8.2 FP compare instructions.

* s390:

- Support the miscellaneous-instruction-extensions facility 3 and
the vector-enhancements facility 2. This enables programs
compiled with "-march=arch13" or "-march=z15" to be executed
under Vagrind.

* ppc64:

NEWS

- ISA 3.1 support is now complete

- ISA 3.0 support for the darn instruction added.

- |SA 3.0 support for the vector system call instruction scv added.

- |SA 3.0 support for the copy, paste and cpabort instructions added.

* Support for X86/FreeBSD and AMD64/FreeBSD has been added.

* OTHER CHANGES

* Memcheck on amd64: minor fixes to remove some false positive
undef-vaue errors

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter _bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

208531 [PATCH]: FreeBSD support for valgrind
368960 WARNING: unhandled amd64-linux syscall: 163 (acct)
407589 [Linux] Add support for C11 aligned alloc() and GNU reallocarray()
423963 Error in child thread when CLONE_PIDFD is used
426148 crash with "impossible happened” when running BPF CO-RE programs
429375 PPC ISA 3.1 support is missing, part 9
431157 PPC_FEATURE2_SCV needsto be masked in AT_HWCAP2
431306 Update demangler to support Rust vO name mangling
432387 s390x: z15 instructions support
433437 FreeBSD support, part 1
433438 FreeBSD support, part 2
433439 FreeBSD support, part 3
433469 FreeBSD support, part 4
433473 FreeBSD support, part 5
433477 FreeBSD support, part 6
433479 FreeBSD support, part 7
433504 FreeBSD support, part 8
433506 FreeBSD support, part 9
433507 FreeBSD support, part 10
433508 FreeBSD support, part 11
433510 FreeBSD support, part 12
433801 PPC ISA 3.1 support is missing, part 10 (ISA 3.1 support complete)
433863 s390x: memcheck/tests/s390x/{ cds,cs,csg} failures
434296 s390x: False-positive memcheck diagnostics from vector string
instructions
434840 PPCG64 darn instruction not supported
435665 PPC ISA 3.0 copy, paste, cpabort instructions are not supported
435908 valgrind tries to fetch from deubginfod for files which already
have debug information
438871 unhandled instruction bytes: 0xF3 0x49 OxF 0x6F 0x9C 0x24 0x60 0x2
439046 valgrind is unusably large when linked with Iid
439090 Implement close range(2)
439326 Valgrind 3.17.0 won't compile with Intel 2021 oneAPI compilers

NEWS

439590 glibc-2.34 breaks suppressions against obj:*/lib*/libc-2.* so*

440670 unhandled ppc64le-linux syscall: 252 statfs64 and 253 fstatfs64

440906 Fix impossible constraint issuein P10 testcase.

441512 Remove aunneeded / unnecessary prefix check.

441534 Update the expected output for test isa 3 1 VRT.

442061 very slow execution under Fedora 34 (readdwarf3)

443031 Gcce -many change requires explicit .machine directives

443033 Add support for the ISA 3.0 merxrx instruction

443034 Sraw, srawi, srad, sradi, mfs

443178 Powerpc, test jm-mfspr expected output needs to be updated.

443179 Need new test for the Ixvx and stxvx instructions on ISA 2.07 and
ISA 3.0 systems.

443180 The subnormal test and the ISA 3.0 test generate compiler warnings

443314 Inthelatest GIT version, Vagrind with "--trace-flags' crashes
at "al" register

443605 Don't call fina_tidyup (__libc_freeres) on Fatal Signal

To see details of agiven bug, visit

https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

(3.18.0.RC1: 12 Oct 2021)
(3.18.0: 150ct 2021)

Release 3.17.0 (19 Mar 2021)

3.17.0 fixes anumber of bugs and adds some functional changes: support for
GCC 11, Clang 11, DWARF5 debuginfo, the 'debuginfod' debuginfo server, and
some new instructions for Arm64, S390 and POWER. There are also some tool
updates.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* DWARF version 5 support. Valgrind can now read DWARF version 5 debuginfo as
produced by GCC 11.

* Valgrind now supports debuginfod, an HTTP server for distributing ELF/DWARF
debugging information. When a debuginfo file cannot be found locally,
Valgrind is able to query debuginfod serversfor the file using its
build-id. See the user manual for more information about debuginfod support.

* PLATFORM CHANGES

* armo4.

NEWS

- Inaccuracies resulting from double-rounding in the simulation of
floating-point multiply-add/subtract instructions have been fixed. These
should now behave exactly as the hardware does.

- Partial support for the ARM v8.2 instruction set. v8.2 support work is
ongoing. Support for the half-word variants of at |east the following
instructions has been added:

FABS <Hd>, <Hn>

FABS <Vd>.<T>, <Vn>.<T>
FNEG <Hd>, <Hn>

FNEG <Vd>.<T>, <Vn><T>
FSQRT <Hd>, <Hn>

FSQRT <Vd>.<T>, <Vn>.<T>
FADDP

* s390:

- Implement the new instructions/features that were added to z/Architecture
with the vector-enhancements facility 1. Also cover the instructions from
the vector-packed-decimal facility that are defined outside the chapter
"Vector Decimal Instructions’, but not the ones from that chapter itself.

For adetailed list of newly supported instructions see the updatesto
“docg/internal /s390-opcodes.csv'.

Since the miscellaneous instruction extensions facility 2 was already
added in Valgrind 3.16.0, this compl etes the support necessary to run
general programs built with “--march=z14' under Valgrind. The
vector-packed-decimal facility is currently not exploited by the standard
toolchain and libraries.

* ppc64:

- Various bug fixes. Fix for the sync field to limit setting just two of
the two bitsin the L-field. Fix the write size for the stxsibx and
stxsihx instructions. Fix the modsw and modsd instructions.

- Partial support for |SA 3.1 has been added. Support for the VSX PCV mask
instructions, bfloat16 GER instructions, and bfloat16 to/from float 32-bit
conversion instructions are still missing.

* TOOL CHANGES

* General tool changes

- All the tools and their vgpreload libraries are now installed under
libexec because they cannot be executed directly and should be run through
the valgrind executable. This should be an internal, not user visible,
change, but might impact valgrind packagers.

- The --track-fds option now respects -q, --quiet and won't output anything
if no file descriptors are leaked. It also won't report the standard stdin
(0), stdout (1) or stderr (2) descriptors as being |eaked with
--trace-fds=yes anymore. To track whether the standard file descriptors

NEWS

are still open at the end of the program run use --trace-fds=all.
* DHAT:

- DHAT has been extended, with two new modes of operation. The new
--mode=copy flag triggers copy profiling, which records calls to memcpy,
strcpy, and similar functions. The new --mode=ad-hoc flag triggers ad hoc
profiling, which records callsto the DHAT_AD_HOC_EVENT client request in
the new dhat/dhat.h file. Thisis useful for learning more about hot code
paths. See the user manual for more information about the new modes.

- Because of these changes, DHAT's file format has changed. DHAT output
files produced with earlier versions of DHAT will not work with this
version of DHAT's viewer, and DHAT output files produced with this version
of DHAT will not work with earlier versions of DHAT's viewer.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

140178 open("/proc/self/exe”, ...); doesn't quite work

140939 --track-fds reports leakage of stdout/in/err and doesn't respect -q

217695 malloc/calloc/realloc/memalign failure doesn't set errno to ENOMEM

338633 gdbserver_tests/nlcontrolc.vgtest hangs on arm64

345077 linux syscall execveat support (linux 3.19)

361770 Missing F_ ADD_SEALS

369029 handle linux syscalls sched getattr and sched _setattr

384729 libc freeresinhibits cross-platform valgrind

388787 Support for C++17 new/delete

391853 Makefile.all.am:L247 and @SOLARIS_UNDEF_LARGESOURCE@ being empty

396656 Warnings while reading debug info

397605 ioctl FICLONE mishandled

401416 Compile failure with openmpi 4.0

408663 Suppression file for musl libc

404076 s390x: z14 vector instructions not implemented

410743 shmat() callsfor 32-hit programs fail when running in 64-bit valgrind
(actually affected all x86 and nanomips regardless of host bitness)

413547 regression test does not check for Arm 64 features.

414268 Enable AArch64 feature detection and decoding for v8.x instructions

415293 Incorrect call-graph tracking dueto new _dl_runtime resolve xsave*

422174 unhandled instruction bytes: 0x48 OXE9 (REX prefixed JIMP instruction)

422261 platform selection fails for unqualified client name

422623 epoll_ctl warns for uninitialized padding on non-amd64 64bit arches

423021 PPC: Add missing ISA 3.0 documentation link and HWCAPS test.

423195 PPC ISA 3.1 support is missing, part 1

10

NEWS

423361 Addsio_uring support on arm64/aarch64 (and all other arches)

424012 crash with readv/writev having invalid but not NULL arg2 iovec

424298 amd64: Implement RDSEED

425232 PPC ISA 3.1 support is missing, part 2

425820 Failure to recognize vpcmpeqq as a dependency breaking idiom.

426014 arm64: implement fmadd and fmsub as lop_ MAdd/Sub

426123 PPC ISA 3.1 support is missing, part 3

426144 Fix "condition variable has not been initialized" on Fedora 33.

427400 PPC ISA 3.1 support is missing, part 4

427401 PPCISA 3.1 support is missing, part 5

427404 PPC ISA 3.1 support is missing, part 6

427870 Imw, Iswi and related PowerPC insns aren't allowed on ppc64le

427787 Support new faccessat2 linux syscall (439)

427969 debuginfo section duplicates a section in the main ELF file

428035 drd: Unbreak the musl build

428648 s390_emit_load_mem panics due to 20-hit offset for vector load

428716 cppcheck detects potential leak in VEX/useful/smchash.c

428909 helgrind: need to intercept duplicate libc definitions for Fedora 33

429352 PPC ISA 3.1 support is missing, part 7

429354 PPC ISA 3.1 support is missing, part 8

429692 unhandled ppc64le-linux syscall: 147 (getsid)

429864 s390x: C++ atomic test_and_set yields fal se-positive memcheck
diagnostics

429952 Errors when building regtest with clang

430354 ppc stxsibx and stxsihx instructions write too much data

430429 valgrind.h doesn't compile on s390x with clang

430485 expr_is _guardable doesn't handle lex_Qop

431556 Complete arm64 FADDP v8.2 instruction support

432102 Add support for DWARF5 as produced by GCC11

432161 Addition of arm64 v8.2 FADDP, FNEG and FSQRT

432381 drd: Process STACK_REGISTER client requests

432552 [AArch64] invalid error emitted for pre-decremented byte/hword addresses

432672 vg_regtest: test-specific environment variables not reset between tests

432809 VEX should support REX.W + POPF

432861 PPC modsw and modsd give incorrect results for 1 mod 12

432870 gdbserver_tests:nlcontrolc hangs with newest glibc2.33 x86-64

432215 Add debuginfod functionality

433323 Use pkglibexecdir as vglibdir

433500 DRD regtest faulures when libstdc++ and libgcc debuginfo are installed

433629 valgrind/README has type "abd" instead of "and"

433641 Rust std::sys::unix::fs:try statx Syscall param fstatat(file_name)

433898 arm64: Handle sp, Ir, fp as DwReg in CfiExpr

434193 GCC 9+ inlined strcmp causes "Conditional jump or move|[..] value" report

n-i-bz helgrind: If hg_cli__ realloc fails, return NULL.

n-i-bz arm64 front end: avoid Memcheck false positives relating to CPUID

(3.17.0.RC1: 13 Mar 2021)

(3.17.0.RC2: 17 Mar 2021)
(3.17.0: 19 Mar 2021)

Release 3.16.1 (22 June 2020)

11

NEWS

3.16.1 fixes two critical bugs discovered after 3.16.0 was frozen. It aso
fixes character encoding problems in the documentation HTML.

422677 PPC syncinstruction L field should only be 2 hitsin ISA 3.0
422715 32-bit x86: vex: the "impossible’ happened: expr_is guardable: unhandled expr

(3.16.1, 22 June 2020, 36d6727e1d7683338536f274491e5879cab2c2f7)

Release 3.16.0 (27 May 2020)

3.16.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* |t is now possible to dynamically change the value of many command line
options while your program (or its children) are running under Valgrind.

To seethelist of dynamically changeable options, run
"valgrind --help-dyn-options".

Y ou can change the options from the shell by using vgdb to launch

the monitor command "v.clo <clo option>...".

The same monitor command can be used from a gdb connected

to the valgrind gdbserver.

Y our program can also change the dynamically changeable options using
the client request VALGRIND_CLO_CHANGE(option).

* PLATFORM CHANGES

* MIPS: preliminary support for nanoMIPS instruction set has been added.

* TOOL CHANGES

* DHAT:

- Theimplicit memcpy done by each call to realloc now counts towards the
read and write counts of resized heap blocks, making those counts higher
and more accurate.

* Cachegrind:
- cg_annotate's --auto and --show-percs options now default to 'yes, because

they are usually wanted.

12

NEWS

* Callgrind:

- callgrind_annotate's --auto and --show-percs options now default to 'yes,
because they are usually wanted.

- The command option --collect-systime has been enhanced to specify
the unit used to record the elapsed time spent during system calls.
The command option now accepts the val ues nolyes|msec|usec|nsec,
where yesis asynonym of msec. When giving the value nsec, the
system cpu time of system callsis also recorded.

* Memcheck:

- Several memcheck options are now dynamically changeable.
Use valgrind --help-dyn-options to list them.

- The release 3.15 introduced a backward incompatible change for
some suppression entries related to preadv and pwritev syscalls.
When reading a suppression entry using the unsupported 3.14 format,
valgrind will now produce awarning to say the suppression entry will not
work, and suggest the needed change.

- Significantly fewer false positive errors on optimised code generated by
Clang and GCC. In particular, Memcheck now deals better with the
situation where the compiler will transform C-level "A && B" into"B && A"
under certain circumstances (in which the transformation is valid).
Handling of integer equality/non-equality checks on partially defined
valuesis also improved on some architectures.

* exp-sgcheck:

- The exprimental Stack and Global Array Checking tool has been removed.
It only ever worked on x86 and and64, and even on those it had a
high false positive rate and was slow. An alternative for detecting
stack and global array overrunsis using the AddressSanitizer (ASAN)
facility of the GCC and Clang compilers, which require you to rebuild
your code with -fsanitize=address.

* OTHER CHANGES

* New and modified GDB server monitor features:
- Option -T tells vgdb to output a timestamp in the vgdb information messages.

- The gdbserver monitor commands that require an address and an optional
length argument now accepts the alternate 'C like' syntax "address[length]".
For example, the memcheck command "monitor who_points at 0x12345678 120"
can now also be given as "monitor who_points_at 0x12345678[120]".

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us

13

NEWS

but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

343099 Linux setns syscall wrapper missing, unhandled syscall: 308
== 368923 WARNING: unhandled arm64-linux syscall: 268 (setns)
== 369031 WARNING: unhandled amd64-linux syscall: 308 (setns)
385386 Assertion failed "szB >= CACHE_ENTRY_SIZE" at m_debuginfo/image.c:517
400162 Patch: Guard against _ GLIBC PREREQ for musl libc
400593 In Coregrind, use statx for some internal syscalls if [f]stat[64] fail
400872 Add nanoMIPS support to Valgrind
403212 drd/tests/trylock hangs on FreeBSD
404406 s390x: z14 miscellaneous instructions not implemented
405201 Incorrect size of struct vki_siginfo on 64-hit Linux architectures
406561 mcinfcallWSRU gdbserver_test fails on ppc64
406824 Unsupported baseline
407218 Add support for the copy_file range syscall
407307 Intercept stpcpy also inld.so for arm64
407376 Update Xen support to 4.12 (4.13, actually) and add more coverage
== 390553
407764 drd cond post_wait gets wrong (?) condition on s390x z13 system
408009 Expose rdrand and f16¢ even on avx if host cpu supports them
408091 Missing pkey syscalls
408414 Add support for missing for preadv2 and pwritev2 syscalls
409141 Vagrind hangs when SIGKILLed
409206 Support for Linux PPS and PTPioctls
409367 exit_group() after signal to thread waiting in futex() causes hangs
409429 amd64: recognize 'cmpeq’ variants as a dependency breaking idiom
409780 References to non-existent configure.in
410556 Add support for BLKIO{MIN,OPT} and BLKALIGNOFF ioctls
410599 Non-deterministic behaviour of pth_self kill 15 other test
410757 discrepancy for preadv2/pwritev2 syscalls across different versions
411134 Allow the user to change a set of command line options during execution
411451 amd64->IR of bt/btc/bts/btr with immediate clears zero flag
412344 Problem setting mips flags with specific paths
412408 unhandled arm-linux syscall: 124 - adjtime - on arm-linux
413119 loctl wrapper for DRM_IOCTL_1915 GEM_MMAP
413330 avx-1 test failson AMD EPY C 7401P 24-Core Processor
413603 callgrind_annotate/cg_annotate truncate function names at '#
414565 Specific use case bug found in SysResVG_(do_sys sigprocmask)
415136 ARMv8.1 Compare-and-Swap instructions are not supported
415757 vex x86->IR: 0x66 0xF OxCE Ox4F (bswapw)
416239 valgrind crashes when handling clock adjtime
416285 Use prlimit64 in VG_(getrlimit) and VG_(setrlimit)
416286 DRD reports "conflicting load" error on std::mutex::lock()
416301 s390x: "compare and signal" not supported
416387 finit_module and bpf syscalls are unhandled on arm64
416464 Fix false reports for uninitialized memory for PR_CAPBSET _READ/DROP
416667 gcclO ppcb4dle impossible constraint in 'asm' in test_isa.

14

NEWS

416753 new 32bit time syscalls for 2038+
417075 pwritev(vector]...]) suppression ignored
417075 is not fixed, but incompatible supp entries are detected
and awarning is produced for these.
417187 [MIPS] Conditional branch problem since 'grail' changes
417238 Test memcheck/tests/vbit-test fails on mips64 BE
417266 Make memcheck/tests/linux/sigqueue usable with musl
417281 s390x: /bin/true segfaults with "grail" enabled
417427 commit to fix vki_siginfo_t definition created numerous regression
errors on ppcé4
417452 s390 _insn_store_emit: dst->tag for HRcVec128
417578 Add suppressionsfor glibc DTV leaks
417906 clonewith CLONE_VFORK and no CLONE_VM fails
418004 Grail code additions break ppc64.
418435 s390x: spurious "Conditional jump or move depends on uninitialised [..]"
418997 s390x: Support lex_ITE for float and vector types
419503 s390x: Avoid modifying registers returned from isel functions
421321 gccl0 arm64 build needs getauxval for linking with libgec
421570 std mutex fails on Arm v8.1 h/w
434035 vgdb might crash if valgrind iskilled
n-i-bz Fix minor onetime leaksin dhat.
n-i-bz Add --run-cxx-freeres=no in outer args to avoid inner crashes.
n-i-bz Add support for the Linux io_uring system calls
n-i-bz sys statx: don't complain if both [filename| and |buf| are NULL.
n-i-bz Fix non-glibc build of test suite with s390x_features
n-i-bz MinGW, include/valgrind.h: Fix detection of 64-bit mode
423195 PPC ISA 3.1 support is missing, part 1

(3.16.0.RC1: 18 May 2020, git 6052ee66a0cf5234e8e2a2h49a3760226bc13b92)

(3.16.0.RC2: 19 May 2020, git 940ec1ca69a09f 7fdae3e800b7359f85c13c4b37)
(3.16.0: 27 May 2020, git bf5e647edb9e96chd5c57cc944984402eeee296d)

Release 3.15.0 (12 April 2019)

3.15.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13 and AMD64/macOS 10.13.

* CORE CHANGES

* The XTree Massif output format now makes use of the information obtained
when specifying --read-inline-info=yes.

* amd64 (x86_64): the RDRAND and F16C insn set extensions are now supported.

* TOOL CHANGES

15

NEWS

* DHAT:
- DHAT been thoroughly overhauled, improved, and given aGUI. Asaresult,
it has been promoted from an experimental tool to aregular tool. Run it
with --tool=dhat instead of --tool=exp-dhat.
- DHAT now prints only minimal data when the program ends, instead writing
the bulk of the profiling datato afile. Asaresult, the --show-top-n
and --sort-by options have been removed.

- Profile results can be viewed with the new viewer, dh_view.html. When
arun ends, a short message is printed, explaining how to view the result.

- See the documentation for more details.
* Cachegrind:

- cg_annotate has a new option, --show-percs, which prints percentages next
to all event counts.

* Callgrind:

- callgrind_annotate has a new option, --show-percs, which prints percentages
next to al event counts.

- callgrind_annotate now inserts commasin call counts, and
sort the caller/caleelistsin the call tree.

* Massif:

- The default value for --read-inline-info is now "yes' on
Linux/Android/Solaris. It is still "no" on other OS.

* Memcheck:

- The option --xtree-leak=yes (to output leak result in xtree format)
automatically activates the option --show-leak-kinds=all, as xtree
visualisation tools such as kcachegrind can in any case select what kind
of leak to visualise.

- There has been further work to avoid false positives. In particular,
integer equality on partially defined inputs (C == and !=) is now handled
better.

* OTHER CHANGES

* The new option --show-error-list=nolyes displays, at the end of the run, the
list of detected errors and the used suppressions. Prior to this change,
showing this information could only be done by specifying "-v -v", but that
also produced alot of other possibly-non-useful messages. The option -sis
equivalent to --show-error-list=yes.

* FIXED BUGS

16

NEWS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

385411 s390x: z13 vector floating-point instructions not implemented

397187 z13 vector register support for vgdb gdbserver

398183 Vex errorswith_mm256_shuffle_epi8/vpshufb

398870 Please add support for instruction vevtps2ph

399287 amd64 front end: Illegal Instruction vemptrueps

399301 Useinlined framesin Massif X Tree output.

399322 Improve callgrind_annotate output

399444 VEX/priv/iguest_s390 tolR.c:17407: (style) Mismatching assignment |[..]

400164 helgrind test encounters mips x-compiler warnings and assembler error

400490 s390x: VRs allocated asif separate from FPRs

400491 s390x: Operand of LOCH treated as unsigned integer

400975 Compile error: error: -mips64r2' conflicts with the other architecture
options, which specify a mips64 processor

401112 LLVM 5.0 generates comparison against partialy initialized data

401277 More bugsin z13 support

401454 Add a--show-percs option to cg_annotate and callgrind_annotate.

401578 drd: crashes sometimes on fork()

401627 memcheck errors with glibc avx2 optimized wesncmp

401822 none/tests/ppc64/jm-vmx fails and produces assembler warnings

401827 noneftests/ppcbd/test isa 2 06 part3 failure on ppcédle (xvrsgrtesp)

401828 noneftests/ppcbditest isa 2 06 _partl failure on ppcé4le (fcfids and
fcfidus)

402006 mark helper regs defined in final_tidyup before freeres wrapper call

402048 WARNING: unhandled ppc64{belle]-linux syscall: 26 (ptrace)

402123 invalid assembler opcodes for mips32r2

402134 assertion fail in mc_trandate.c (noteTmpUsesin) lex VECRET on arm64

402327 Warning: DWARF2 CFI reader: unhandled DW_OP_ opcode 0x13 (DW_OP_drop)

402341 drd/tests/tsan_thread_wrappers pthread.h:369: suspicious code ?
402351 mips64 libvexmultiarch_test fails on s390x

402369 Overhaul DHAT

402395 coregrind/vgdb-invoker-solaris.c: 2* poor error checking
402480 Do not use %rsp in clobber list

402481 vhit-test fails on x86 for lop_ CmpEQ64 isel Int64Expr Sar64
402515 Implement new option --show-error-list=nolyes/ -s

402519 POWER 3.0 addex instruction incorrectly implemented

402781 Redo the cache used to process indirect branch targets

403123 vex amd64->IR:0xF3 0x48 OxF OXAE 0xD3 (wrfsbase)

403552 s390x: wrong facility bit checked for vector facility

404054 memcheck powerpc subfe x, X, x initializes x to 0 or -1 based on CA
404638 Add VG _(replacelndexXA)

404843 s390x: backtrace sometimes ends prematurely

404888 autotools cleanup series

17

NEWS

405079 unhandled ppc64le-linux syscall: 131 (quotactl)

405182 Valgrind failsto build with Clang

405205 filter_libc: remove the line holding the futex syscall error entirely

405356 PPC64, xvevsxdsp, xvevuxdsp are supposed to write the 32-bit result to
the upper and lower 32-hits of the 64-bit result

405362 PPC64, vmsummbm instruction doesn't handle overflow case correctly

405363 PPC64, xvevdpsxws, xvevdpuxws, do not handle NaN arguments correctly.

405365 PPC64, function _get maxmin_fp_NaN() doesn't handle QNaN, SNaN case
correctly.

405403 s390x disassembler cannot be used on x86

405430 Use gece -Wimplicit-fallthrough=2 by default if available

405458 MIPS mkFormVEC arguments swapped?

405716 drd: Fix an integer overflow in the stack margin calculation

405722 Support arm64 core dump

405733 PPC64, xvevdpsp should write 32-bit result to upper and lower 32-bits
of the 64-bit destination field.

405734 PPC64, vrlwnm, vrlwmi, vridrm, vrildmi do not work properly when me < mb

405782 "VEX temporary storage exhausted" when attempting to debug slic3r-pe

406198 noneftests/ppcbditest_isa 3 0 other test sporadicaly including CA
bit in output.

406256 PPC64, vector floating point instructions don't handle subnormal
according to VSCR[NJ] hit setting.

406352 cachegrind/callgrind fails ann tests because of missing a.c

406354 dhat is broken on x86 (32hit)

406355 mcsignopass, mcsigpass, mcbreak fail due to difference in gdb output

406357 gdbserver_testsfails because of gdb output change

406360 memcheck/tests/libstdc++.supp needs more supression variants

406422 none/tests’amd64-linux/map_32bits.vgtest failstoo easily

406465 arm64 insn selector fails on "t0 = <expr>" where <expr> hastype Ity_F16

407340 PPC64, does not support the vliogefp, vexptefp instructions.

n-i-bz add syswrap for PTRACE_GET|SET_THREAD_AREA on amd64.

n-i-bz Fix callgrind_annotate non deterministic order for equal total

n-i-bz callgrind_annotate --threshold=100 does not print all functions.

n-i-bz callgrind_annotate Use of uninitialized value in numeric gt (>)

n-i-bz amd64 (x86_64): RDRAND and F16C insn set extensions are supported

(3.15.0.RC1: 8 April 2019, git ce94d674de5b99df 173aad4c3eed8f c2a92e5d9c)

(3.15.0.RC2: 11 April 2019, git 0c8bedbbede189ec580ec270521811766429595f)
(3.15.0: 14 April 2019, git 270037da8h508954f0f 7d703a0bebf5364eec548)

Release 3.14.0 (9 October 2018)

3.14.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13.

18

NEWS

* CORE CHANGES

* The new option --keep-debuginfo=nolyes (default no) can be used to retain
debug info for unloaded code. This allows saved stack traces (e.g. for
memory leaks) to include file/line info for code that has been diclose'd (or
similar). Seethe user manual for more information and known limitations.

* Ability to specify suppressions based on source file name and line number.

* Majorly overhauled register allocator. No end-user changes, but the JI T
generates code a bit more quickly now.

* PLATFORM CHANGES

* Preliminary support for macOS 10.13 has been added.

* mips. support for MIPS32/M1PS64 Revision 6 has been added.

* mips. support for MIPS SIMD architecture (MSA) has been added.
* mips. support for MIPS N32 ABI has been added.

* s390: partial support for vector instructions (integer and string) has been
added.

* TOOL CHANGES

* Helgrind: Addition of aflag
--delta-stacktrace=nolyes [yes on linux amd64/x86]
which specifies how full history stack traces should be computed.
Setting this to =yes can speed up Helgrind by 25% when using
--history-level=full.

* Memcheck: reduced false positive rate for optimised code created by Clang 6
/ LLVM 6 on x86, amd64 and arm64. |n particular, Memcheck analyses code
blocks more carefully to determine where it can avoid expensive definedness
checks without loss of precision. Thisis controlled by the flag
--expensi ve-definedness-checks=nolautolyes [auto] .

* OTHER CHANGES

* Valgrind is now buildable with link-time optimisation (LTO). A new
configure option --enable-Ito=yes allows building Valgrind with LTO. If the
toolchain supportsit, this produces a smaller/faster Valgrind (up to 10%).
Note that if you are doing Valgrind development, --enable-lto=yes massively
slows down the build process.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

19

NEWS

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

79362 Debuginfoislost for .so files when they are diclose'd
208052 stricpy error whenn=0
255603 exp-sgcheck Assertion 'lalready present’ failed
338252 huilding valgrind with -flto (link time optimisation) fails
345763 MIPS N32 ABI support
368913 WARNING: unhandled arm64-linux syscall: 117 (ptrace)
== 388664 unhandled arm64-linux syscall: 117 (ptrace)
372347 Replacement problem of the additional c++14/c++17 new/delete operators
373069 memcheck/tests/leak cpp_interior failswith GCC 5.1+
376257 helgrind history full speed up using a cached stack
379373 Fix syscall param msg->desc.port.name points to uninitialised byte(s)
on macOS 10.12
379748 Fix missing pselect syscall (OS X 10.11)
379754 Fix missing syscall ulock wait (OS X 10.12)
380397 s390x: __ Gl_strespn() replacemenet needed
381162 possible array overrunin VEX register allocator
381272 ppc64 doesn't compiletest isa 2 06 partx.c without VSX support
381274 powerpc too chatty even with --sigill-diagnostics=no
381289 epoll_pwait can have aNULL sigmask
381553 VEX register allocator v3
381556 arm64: Handle feature registers access on 4.11 Linux kernel or later
381769 Use ucontext t instead of struct ucontext
381805 arm32 needs Id.so index hardwire for new glibc security fixes
382256 gz compiler flag test doesn't work for gold
382407 vg_perf needs "--terse" command line option
382515 "Assertion 'di->have dinfo' failed." on wine's dlls'mscoree/tests/[..]
382563 MIPS MSA ASE support
382998 xml-socket doesn't work
383275 massif: m_xarray.c:162 (ensureSpaceXA): Assertion 'Ixa->arr' failed
383723 Fix missing kevent_qos syscall (macOS 10.11)
== 385604 illegal hardware instruction (OpenCV cv::namedWindow)
384096 Mention AddrCheck at Memcheck's command line option [..]
384230 vex x86->IR: 0x67 OXE8 OxAB 0x68
== 384156 vex x86->IR: 0x67 OXE8 0x6B Ox6A
== 386115 vex x86->IR: 0x67 OXE8 0xD3 0x8B any program
== 388407 vex x86->IR: 0x67 OXE8 OXAB 0x29
== 394903 vex x86->IR: 0x67 OxE8 0x1B OxDA
384337 performance improvementsto VEX register allocator v2 and v3
384526 reduce number of spill insns generated by VEX register allocator v3
384584 Callee saved regs listed first for AM D64, X86, and PPC architectures
384631 Sanitise client args as printed with -v
384633 Add asimple progress-reporting facility
384987 VEX regalloc: alocate caller-save registers for short lived vregs
385055 PPC VEX temporary storage exhausted
385182 PPC64 is missing support for the DSCR
385183 PPC64, Add support for xscmpegdp, xscmpgtdp, xscmpgedp, xsmincdp
385207 PPC64, generate store FPRF() generates too many lops
385208 PPC64, xxperm instruction exhausts temporary memory

20

NEWS

385210 PPC64, vpermr instruction could exhaust temporary memory
385279 unhandled syscall: mach:43 (mach_generate activity id)
== 395136 valgrind: m_syswrap/syswrap-main.c:438 (Bool eq Syscall]..]
== 387045 Valgrind crashing on High Sierrawhen testing any newly [..]
385334 PPC64, fix vpermr, xxperm, xxpermr mask value.
385408 s390x: z13 vector "support" instructions not implemented
385409 s390x: z13 vector integer instructions not implemented
385410 s390x: z13 vector string instructions not implemented
385412 s390x: new non-vector z13 instructions not implemented
385868 glibcld.so _dl_runtime resolve avx_slow conditional jump warning.
385912 none/testsrlimit_nofile fails on newer glibc/kernel.
385939 Optionally exit on thefirst error
386318 valgrind.org/info/tools.html is missing SGCheck
386425 running valgrind + wine on armv7l givesillegal opcode
386397 PPC64, valgrind truncates powerpc timebase to 32-hits.
387410 MIPSr6 support
387664 Memcheck: make expensive-definedness-checks be the default
387712 s390x cgijnl reports Conditional jump depends on uninitialised value
387766 asm shifts cause false positive "Conditional jump or move depends
on uninitialised value"
387773 .gnu_debugaltlink paths resolve relative to .debug file, not symlink
388174 vagrind with Wine quits with "Assertion 'cfsi_fits failed"
388786 Support bpf syscall in amd64 Linux
388862 Add replacements for wmemchr and wesnlen on Linux
389065 valgrind meets gec flag -Wlogical-op
389373 exp-sgcheck the 'impossible’ happened as Ist_LoadG is not instrumented
390471 suppression by specification of source-file line number
390723 make xtree dump files world wide readable, similar to log files
391164 constraint bug in tests/ppc64/test isa 2 07_partl.c for mtfprwa
391861 Massif Assertion'n_ips>=1&& n_ips<=VG_(clo_backtrace size)'
392118 unhandled amd64-linux syscall: 332 (statx)
392449 callgrind not clearing the number of calls properly
393017 Add missing support for xsmaxcdp instruction, bug fixes for xsmincdp,
Ixssp, stxssp and stxvl instructions.
393023 callgrind_contral risks using the wrong vgdb
393062 build-id ELF phdrs read causes "debuginfo reader: ensure valid failed"
393099 posix_memalign() invalid write if alignment ==0
393146 failing assert "is Debuglnfo_active(di)"
395709 PPC64 is missing support for the xvnegsp instruction
395682 Accept read-only PT_LOAD segments and .rodata by Id -z separate-code
== 384727
396475 valgrind OS-X build: config.h not found (out-of-tree macOS builds)
395991 arm-linux: wine's unit tests enter asignal delivery loop [..]
396839 s390x: Trap instructions not implemented
396887 arch_prctl should return EINVAL on unknown option
== 397286 crash before launching binary (Unsupported arch_prctl option)
== 397393 valgrind: the 'impossible’ happened: (Archlinux)
== 397521 valgrind: the 'impossible’ happened: Unsupported [..]
396906 compile tests failure on mips32-linux: broken inline asm in tests on
mips32-linux
397012 glibc Id.so uses arch_prctl oni386
397089 amd64: Incorrect decoding of three-register vmovss/'vmovsd opcode 11h
397354 utimensat should ignore timespec tv_secif tv_nsecisUTIME_NOW/OMIT
397424 glibc 2.27 and gdb_server tests

21

NEWS

398028 Assertion “cfsi_fits failing in simple C program
398066 s390x: cgijl depl, O reports false unitialised values warning

n-i-bz Fix missing workqg_ops operations (macOS)
n-i-bz fix bug in strspn replacement
n-i-bz Add support for the Linux BLKFLSBUF ioctl
n-i-bz Add support for the Linux BLKREPORTZONE and BLKRESETZONE ioctls
n-i-bz Fix possible stack trashing by semctl syscall wrapping
n-i-bz Add support for the Linux membarrier() system call
n-i-bz x86 front end: recognise and handle UD2 correctly
n-i-bz Signal delivery for x86-linux: ensure that the stack pointer is
correctly aligned before entering the handler.

(3.14.0.RC1: 30 September 2018, git c2aeea2d28ach0639bcc8ccledabl15067dbleas)

(3.14.0.RC2: 3 October 2018, git 3e214c4858a6fdd5697€767543a0c19e30505582)
(3.14.0: 9 October 2018, git 353a3587bb0e2757411f9138f5e936728ed6cC4f)

Release 3.13.0 (15 June 2017)

3.13.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12.

* CORE CHANGES

* The translation cache size has been increased to keep up with the demands of
large applications. The maximum number of sectors has increased from 24 to
48. The default number of sectors hasincreased from 16 to 32 on all
targets except Android, where the increaseis from 6 to 12.

* The amount of memory that Valgrind can use has been increased from 64GB to
128GB. In particular this means your application can allocate up to about
60GB when running on Memcheck.

* Valgrind's default load address has been changed from 0x3800'0000 to
0x5800'0000, so asto make it possible to load larger executables. This
should make it possible to |oad executables of size at least 1200MB.

* A massive spaceleak caused by reading compressed debuginfo files has been
fixed. Valgrind should now be entirely usable with gcc-7.0 "-gz" created
debuginfo.

* The C++ demangler has been updated.

* Support for demangling Rust symbols has been added.

* A new representation of stack traces, the "XTree", has been added. An XTree

22

NEWS

isatree of stacktraces with data associated with the stacktraces. Thisis
used by various tools (Memcheck, Helgrind, Massif) to report on the heap
consumption of your program. Reporting is controlled by the new options
--xtree-memory=nonejallocsfull and --xtree-memory-file=<file>.

A report can also be produced on demand using the gdbserver monitor command
'xtmemory [<filename>]>'. The XTree can be output in 2 formats: ‘callgrind
format' and 'massif format. The existing visualisers for these formats (e.g.
calgrind_annotate, KCachegrind, ms_print) can be used to visualise and

analyse these reports.

Memcheck can also produce X Tree leak reports using the Callgrind file
format. For more details, see the user manual.

* PLATFORM CHANGES

* ppc64: support for ISA 3.0B and various fixes for existing 3.0 support
* amd64: fixes for JT failure problems on long AV X2 code blocks

* amd64 and x86: support for CET prefixes has been added

* arm32: afew missing ARMv8 instructions have been implemented

* arm64, mips64, mips32: an alternative implementation of Load-Linked and
Store-Conditional instructions has been added. Thisisto deal with
processor implementations that implement the LL/SC specifications strictly
and as aresult cause Valgrind to hang in certain situations. The
alternative implementation is automatically enabled at startup, as required.
Y ou can use the option --sim-hints=fallback-lIsc to force-enable it if you
want.

* Support for OSX 10.12 has been improved.

* On Linux, clone handling has been improved to honour CLONE_VFORK that
involves achild stack. Note however that CLONE_VFORK | CLONE_VM ishandled
like CLONE_VFORK (by removing CLONE_VM), so applications that depend on
CLONE_VM exact semantics will (still) not work.

* The TileGX/Linux port has been removed because it appears to be both unused
and unsupported.

* TOOL CHANGES

* Memcheck:

- Memcheck should give fewer false positives when running optimised
Clang/LLVM generated code.

- Support for --xtree-memory and 'xtmemory [<filename>]>".
- New command line options --xtree-leak=nolyes and --xtree-leak-file=<file>

to produce the end of execution leak report in a xtree callgrind format
file

23

NEWS

- New option xtleak' in the memcheck leak check monitor command, to produce
the leak report in an xtreefile.

* Massif:
- Support for --xtree-memory and 'xtmemory [<filename>]>".

- For some workloads (typically, for big applications), Massif memory
consumption and CPU consumption has decreased significantly.

* Helgrind:
- Support for --xtree-memory and 'xtmemory [<filename>]>".

- addition of client request VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN, useful
for Adagnat compiled applications.

* OTHER CHANGES

* For Valgrind developers: in an outer/inner setup, the outer Valgrind will
append the inner guest stacktrace to the inner host stacktrace. This helps
to investigate the errors reported by the outer, when they are caused by the
inner guest program (such as an inner regtest). See README_DEVELOPERS for
moreinfo.

* To allow fast detection of callgrind files by desktop environments and file
managers, the format was extended to have an optional first line that
uniquely identifies the format ("# callgrind format"). Callgrind creates
thisline now, as does the new xtree functionality.

* File name template arguments (such as --log-file, --xtree-memory-file, ...)
have anew %n format letter that is replaced by a sequence number.

* "_-yersion -v" now shows the SV N revision numbers from which Valgrind was
built.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

162848 --log-file output isn't split when a program forks

340777 lllegal instruction on mips (ar71xx)

341481 MIPS64: lop_ CmpNE32 triggers false warning on MIPS64 platforms
342040 Valgrind mishandles clone with CLONE_VFORK | CLONE_VM that clones

24

NEWS

to adifferent stack.

344139 x86 stack-seg overrides, needed by the Wine people

344524 store conditional of guest applications always fail - observed on
Octeon3(MIPS)

348616 Wine/valgrind: noted but unhandled ioctl 0x5390 [..] (DVD_READ_STRUCT)

352395 Please provide SVN revision info in --version -v

352767 Wine/valgrind: noted but unhandled ioctl 0x5307 [..] (CDROMSTOP)

356374 Assertion 'DRD_(g_threadinfo)[tid].pt_threadid !=
INVALID_POSIX_THREADID' failed

358213 helgrind/drd bar_bad testcase hangs or crashes with new glibc pthread
barrier implementation

358697 valgrind.h: Some code remains even when defining NVALGRIND

359202 Add musl libc configure/compile

360415 amd64 instructions ADCX and ADOX are not implemented in VEX
== 372828 (vex amd64->IR: 0x66 OxF Ox3A 0x62 0x4A 0x10)

360429 unhandled ioctl 0x530d with no size/direction hints (CDROMREADMODEL)

362223 assertion failed when .valgrindrc is a directory instead of afile

367543 bt/btc/btr/bts x86/x86_64 instructions are poorly-handled wrt flags

367942 Segfault vgPlain_do_sys sigaction (m_signals.c:1138)

368507 can't malloc chunks larger than about 34GB

368529 Android arm target link error, missing atexit and pthread_atfork

368863 WARNING: unhandled arm64-linux syscall: 100 (get_robust_list)

368865 WARNING: unhandled arm64-linux syscall: 272 (kcmp)

368868 dislnstr(arm64): unhandled instruction 0xD53BEO0O = cntfrq_el0 (ARMvS8)

368917 WARNING: unhandled arm64-linux syscall: 218 (request_key)

368918 WARNING: unhandled arm64-linux syscall: 127 (sched_rr_get_interval)

368922 WARNING: unhandled arm64-linux syscall: 161 (sethostname)

368924 WARNING: unhandled arm64-linux syscall: 84 (sync_file range)

368925 WARNING: unhandled arm64-linux syscall: 130 (tkill)

368926 WARNING: unhandled arm64-linux syscall: 97 (unshare)

369459 valgrind on arm64 violates the ARMv8 spec (Idxr/stxr)

370028 Reduce the number of compiler warnings on MIPS platforms

370635 arm64 missing syscall getcpu

371225 Fix order of timer_{ gettime,getoverrun,settime} syscalls on armé4

371227 Clean AArch64 syscall table

371412 Renamewrap_sys shmat to sys shmat like other wrappers

371471 Valgrind complains about non legit memory leaks on placement new (C++)

371491 handleAddrOverrides() is[incorrect] when ASO prefix is used

371503 dislnstr(arm64): unhandled instruction 0xF89F0000

371869 support '%' in symbol Z-encoding

371916 execution tree xtree concept

372120 c++ demangler demangles symbols which are not c++

372185 Support of valgrind on ARMv8 with 32 hit executable

372188 vex amd64->IR: 0x66 OxF 0x3A 0x62 0x4A 0x10 0x10 0x48 (PCMPxSTRx $0x10)

372195 Power PC, xxsdl instruction is not always recognized.

372504 Hanging on exit_group

372600 process loops forever when fatal signals are arriving quickly

372794 LibVEX (arm32 front end): 'Assertion szBlg2 <= 3' failed

373046 Stacks registered by core are never deregistered

373069 memcheck/tests/leak cpp_interior failswith GCC 5.1+

373086 Implement additional Xen hypercalls

373192 Cadlling posix_spawn in glibc 2.24 completely broken

373488 Support for fanotify APl on ARM64 architecture

== 368864 WARNING: unhandled arm64-linux syscall: 262 (fanotify_init)

25

NEWS

373555 Rename BBPTR to GSPTR asit denotes guest state pointer only

373938 const IRExpr arguments for matchl RExpr()

374719 some spelling fixes

374963 increase valgrind's |oad address to prevent mmap failure

375514 valgrind_get tls addr() does not work in case of static TLS

375772 +1 error inget_elf symbol_info() when computing value of 'hi' address
for ML_(find_rx_mapping)()

375806 Test helgrind/tests/tc22 exit w_lock failswith glibc 2.24

375839 Temporary storage exhausted, with long sequence of vfmadd231psinsns
== 377159 "vex: the ‘impossible’ happened" still present
== 375150 Assertion 'tres.status == VexTransOK' failed
== 378068 valgrind crashes on AV X2 function in FFmpeg

376142 Segfaults on MIPS Cavium Octeon boards

376279 disinstr(arm64): unhandled instruction 0xD50320FF

376455 Solaris: unhandled syscall Igrpsys(180)

376518 Solaris: unhandled fast trap getlgrp(6)

376611 ppc64 and arm64 don't know about prlimit64 syscall

376729 PPC64, remove R2 from the clobber list
== 371668

376956 syswrap of SNDDRV and DRM_IOCTL_VERSION causing some addresses
to be wrongly marked as addressable

377066 Some Valgrind unit tests fail to compile on Ubuntu 16.10 with
PIE enabled by default

377376 memcheck/tests/linux/getregset fails with glibc2.24

377427 PPC64, Ixv instruction failing on odd destination register

377478 PPC64: 1SA 3.0 setup fixes

377698 Missing memory check for futex() uaddr arg for FUTEX WAKE
and FUTEX_WAKE_BITSET, check only 4 argsfor FUTEX_WAKE_BITSET,
and 2 argsfor FUTEX_TRYLOCK_PI

377717 Fix massive space leak when reading compressed debuginfo sections

377891 Update Xen 4.6 domctl wrappers

377930 fentl syscall wrapper is missing flock structure check

378524 libvexmultiarch_test regression on s390x and ppc64

378535 Valgrind reports INTERNAL ERROR in execve syscall wrapper

378673 Update libiberty demangler

378931 Add ISA 3.0B additional isnstructions, add OV 32, CA32 setting support

379039 syscall wrapper for prctl(PR_SET_NAME) must not check more than 16 bytes

379094 Valgrind reports INTERNAL ERROR in rt_sigsuspend syscall wrapper

379371 UNKNOWN task message [id 3444, to mach_task_self(), reply 0x603]
(task_register_dyld image infos)

379372 UNKNOWN task message [id 3447, to mach_task_self(), reply 0x603]
(task_register_dyld shared cache image info)

379390 unhandled syscall: mach:70 (host_create mach voucher_trap)

379473 MIPS: add support for rdhwr cycle counter register

379504 remove TileGX/Linux port

379525 Support more x86 nop opcodes

379838 disAMode(x86): not an addr!

379703 PC ISA 3.0 fixes: stxvx, stxv, xscmpexpdp instructions

379890 arm: unhandled instruction: OXEBAD 0x1B05 (sub.w fp, sp, 15, |l #4)

379895 clock gettime does not execute POST syscall wrapper

379925 PPC64, mtffs does not set the FPCC and C bitsin the FPSCR correctly

379966 WARNING: unhandled amd64-linux syscall: 313 (finit_module)

380200 xtree generated callgrind files refer to files without directory name

380202 Assertion failure for cache line size (cls == 64) on aarch64.

26

NEWS

380397 s390x: __ Gl_strespn() replacement needed
n-i-bz Fix pub_tool_basics.h build issue with g++ 4.4.7.

(3.13.0.RC1: 2 June 2017, vex r3386, valgrind r16434)

(3.13.0.RC2: 9 June 2017, vex r3389, valgrind r16443)
(3.13.0: 14 June 2017, vex r3396, valgrind r16446)

Release 3.12.0 (20 October 2016)

3.12.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux,
ARMG64/Linux, PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux,
MIPS32/Linux, MIPS64/Linux, ARM/Android, ARM64/Android,
MIPS32/Android, X86/Android, X86/Solaris, AMD64/Solaris, X86/MacOSX
10.10 and AMD64/MacOSX 10.10. Thereisaso preliminary support for
X86/MacOSX 10.11/12, AMD64/MacOSX 10.11/12 and TILEGX/Linux.

* PLATFORM CHANGES

* POWER: Support for ISA 3.0 has been added

* mips: support for 032 FPXX ABI has been added.
* mips: improved recognition of different processors
* mips. determination of page size now done at run time

* amd64: Partial support for AMD FMAA4 instructions.

* arm, arm64: Support for v8 crypto and CRC instructions.

* |mprovements and robustification of the Solaris port.

* Preliminary support for MacOS 10.12 (Sierra) has been added.
Whilst 3.12.0 continues to support the 32-bit x86 instruction set, we
would prefer users to migrate to 64-bit x86 (a.k.aamd64 or x86_64)
where possible. Valgrind's support for 32-bit x86 has stagnated in
recent years and has fallen far behind that for 64-hit x86

instructions. By contrast 64-bit x86 iswell supported, up to and
including AV X2.

* TOOL CHANGES

* Memcheck:

- Added meta mempool support for describing a custom allocator which:
- Auto-frees all chunks assuming that destroying a pool destroysall
objects in the pool
- Uses itself to allocate other memory blocks

27

NEWS

- New flag --ignore-range-bel ow-sp to ignore memory accesses below
the stack pointer, if you really haveto. Therelated flag
--workaround-gcc296-bugs=yes is now deprecated. Use
--ignore-range-bel ow-sp=1024-1 as a replacement.

* DRD:
- Improved thread startup time significantly on non-Linux platforms.

* DHAT

- Added collection of the metric "tot-blocks-allocd"

* OTHER CHANGES

* Replacement/wrapping of malloc/new related functions is now done not just
for system libraries by default, but for any globally defined malloc/new
related function (both in shared libraries and statically linked alternative
malloc implementations). The dynamic (runtime) linker is excluded, though.
To only intercept malloc/new related functionsin
system libraries use --soname-synonyms=somall oc=nouserintercepts (where
"nouserintercepts’ can be any non-existing library name).

This new functionality is not implemented for MacOS X.

* The maximum number of callersin a suppression entry is now equal to
the maximum size for --num-callers (500).
Note that --gen-suppressions=yes|all similarly generates suppressions
containing up to --num-callers frames.

* New and modified GDB server monitor features:

- Valgrind's gdbserver now accepts the command ‘catch syscall'.
Note that you must have GDB >= 7.11 to use 'catch syscall’ with
gdbserver.

* New option --run-cxx-freeres=<yes|no> can be used to change whether
__gnu_cxx::__freeres() cleanup function is called or not. Default is
'yes'

* Valgrind is able to read compressed debuginfo sectionsin two formats;
- Zlib ELF gABI format with SHF_COMPRESSED flag (gcc option -gz=zlib)
- Zlib GNU format with .zdebug sections (gcc option -gz=zlib-gnu)

* Modest JIT-cost improvements: the cost of instrumenting code blocks
for the most common use case (x86_64-linux, Memcheck) has been
reduced by 10%-15%.

* Improved performance for programs that do alot of discarding of
instruction address ranges of 8KB or less.

* The C++ symbol demangler has been updated.

* More robustness against invalid syscall parameters on Linux.

28

NEWS

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

191069 Exiting dueto signal not reported in XML output
199468 Suppressions: stack size limited to 25
while --num-callers allows more frames
212352 vex amd64 unhandled opc_aux = Ox 2, first_opcode == 0xDC (FCOM)
278744 cvtps2pd with redundant RexW
303877 vagrind doesn't support compressed debuginfo sections.
345307 Warning about "still reachable’ memory when using libstdc++ from gcc 5
348345 Assertion fails for negative lineno
348924 MIPS:; Load doubles through memory so the code compiles with the FPXX ABI
351282 V 3.10.1 MIPS softfloat build broken with GCC 4.9.3/ binutils 2.25.1
351692 Dumps created by valgrind are not readable by gdb (mips32 specific)
351804 Crash on generating suppressions for "printf" call on OS X 10.10
352197 mips: mmap2() not wrapped correctly for page size > 4096
353083 arm64 doesn't implement various xattr system calls
353084 arm64 doesn't support sigpending system call
353137 www: update info for Supported Platforms
353138 www: update "The Valgrind Developers' page
353370 don't advertise RDRAND in cpuid for Core-i7-4910-like avx2 machine
== 365325
== 357873
353384 amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x62 (pcmpXstrX $0x62)
353398 WARNING: unhandled amd64-solaris syscall: 207
353660 XML inauxwhat tag not escaping reserved symbols properly
353680 s390x: Crash with certain glibc versions due to non-implemented TBEGIN
353727 amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x72 (pcmpXstrX $0x72)
353802 ELF debug info reader confused with multiple .rodata sections
353891 Assert 'bad scanned _addr < VG_ROUNDDN(start+len, sizeof(Addr)) failed
353917 unhandled amd64-solaris syscall fchdir(120)
353920 unhandled amd64-solaris syscall: 170
354274 arm: unhandled instruction: OXEBAD O0xOACL1 (sub.w d, sp, rl, Isl #3)
354392 unhandled amd64-solaris syscall: 171
354797 Vhit test does not include lops for Power 8 instruction support
354883 tst->0s state.pthread - magic_delta assertion failure on OSX 10.11
== 361351
== 362920
== 366222
354933 Fix documentation of --kernel-variant=android-no-hw-tls option
355188 valgrind should intercept all malloc related global functions
355454 do not intercept malloc related symbols from the runtime linker
355455 stderr.exp of test cases wrapmalloc and wrapmallocstatic overconstrained
356044 Dwarf lineinfo reader misinterpretsis_stmt register

29

NEWS

356112 mips: replace addi with addiu
356393 valgrind (vex) crashes because isZeroU happened
== 363497
== 364497
356676 arm64-linux: unhandled syscalls 125, 126 (sched get priority_max/min)
356678 arm64-linux: unhandled syscall 232 (mincore)
356817 valgrind.h triggers compiler errors on MSVC when defining NVALGRIND
356823 Unsupported ARM instruction: stlex
357059 x86/amd64: SSE cvtpi2ps with memory source does transition to MM X state
357338 Unhandled instruction for SHA instructions libcrypto Boring SSL
357673 crashif | try to run valgrind with abinary link with libcurl
357833 Setting RLIMIT_DATA to zero breaks with linux 4.5+
357871 pthread spin_destroy not properly wrapped
357887 Cadllsto VG _(fclose) do not close the file descriptor
357932 amd64->IR: accept redundant REX prefixes for { minsd,maxsd} m128, xmm.
358030 support direct socket calls on x86 32bit (new in linux 4.3)
358478 drd/tests/std_thread.cpp doesn't build with GCC6
359133 Assertion 'eltSzB <= ddpa->pool SzB' failed
359181 Buffer Overflow during Demangling
359201 futex syscall "skips' argument 5if opisFUTEX _WAIT BITSET
359289 s390x: popcnt (BOEL) not implemented
359472 The Power PC vsubugm instruction doesn't always give the correct result
359503 Add missing syscalls for aarch64 (arm64)
359645 "Y ou need libc6-dbg" help message could be more helpful
359703 s390: wire up separate socketcalls system calls
359724 getsockname might crash - deref Ulnt should call safe to_deref
359733 amd64 implement Id.so strchr/index override like x86
359767 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 1/5
359829 Power PC test suite none/tests/ppc64i/test isa 2 07.c uses
uninitialized data
359838 arm64: Unhandled instruction 0xD5033F5F (clrex)
359871 Incorrect mask handling in ppoll
359952 Unrecognised PCMPESTRM variants (0x70, 0x19)
360008 Contents of Power vr registers contentsis not printed correctly when
the --vgdb-shadow-registers=yes option is used
360035 POWER PC instruction bcdadd and bedsubtract generate result with
non-zero shadow bits
360378 arm64: Unhandled instruction 0x5E280844 (shalh s4, s2)
360425 arm64 unsupported instruction |dpsw
== 364435
360519 none/tests’arm64/memory.vgtest might fail with newer gcc
360571 Error about the Android Runtime reading below the stack pointer on ARM
360574 Wrong parameter type for an ashmem ioctl() call on Android and ARM64
360749 kludge for multiple .rodata sections on Solaris no longer needed
360752 raise the number of reserved fdsin m_main.c from 10 to 12
361207 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 2/5
361226 s390x: rishgn (EC59) not implemented
361253 [s390x] ex_clone.c:42: undefined reference to “pthread create
361354 ppcb4|le]: wire up separate socketcalls system calls
361615 Inconsistent termination for multithreaded process terminated by signal
361926 Unhandled Solaris syscall: sysfs(84)
362009 V dumps core on unimplemented functionality before threads are created
362329 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 3/5
362894 missing (broken) support for whit field on mtfsfi instruction (ppc64)

30

NEWS

362935 [AsusWRT] Assertion 'sizeof (TTEntryC) <= 88 failed
362953 Request for an update to the Valgrind Devel opers page
363680 add renameat2() support
363705 arm64 missing syscall name_to_handle at and open by handle at
363714 ppc64 missing syscalls sync, waitid and name_to/open_by handle_at
363858 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 4/5
364058 clarify in manual limitations of array overruns detections
364413 pselect sycallwrapper mishandles NULL sigmask
364728 Power PC, missing support for several HW registersin
get_otrack shadow_offset wrk()
364948 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 5/5
365273 Invalid write to stack location reported after signal handler runs
365912 ppc64BE segfault during jm-insnstest (RELRO)
366079 FPXX Support for MIPS32 Valgrind
366138 Fix configure errors out when using X code 8 (clang 8.0.0)
366344 Multiple unhandled instruction for Aarch64
(OXOEEOEO020, 0x1AC15800, 0x4E284801, 0x5E040023, 0OX5E056060)
367995 Integration of memcheck with custom memory allocator
368120 x86 linux asm _start functions do not keep 16-byte aligned stack pointer
368412 False positive result for altivec capability check
368416 Addtc06_two_races xml.exp output for ppc64
368419 Perf Eventsioctls not implemented
368461 mmapunmap test fails on ppc64

368823 run_a thread NORETURN assembly code typo for VGP_arm64_linux target

369000 AMD®64 fmad instructions unsupported.

369169 ppcb4 failsjm int_isa 2 07 test

369175 jm_vec_isa 2 07 test crashes on ppc64

369209 valgrind loops and eats up all memory if cwd doesn't exist.

369356 pre mem read sockaddr syscall wrapper can crash with bad sockaddr
369359 msghdr_foreachfield can crash when handling bad iovec

369360 Bad sigprocmask old or new sets can crash valgrind

369361 vmsplice syscall wrapper crashes on bad iovec

369362 Bad sigaction arguments crash valgrind

369383 x86 sys modify_Idt wrapper crashes on bad ptr

369402 Bad set/get_thread area pointer crashes valgrind

369441 bad lvec argument crashes process vm _readv/writev syscall wrappers
369446 valgrind crashes on unknown fentl command

369439 S390x: Unhandled insns RISBLG/RISBHG and LDE/LDER

369468 Remove quadratic metapool algorithm using VG_(HT_remove at_lter)
370265 [SA 3.0 HW cap stuff needs updating

371128 BCD add and subtract instructions on Power BE in 32-bit mode do not work
372195 Power PC, xxsdl instruction is not always recognized

n-i-bz Fix incorrect (or infinite loop) unwind on RHEL 7 x86 and amd64

n-i-bz massif --pages-as-heap=yes does not report peak caused by mmap+munmap
n-i-bz false positive leaks due to aspacemgr merging heap & non heap segments
n-i-bz Fix ppoll_alarm exclusion on OS X

n-i-bz Document brk segment limitation, reference manual in limit reached msg.
n-i-bz Fix clobber list in none/testsamd64/xacq_xrel.c [valgrind r15737]

n-i-bz Bump allowed shift value for "add.w reg, sp, reg, Il #N" [vex r3206]
n-i-bz amd64: memcheck false positive with shr %edx

n-i-bz arm3: Allow early writeback of SP base register in "strd rD, [sp, #-16]"
n-i-bz ppc: Fix two cases of PPCAVFpOp vs PPCFpOp enum confusion

n-i-bz arm: Fix incorrect register-number constraint check for LDAEX{,B,H,D}

31

NEWS

n-i-bz DHAT: added collection of the metric "tot-blocks-allocd"
(3.12.0.RC1: 20 October 2016, vex r3282, valgrind r16094)

(3.12.0.RC2: 20 October 2016, vex r3282, valgrind r16096)
(3.12.0: 21 October 2016, vex r3282, valgrind r16098)

Release 3.11.0 (22 September 2015)

3.11.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux,
ARMG64/Linux, PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux,
MIPS32/Linux, MIPS64/Linux, ARM/Android, ARM64/Android,
MIPS32/Android, X86/Android, X86/Solaris, AMD64/Solaris, X86/MacOSX
10.10 and AMD64/MacOSX 10.10. Thereisaso preliminary support for
X86/MacOSX 10.11, AMD64/MacOSX 10.11 and TILEGX/Linux.

* PLATFORM CHANGES

* Support for Solaris/x86 and Solaris'amd64 has been added.
* Preliminary support for Mac OS X 10.11 (El Capitan) has been added.
* Preliminary support for the Tilera TileGX architecture has been added.

* s390x: It is now required for the host to have the "long displacement”
facility. The oldest supported machine model is z990.

* x86: on an SSE2 only host, Valgrind in 32 bit mode now claimsto be a
Pentium 4. 3.10.1 wrongly claimed to be a Core 2, which is SSSE3.

* The J T's register allocator is significantly faster, making the JIT
as awhole somewhat faster, so J T-intensive activities, for example
program startup, are modestly faster, around 5%.

* There have been changes to the default settings of several command
line flags, as detailed below.

* Intel AV X2 support is more complete (64 bit targets only). On AV X2
capable hosts, the simulated CPUID will now indicate AV X2 support.

* TOOL CHANGES

* Memcheck:
- The default value for --leak-check-heuristics has been changed from
"none" to "al". This helps to reduce the number of possibly
lost blocks, in particular for C++ applications.

- The default value for --keep-stacktraces has been changed from

32

NEWS

"malloc-then-free" to "malloc-and-free". Thishasasmall cost in

memory (one word per malloc-ed block) but allows Memcheck to show the
3 stacktraces of a dangling reference: where the block was allocated,

where it was freed, and where it is acccessed after being freed.

- The default value for --partial-loads-ok has been changed from "no" to
"yes', so asto avoid false positive errors resulting from some kinds
of vectorised loops.

- A new monitor command 'xb <addr> <len>' shows the validity bits of
<len> bytes at <addr>. The monitor command 'xb' is easier to use
than get_vhits when you need to associate byte data value with
their corresponding validity bits.

- The 'block_list" monitor command has been enhanced:

0 it can print arange of loss records

0 it now accepts an optional argument 'limited <max_blocks>'
to control the number of blocks printed.

o if ablock has been found using a heuristic, then
'block_list' now shows the heuristic after the block size.

o the loss records/blocks to print can be limited to the blocks
found via specified heuristics.

- The C helper functions used to instrument loads on
x86-{ linux,solaris} and arm-linux (both 32-hit only) have been
replaced by handwritten assembly sequences. This gives speedups
in the region of 0% to 7% for those targets only.

- A new command line option, --expensive-definedness-checks=yes|no,
has been added. Thisisuseful for avoiding occasional invalid
uninitialised-value errorsin optimised code. Watch out for
runtime degradation, as this can be up to 25%. As aways, though,
the slowdown is highly application specific. The default setting
is"no".

* Massif:

- A new monitor command 'all_snapshots <filename>' dumps all
snapshots taken so far.

* Helgrind:

- Significant memory reduction and moderate speedups for
--history-level=full for applications accessing alot of memory
with many different stacktraces.

- The default value for --conflict-cache-size=N has been doubled to
2000000. Usersthat were not using the default value should
preferably also double the value they give.

The default was changed due to the changesin the "full history"
implementation. Doubling the value gives on average a dlightly more
complete history and uses similar memory (or significantly less memory
in the worst case) than the previous implementation.

33

NEWS

- The Helgrind monitor command 'info locks now accepts an optional
argument 'lock_addr', which shows information about the lock at the
given address only.

- When using --history-level=full, the new Helgrind monitor command
‘accesshistory <addr> [<len>]" will show the recorded accesses for
<len> (or 1) bytes at <addr>.

* OTHER CHANGES

* The default value for the --smc-check option has been changed from
"stack" to "all-non-file" on targets that provide automatic D-I
cache coherence (x86, and64 and s390x). Theresult isto provide,
by default, transparent support for J T generated and self-modifying
code on all targets.

* Mac OS X only: the default value for the --dsymutil option has been
changed from "no" to "yes', since any serious usage on Mac OS X
alwaysrequired it to be "yes'.

* The command line options --db-attach and --db-command have been removed.

They were deprecated in 3.10.0.

* When a process dies due to asignal, Valgrind now shows the signal
and the stacktrace at default verbosity (i.e. verbosity 1).

* The address description logic used by Memcheck and Helgrind now
describes addresses in anonymous segments, file mmap-ed segments,
shared memory segments and the brk data segment.

* The new option --error-markers=<begin>,<end> can be used to mark the
begin/end of errorsin textual output mode, to facilitate
searching/extracting errorsin output files that mix valgrind errors
with program output.

* The new option --max-threads=<number> can be used to change the number
of threads valgrind can handle. The default is 500 threads which
should be more than enough for most applications.

* The new option --val grind-stacksize=<number> can be used to change the
size of the private thread stacks used by Valgrind. Thisis useful
for reducing memory use or increasing the stack sizeif Valgrind
segfaults due to stack overflow.

* The new option --avg-transtab-entry-size=<number> can be used to specify
the expected instrumented block size, either to reduce memory use or
to avoid excessive retrandation.

* Valgrind can be built with Intel's ICC compiler, version 14.0 or later.

* New and modified GDB server monitor features:

- When asignal isreported in GDB, you can now use the GDB convenience

NEWS

variable $_siginfo to examine detailed signal information.

- Valgrind's gdbserver now allows the user to change the signal
to deliver to the process. So, use 'signal SIGNAL' to continue execution
with SIGNAL instead of the signal reported to GDB. Use 'signal 0' to
continue without passing the signal to the process.

- With GDB >= 7.10, the command 'target remote’
will automatically load the executable file of the process running
under Valgrind. This means you do not need to specify the executable
file yourself, GDB will discover it itself. See GDB documentation about
'gXfer:exec-filerread' packet for more info.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter _bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

116002 VG_(printf): Problems with justification of strings and integers
155125 avoid cutting away file:lineno after long function name
197259 Unsupported arch_prtctl PR_SET_GS option
201152 ppc64: Assertion in ppc32g_dirtyhelper MFSPR_268 269
201216 Fix Valgrind does not support pthread_sigmask() on OS X
201435 Fix Darwin: -v does not show kernel version
208217 "Warning: noted but unhandled ioctl 0x2000747b" on Mac OS X
211256 Fixed an outdated comment regarding the default platform.
211529 Incomplete call stacks for code compiled by newer versions of MSVC
211926 Avoid compilation warnings in valgrind.h with -pedantic
212291 Fix unhandled syscall: unix;132 (mkfifo) on OS X

== 263119
226609 Crediting upstream authors in man page
231257 Valgrind omits path when executing script from shebang line
254164 OS X task_info; UNKNOWN task message [id 3405, to mach_task_self() [..]
294065 Improve the pdb file reader by avoiding hardwired absolute pathnames
269360 s390x: Fix addressing mode selection for compare-and-swap
302630 Memcheck: Assertion failed: 'sizeof(UWord) == sizeof(UInt)'

== 326797
312989 ioctl handling needs to do POST handling on generic ioctlsand [..]
319274 Fix unhandled syscall: unix:410 (sigsuspend_nocancel) on OS X
324181 mmap does not handle MAP_32BIT (handle it now, rather than fail it)
327745 Fix valgrind 3.9.0 build failson Mac OS X 10.6.8
330147 libmpiwrap PMPI_Get_count returns undefined value
333051 mmap of huge pages fails due to incorrect alignment

== 339163
334802 valgrind does not always explain why a given option is bad
335618 mov.w rN, pc/sp (ARM32)

35

NEWS

335785 amd64->IR 0xC4 OxE2 0x75 0x2F (vmaskmovpd)
== 307399
== 343175
== 342740
== 346912
335907 segfault when running wine's ddrawex/tests/surface.c under valgrind
338602 AVX2 hitin CPUID missing
338606 Strange message for scriptswith invalid interpreter
338731 ppc: Fix testuite build for toolchains not supporting -maltivec
338995 shmat with hugepages (SHM_HUGETLB) fails with EINVAL
339045 Getting valgrind to compile and run on OS X Y osemite (10.10)
== 340252
339156 gdbsrv not called for fatal signal
339215 Valgrind 3.10.0 contain 2013 in copyrights notice
339288 support Cavium Octeon MIPS specific BBIT* 32 instructions
339636 Use fxsave64 and fxrstor64 mnemonics instead of old-school rex64 prefix
339442 Fix testsuite build failureon OS X 10.9
339542 Enable compilation with Intel's ICC compiler
339563 The DVB demux DMX_STOP ioctl doesn't have awrapper
339688 Mac-specific ASM does not support .version directive (cpuid,
tronical and pushfpopf tests)
339745 Valgrind crash when check Marmalade app (partial fix)
339755 Fix known deliberate memory leak in setenv() on Mac OS X 10.9
339778 Linux/TileGx platform support for Valgrind
339780 Fix known uninitialised read in pthread rwlock_init() on Mac OS X 10.9
339789 Fix nonef/tests/execve test on Mac OS X 10.9
339808 Fix none/tests/rlimité4 nofile test on Mac OS X 10.9
339820 vex amd64->IR: 0x66 OxF 0x3A 0x63 OxA 0x42 0x74 0x9 (pcmpistri $0x42)
340115 Fix none/tests'cmdling]1]2] tests on systems which define TMPDIR
340392 Allow user to select more accurate definedness checking in memcheck
to avoid invalid complaints on optimised code
340430 Fix some grammatical weirdness in the manual.
341238 Recognize GCC5/DWARFV5 DW_LANG constants (Go, C11, C++11, C++14)
341419 Signal handler ucontext_t not filled out correctly on OS X
341539 VG_(describe _addr) should not describe address as belonging to client
segment if it is past the heap end
341613 Enable building of manythreads and thread-exits tests on Mac OS X
341615 Fix noneftests/darwin/access extended test on Mac OS X
341698 Valgrind's AESKEY GENASSIST giveswrong result in wordsOand 2..]
341789 aarch64: shmat fails with valgrind on ARMv8
341997 MIPS64: Cavium OCTEON insns - immediate operand handled incorrectly
342008 valgrind.h needs type cast [..] for clang/llvm in 64-bit mode
342038 Unhandled syscalls on aarch64 (mbind/get/set_ mempolicy)
342063 wrong format specifier for test mecblocklistsearch in gdbserver_tests
342117 Hang when loading PDB file for MSVC compiled Firefox under Wine
342221 socket connect false positive uninit memory for unknown af family
342353 Allow dumping full massif output while valgrind is still running
342571 Valgrind chokeson AV X compareintrinsic with_ CMP_GE_QS
== 346476
== 348387
== 350593
342603 Add12C_SMBUS ioctl support
342635 OS X 10.10 (Y osemite) - missing system calls and fentl code
342683 Mark memory past theinitial brk limit as unaddressable

36

NEWS

342783 arm: unhandled instruction OXEEFE1ACA = "vcvt.s32.f32 s3, s3, #12"
342795 Interna glibc Gl _mempcpy call should be intercepted
342841 s390x: Support instructions fiebr(a) and fidbr(a)
343012 Unhandled syscall 319 (memfd_create)
343069 Patch updating v4l2 API support
343173 helgrind crash during stack unwind
343219 fix GET_STARTREGS for arm
343303 Fix known deliberate memory leak in setenv() on Mac OS X 10.10
343306 OS X 10.10: UNKNOWN mach_msg unhandled MACH_SEND_TRAILER option
343332 Unhandled instruction 0x9E310021 (fcvtmu) on aarch64
343335 unhandled instruction 0x1E638400 (fccmp) aarch64
343523 OS X mach_ports _register: UNKNOWN task message [id 3403, to[..]
343525 OS X host_get_special_port: UNKNOWN host message [id 412, to [..]
343597 ppcbdle: incorrect use of offseof macro
343649 OS X host_create_ mach_voucher: UNKNOWN host message [id 222, to[..]
343663 OS X 10.10 Memchecj aways reports aleak regardiess of [..]
343732 Unhandled syscall 144 (setgid) on aarch64
343733 Unhandled syscall 187 (msgctl and related) on aarch64
343802 s390x: False positive "conditional jump or move dependson|..]
343902 --vgdb=yes doesn't break when --xml=yes is used
343967 Don't warn about setuid/setgid/setcap executable for directories
343978 Recognize DWARF5/GCC5 DW_LANG_Fortran 2003 and 2008 constants
344007 acceptd syscall unhandled on arm64 (242) and ppc64 (344)
344033 Helgrind on ARM32 loses track of mutex statein pthread cond wait
344054 www - update info for Solarig/illumos
344416 'make regtest' does not work cleanly on OS X
344235 Remove duplicate include of pub_core aspacemgr.h
344279 syscall sendmmsg on arm64 (269) and ppc32/64 (349) unhandled
344295 syscall recvmmsg on arm64 (243) and ppc32/64 (343) unhandled
344307 2 unhandled syscalls on aarch64/arm64: umount2(39), mount (40)
344314 callgrind_annotate ... warnings about commands containing newlines
344318 socketcall should wrap recvmmsg and sendmmsg
344337 Fix unhandled syscall: mach:41 (_kernelrpc_mach _port_guard trap)
344416 Fix 'make regtest' does not work cleanly on OS X
344499 Fix compilation for Linux kernel >=4.0.0
344512 OS X: unhandled syscall: unix:348 (__pthread chdir),

unix:349 (__pthread_fchdir)
344559 Garbage collection of unused segment names in address space manager
344560 Fix stack traces missing penultimate frame on OS X
344621 Fix memcheck/tests/err_disabled test on OS X
344686 Fix suppression for pthread rwlock init on OS X 10.10
344702 Fix missing libobjc suppressions on OS X 10.10

== 344543
344936 Fix unhandled syscall: unix:473 (readlinkat) on OS X 10.10
344939 Fix memcheck/tests’xml1 on OS X 10.10
345016 helgrind/tests/locked vs unlocked? isfailing sometimes
345079 Fix build problemsin VEX/useful/test_main.c
345126 Incorrect handling of VIDIOC_G_AUDIO and G_ AUDOUT
345177 arm64; prfm (reg) not implemented
345215 Performance improvements for the register allocator
345248 add support for Solaris OSin valgrind
345338 TIOCGSERIAL and TIOCSSERIAL ioctl support on Linux
345394 Fix memcheck/tests/strchr on OS X
345637 Fix memcheck/tests/sendmsg on OS X

37

NEWS

345695 Add POWERPC support for AT_DCACHESIZE and HWCAP2

345824 Fix aspacem segment mismatch: seen with none/tests/bigcode

345887 Fix an assertion in the address space manager

345928 amd64: callstack only contains current function for small stacks

345984 dislnstr(arm): unhandled instruction: OXEE193F1E

345987 MIPS64: Implement cavium LHX instruction

346031 MIPS: Implement support for the CvmCount register (rhwr %0, 31)

346185 Fix typo saving altivec register v24

346267 Compiler warnings for PPC64 code on call to LibVEX_GuestPPC64 get XER()
and LibVEX_GuestPPC64_get CR()

346270 Regression tests none/tests/jm_vec/isa 2 07 and
none/tests/test_isa 2 07 _part2 have failures on PPC64 little endian

346307 fuse filesystem syscall deadlocks

346324 PPC64 missing support for Ibarx, lharx, stbcx and sthex instructions

346411 MIPS: SysRes::_vaEx handling isincorrect

346416 Add support for LL_IOC_PATH2FID and LL_IOC_GETPARENT Lustreioctls

346474 PPC64 Power 8, spr TEXASRU register not supported

346487 Compiler generates "note" about a future ABI change for PPC64

346562 MIPS64: lwl/Iwr instructions are performing 64bit loads
and causing spurious "invalid read of size 8" warnings

346801 Fix link error on OS X: _vgModuleLocal_sf_maybe extend stack

347151 Fix suppression for pthread rwlock_init on OS X 10.8

347233 Fix memcheck/tests/strchr on OS X 10.10 (Haswell)

347322 Power PC regression test cleanup

347379 valgrind --leak-check=full leak errors from system libs on OS X 10.8
== 217236

347389 unhandled syscall: 373 (Linux ARM syncfs)

347686 Patch set to cleanup PPC64 regtests

347978 Remove bash dependencies where not needed

347982 OS X: undefined symbolsfor architecture x86_64: " global" [..]

347988 Memcheck: the 'impossible’ happened: unexpected size for Addr (OSX/wine)
== 345929

348102 Patch updating v4l2 API support

348247 amd64 front end: jno jumps wrongly when overflow is not set

348269 Improve mmap MAP_HUGETLB support.

348334 (ppc) valgrind does not simulate dcbfl - then my program terminates

348345 Assertion fails for negative lineno

348377 Unsupported ARM instruction: yield

348565 Fix detection of command line option availability for clang

348574 vex amd64->IR pcmpistri SSE4.2 unsupported (pcmpistri $0x18)

348728 Fix broken check for VIDIOC_G_ENC_INDEX

348748 Fix redundant condition

348890 Fix clang warning about unsupported --param inline-unit-growth=900

348949 Bogus "ERROR: --ignore-ranges: suspiciously large range"

349034 Add LustreioctlsLL_IOC_GROUP_LOCK and LL_IOC_GROUP_UNLOCK

349086 Fix UNKNOWN task message [id 3406, to mach_task self(), [..]

349087 Fix UNKNOWN task message [id 3410, to mach_task_self(), [..]

349626 Implemented additional Xen hypercalls

349769 Clang/osx: Id: warning: -read_only_relocs cannot be used with x86_64

349790 Clean up of the hardware capability checking utilities.

349828 memcpy intercepts memmove causing src/dst overlap error (ppc64 1d.so)

349874 Fix typosin source code

349879 memcheck: add handwritten assembly for helperc LOADV*

349941 di_notify_mmap might create wrong start/size DebuglnfoMapping

38

NEWS

350062 vex x86->IR: 0x66 0xF 0x3A 0xB (ROUNDSD) on OS X

350202 Add limited param to 'monitor block_list'

350290 s390x: Support instructions fixbr(a)

350359 memcheck/tests/x86/fxsave hangs indefinetely on OS X

350809 Fix noneftests/async-sigs for Solaris

350811 Remove reference to --db-attach which has been removed.

350813 Memcheck/x86: enable handwritten assembly helpers for x86/Solaris too

350854 hard-to-understand code in VG_(load ELF)()

351140 arm64 syscalls setuid (146) and setresgid (149) not implemented

351386 Solaris. Cannot run ld.so.1 under Valgrind

351474 Fix VG_(isegsigset) as obvious

351531 Typo in /include/vki/vki-xen-physdev.h header guard

351756 Intercept platform_memchr$V ARIANT$Haswell on OS X

351858 |dsoexec support on Solaris

351873 Newer gcc doesn't allow __ builtin_tabortdc][i] in ppc32 mode

352130 helgrind reports false races for printfs using mempcpy on FILE* state

352284 s390: Conditional jump depends on uninitialised value(s) in vfprintf

352320 arm64 crash on none/tests/nestedfs

352765 Vhit test fails on Power 6

352768 The mbar instruction is missing from the Power PC support

352769 Power PC program priority register (PPR) is not supported

n-i-bz Provide implementations of certain compiler builtins to support
compilers that may not provide those

n-i-bz Old STABS codeis till being compiled, but never used. Removeit.

n-i-bz Fix compilation on distros with glibc < 2.5

n-i-bz (vex 3098) Avoid generation of Neon insns on non-Neon hosts

n-i-bz Enable rt_sigpending syscall on ppc64 linux.

n-i-bz mremap did not work properly on shared memory

n-i-bz Fix incorrect sizeof expression in syswrap-xen.c reported by Coverity

n-i-bz In VALGRIND_PRINTF write out thread name, if any, to xml

(3.11.0.TEST1: 8 September 2015, vex r3187, valgrind r15646)

(3.11.0.TEST2: 21 September 2015, vex r3193, valgrind r15667)
(3.11.0: 22 September 2015, vex r3195, valgrind r15674)

Release 3.10.1 (25 November 2014)

3.10.1isabugfix release. It fixes various bugs reported in 3.10.0

and backports fixes for all reported missing AArch64 ARMv8 instructions
and syscalls from the trunk. If you package or deliver 3.10.0 for others

to use, you might want to consider upgrading to 3.10.1 instead.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit

https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

39

NEWS

335440 arm64: 1d1 (single structure) is not implemented
335713 arm64: unhanded instruction: prfm (immediate)
339020 ppc64: memcheck/tests/ppc64/power ISA2 05 failing in nightly build
339182 ppc64: AvSplat ought to load destination vector register with [..]
339336 PPC64 store quad instruction (stq) is not supposed to change[..]
339433 ppcb4 Ixvwax instruction uses four 32-byte loads
339645 Use correct tag namesin sys_getdents/64 wrappers
339706 Fix false positive for ioctl(TIOCSIG) on linux
339721 assertion 'check_sibling == sibling' failed in readdwarf3.c ...
339853 arm64 times syscall unknown
339855 arm64 unhandled getsid/setsid syscalls
339858 arm64 dmb sy not implemented
339926 Unhandled instruction Ox1E674001 (frintx) on aarm64
339927 Unhandled instruction 0x9E7100C6 (fcvtmu) on aarch64
339938 dislnstr(arm64): unhandled instruction 0x4F8010A4 (fmla)

== 339950
339940 arm64: unhandled syscall: 83 (sys fdatasync) + patch
340033 arm64: unhandled insn dmb ishld and some other isb-dmb-dsb variants
340028 unhandled syscalls for arm64 (msync, pread64, setreuid and setregid)
340036 arm64: Unhandled instruction |d4 (multiple structures, no offset)
340236 arm64: unhandled syscalls: mknodat, fchdir, chroot, fchownat
340509 arm64: unhandled instruction fcvtas
340630 arm64: fchmod (52) and fchown (55) syscalls not recognized
340632 arm64: unhandled instruction fcvtas
340722 Resolve "UNKNOWN attrlist flags 0:0x10000000"
340725 AVX2: Incorrect decoding of vpbroadcast{ b,w} reg,reg forms
340788 warning: unhandled syscall: 318 (getrandom)
340807 dislnstr(arm): unhandled instruction: OXEE989B20
340856 dislnstr(arm64): unhandled instruction Ox1E634C45 (fcsel)
340922 arm64: unhandled getgroups/setgroups syscalls
350251 Fix typoin VEX utility program (test_main.c).
350407 arm64: unhandled instruction ucvtf (vector, integer)
350809 none/tests/async-sigs breaks when run under cron on Solaris
350811 update README.solaris after r15445
350813 Use handwritten memcheck assembly helpers on x86/Solaris|..]
350854 strangecodein VG _(load ELF)()
351140 arm64 syscalls setuid (146) and setresgid (149) not implemented

n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz

DRD and Helgrind: Handle Imbe_Cancel Reservation (clrex on ARM)
Add missing]] to terminate CDATA.

Glibc versions prior to 2.5 do not define PTRACE_GETSIGINFO
Enable sys fadvise64 64 on arm32.

Add test cases for all remaining AArch64 SIMD, FP and memory insns.
Add test cases for al known arm64 |oad/store instructions.

PRE(sys_openat): when checking whether ARG1 == VKI_AT_FDCWD [..]

Add detection of old ppc32 magic instructions from bug 278808.
exp-dhat: Implement missing function "dh_malloc_usable size".
arm64: Implement "fcvtpu w, s'.

arm64: implement ADDP and various others

arm64: Implement { S,U} CVTF (scalar, fixedpt).

arm64: enable FCVT{A,N}S X,S.

(3.10.1: 25 November 2014, vex r3026, valgrind r14785)

40

NEWS

Release 3.10.0 (10 September 2014)

3.10.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, MIPS32/Android, X86/Android, X86/MacOSX 10.9
and AMD64/MacOSX 10.9. Support for MacOSX 10.8 and 10.9 is

significantly improved relative to the 3.9.0 release.

* PLATFORM CHANGES

* Support for the 64-bit ARM Architecture (AArch64 ARMv8). This port
ismostly complete, and is usable, but some SIMD instructions are as
yet unsupported.

* Support for little-endian variant of the 64-bit POWER architecture.

* Support for Android on MIPS32.

* Support for 64bit FPU on MIPS32 platforms.

* Both 32- and 64-bit executables are supported on MacOSX 10.8 and 10.9.

* Configuration for and running on Android targets has changed.
See README.android in the source tree for details.

* DEPRECATED FEATURES

* --db-attach is now deprecated and will be removed in the next
valgrind feature release. The built-in GDB server capabilities are
superior and should be used instead. Learn more here:
http://valgrind.org/docs/manual/manual -core-adv.html#manual -core-adv.gdbserver

* TOOL CHANGES

* Memcheck:

- Client code can now selectively disable and re-enable reporting of
invalid address errors in specific ranges using the new client
requests VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE and
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE.

- Leak checker: thereis anew leak check heuristic called
"length64". Thisis used to detect interior pointers pointing 8
bytes inside a block, on the assumption that the first 8 bytes
holds the value "block size - 8". Thisisused by
sgliteBMemMalloc, for example.

- Checking of system call parameters: if a syscall parameter

41

NEWS

(e.g. bind struct sockaddr, sendmsg struct msghdr, ...) has
severa fields not initialised, an error is now reported for each
field. Previously, an error was reported only for the first
uninitialised field.

- Mismatched alloc/free checking: anew flag
--show-mismatched-frees=nolyes [yes] makes it possible to turn off
such checksif necessary.

* Helgrind:
- Improvements to error messages:

0 Race condition error message involving heap allocated blocks also
show the thread number that allocated the raced-on block.

o All locks referenced by an error message are now announced.
Previoudly, some error messages only showed the lock addresses.

0 The message indicating where alock was first observed now also
describes the address/location of the lock.

- Helgrind now understands the Ada task termination rules and
creates a happens-before relationship between a terminated task
and its master. This avoids some false positives and avoids abig
memory leak when alot of Adatasks are created and terminated.
The interceptions are only activated with forthcoming rel eases of
gnatpro >= 7.3.0w-20140611 and gcc >= 5.0.

- A new GDB server monitor command "info locks" giving thelist of
locks, their location, and their status.

* Callgrind:

- callgrind_control now supports the --vgdb-prefix argument,
which is needed if valgrind was started with this same argument.

* OTHER CHANGES

* Unwinding through inlined function calls. Stack unwinding can now
make use of Dwarf3 inlined-unwind information if it is available.
The practical effect isthat inlined calls become visible in stack
traces. The suppression matching machinery has been adjusted
accordingly. Thisis controlled by the new option
--read-inline-info=yegjno. Currently thisis enabled by default
only on Linux and Android targets and only for the tools Memcheck,
Helgrind and DRD.

* Valgrind can now read EXIDX unwind information on 32-bit ARM
targets. If an object contains both CFl and EXIDX unwind
information, Valgrind will prefer the CFl over the EXIDX. This
facilitates unwinding through system libraries on arm-android
targets.

42

NEWS

* Address description logic has been improved and is now common
between Memcheck and Helgrind, resulting in better address
descriptions for some kinds of error messages.

* Error messages about dubious arguments (eg, to malloc or calloc) are
output like other errors. This means that they can be suppressed
and they have a stack trace.

* The C++ demangler has been updated for better C++11 support.
* New and modified GDB server monitor features:
- Thread local variables/storage (__thread) can now be displayed.

- The GDB server monitor command "v.info location <address>"
displays information about an address. The information produced
depends on the tool and on the options given to valgrind.
Possibly, the following are described: global variables, local
(stack) variables, allocated or freed blocks, ...

- The option "--vgdb-stop-at=eventl,event2,..." allowsthe user to
ask the GDB server to stop at the start of program execution, at
the end of the program execution and on Valgrind internal errors.

- A new monitor command "v.info stats" shows various Valgrind core
and tool statistics.

- A new monitor command "v.set hostvisibility" allows the GDB server
to provide access to Valgrind internal host status/memory.

* A new option "--aspace-minaddr=<address>" can in some situations
allow the use of more memory by decreasing the address above which
Valgrind maps memory. It can also be used to solve address
conflicts with system libraries by increasing the default value.

See user manual for details.

* The amount of memory used by Valgrind to store debug info (unwind
info, line number information and symbol data) has been
significantly reduced, even though Valgrind now reads more
information in order to support unwinding of inlined function calls.

* Dwarf3 handling with --read-var-info=yes has been improved:
- Adaand C struct containing VLASs no longer cause a "bad DIE" error
- Code compiled with
-ffunction-sections -fdata-sections -WI,--gc-sections
no longer causes assertion failures.
* Improved checking for the --sim-hints= and --kernel-variant=
options. Unknown strings are now detected and reported to the user

asausage error.

* The semantics of stack start/end boundariesin the valgrind.h

43

NEWS

VALGRIND_STACK_REGISTER client request has been clarified and
documented. The convention isthat start and end are respectively
the lowest and highest addressable bytes of the stack.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

175819 Support for ipv6 socket reporting with --track-fds

232510 make distcheck fails

249435 Analyzing wine programs with callgrind triggers a crash

278972 support for inlined function calls in stacktraces and suppression
==199144

291310 FXSAVE instruction marks memory as undefined on amd64

303536 ioctl for SIOCETHTOOL (ethtool(8)) isn't wrapped

308729 vex x86->IR: unhandled instruction bytes Oxf 0x5 (syscall)

315199 vgcorefile for threaded app does not show which thread crashed

315952 tun/tap ioctls are not supported

323178 Unhandled instruction: PLDW register (ARM)

323179 Unhandled instruction: PLDW immediate (ARM)

324050 Helgrind: SEGV because of unaligned stack when using movdga

325110 Add test-cases for Power | SA 2.06 insns: divdo/divdo. and divduo/divduo.

325124 [MIPSEL] Compilation error

325477 Phase 4 support for IBM Power ISA 2.07

325538 cavium octeon mipsb4, valgrind reported "dumping core” [...]
325628 Phase 5 support for IBM Power I1SA 2.07

325714 Empty vgcore but RLIMIT_CORE is big enough (too big)

325751 Missing the two privileged Power PC Transactional Memory Instructions
325816 Phase 6 support for IBM Power ISA 2.07

325856 Make SGCheck fail gracefully on unsupported platforms

326026 lop names for count leading zeros/sign hits incorrectly imply [..]
326436 DRD: False positivein libstdc++ std::list::push_back

326444 Cavium MIPS Octeon Specific Load Indexed Instructions

326462 Refactor vgdb to isolate invoker stuff into separate module
326469 amd64->IR: 0x66 OxF 0x3A 0x63 OXC1 OXE (pcmpistri OXOE)
326623 DRD: false positive conflict report in afield assignment

326724 Valgrind does not compile on OSX 1.9 Mavericks

326816 Intercept for __ strncpy_sse? unaligned missing?

326921 coregrind failsto compile m_trampoline.S with MIPS/Linux port of V
326983 Clear direction flag after tests on and64.

327212 Do not prepend the current directory to absolute path names.
327223 Support for Cavium MIPS Octeon Atomic and Count Instructions
327238 Callgrind Assertion 'passed <= last_bb->cjmp_count' failed
327284 s390x: Fix trandation of the rishg instruction

327639 vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x34

NEWS

327837 dwz compressed alternate .debug_info and .debug_str not read correctly
327916 DW_TAG_typedef may have no name
327943 s390x: add aredirection for the 'index’ function
328100 XABORT not implemented
328205 Implement additional Xen hypercalls
328454 add support Backtraces with ARM unwind tables (EXIDX)
328455 s390x: SIGILL after emitting wrong register pair for ldxbr
328711 vagrind.1 manpage "memcheck options" section is badly generated
328878 vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x14
329612 Incorrect handling of AT_BASE for image execution
329694 clang warns about using uninitialized variable
329956 valgrind crashes when Imw/stmw instructions are used on ppc64
330228 mmap must align to VKI_SHMLBA on mips32
330257 LLVM does not support “-mno-dynamic-no-pic’ option
330319 amd64->IR: unhandled instruction bytes: OxF 0x1 0xD5 (xend)
330459 --track-fds=yes doesn't track eventfds
330469 Add clock adjtime syscall support
330594 Missing sysalls on PowerPC / uClibc
330622 Add test to regression suite for POWER instruction: dcbzl
330939 Support for AMD's syscall instruction on x86
== 308729
330941 Typo in PRE(poll) syscall wrapper
331057 unhandled instruction: OXEEEO1B20 (vfma.f64) (has patch)
331254 Fix expected output for memcheck/tests/dw4
331255 Fix race condition in test none/tests/coolo_sigaction
331257 Fix type of jump buffer in test none/tests/faultstatus
331305 configure uses bash specific syntax
331337 s390x WARNING: unhandled syscall: 326 (dup3)
331380 Syscall param timer_create(evp) points to uninitialised byte(s)
331476 Patch to handleioctl 0x5422 on Linux (x86 and amd64)
331829 Unexpected ioctl opcode sign extension
331830 ppc64: WARNING: unhandled syscall: 96/97
331839 drd/tests/sem_open specifies invalid semaphore name
331847 outcome of drd/tests/thread_name is nondeterministic
332037 Valgrind cannot handle Thumb "add pc, reg"
332055 drd asserts on platforms with VG_STACK_REDZONE_SZB == 0 and
consistency checks enabled
332263 intercepts for pthread rwlock _timedrdlock and
pthread rwlock_timedwrlock are incorrect
332265 drd could do with post-rwlock _init and pre-rwlock_destroy
client requests
332276 Implement additional Xen hypercalls
332658 ldrd.w rl, r2, [PC, #imm)] does not adjust for 32bit alignment
332765 Fix ms_print to create temporary filesin a proper directory
333072 drd: Add semaphore annotations
333145 Tests for missaligned PC+#imm access for arm
333228 AAarch64 Missing instruction encoding: mrs %[reg], ctr_el0
333230 AAarch64 missing instruction encodings: dc, ic, dsb.
333248 WARNING: unhandled syscall: unix:443
333428 Idr.w pc [rD, #imm] instruction leads to assertion
333501 cachegrind: assertion: Cache set count is not a power of two.
== 336577
== 292281
333666 Recognize MPX instructions and bnd prefix.

45

NEWS

333788 Valgrind does not support the CDROM_DISC_STATUS ioctl (has patch)
333817 Valgrind reports the memory areas written to by the SG_10
ioctl as untouched
334049 lzent failssilently (x86_32)
334384 Valgrind does not have support Little Endian support for
IBM POWER PPC 64
334585 recvmmsg unhandled (+patch) (arm)
334705 sendmsg and recvmsg should guard against bogus msghdr fields.
334727 Build fails with -Werror=format-security
334788 clarify doc about --log-file initial program directory
334834 PPC64 Little Endian support, patch 2
334836 PPC64 Little Endian support, patch 3 testcase fixes
334936 patch to fix false positiveson alsa SNDRV_CTL_* ioctls
335034 Unhandled ioctl: HCIGETDEVLIST
335155 vgdb, fix error print statement.
335262 arm64: movi 8hit version is not supported
335263 arm64: dmb instruction is not implemented
335441 unhandled ioctl 0x8905 (SIOCATMARK) when running wine under valgrind
335496 arm64: shc/abe instructions are not implemented
335554 arm64: unhandled instruction: abs
335564 arm64:; unhandled instruction: fcvtpu Xn, Sn
335735 arm64: unhandled instruction: cnt
335736 arm64: unhandled instruction: uaddlv
335848 arm64: unhandled instruction: { s,u} cvtf
335902 arm64: unhandled instruction: dli
335903 arm64: unhandled instruction; umull (vector)
336055 arm64: unhandled instruction; mov (element)
336062 arm64: unhandled instruction: shrn{,2}
336139 mip64: [...] valgrind hangs and spinson asingle core|...]
336189 arm64: unhandled Instruction: mvn
336435 Valgrind hangsin pthread spin_lock consuming 100% CPU
336619 valgrind --read-var-info=yes doesn't handle DW_TAG _restrict_type
336772 Make moans about unknown ioctls more informative
336957 Add a section about the Solaris/illumos port on the webpage
337094 ifunc wrapper is broken on ppc64

337285 fentl commands F OFD_SETLK, F OFD_SETLKW, and F OFD_GETLK not supported

337528 leak check heuristic for block prefixed by length as 64bit number
337740 Implement additional Xen hypercalls

337762 guest_arm64 tolR.c:4166 (dis ARM64 load_store): Assertion "0’ failed.
337766 arm64-linux: unhandled syscalls mlock (228) and mlockall (230)
337871 deprecate --db-attach

338023 Add support for all V4L2/mediaioctls

338024 inlined functions are not shown if DW_AT _rangesis used
338106 Add support for 'kemp' syscall

338115 DRD: computed conflict set differs from actual after fork

338160 implement display of thread local storage in gdbsrv

338205 configure.ac and check for -Wno-tautol ogical -compare

338300 coredumps are missing one byte of every segment

338445 amd64 vhit-test fails with unknown opcodes used by arm64 VEX
338499 --sim-hints parsing broken due to wrong order in tokens

338615 suppress glibc 2.20 optimized stremp implementation for ARMv7
338681 Unable to unwind through clone thread created on i386-linux
338698 race condition between gdbsrv and vgdb on startup

338703 helgrind on arm-linux gets false positives in dynamic loader

46

NEWS

338791 dt dwz files can be relative of debug/main file

338878 on MacOS: assertion 'VG_IS PAGE_ALIGNED(clstack_end+1) failed
338932 build V-trunk with gec-trunk

338974 glibc 2.20 changed size of struct sigaction sa flagsfield on s390
345079 Fix build problemsin VEX/useful/test_main.c

n-i-bz Fix KVM_CREATE_IRQCHIP ioctl handling

n-i-bz s390x: Fix memory corruption for multithreaded applications

n-i-bz vex arm->IR: allow PC as basereg in some LDRD cases

n-i-bz internal error in Valgrind if vgdb transmit signals when ptrace invoked
n-i-bz Fix mingw64 support in valgrind.h (dev@, 9 May 2014)

n-i-bz drd manual: Document how to C++11 programs that use class "std::thread'
n-i-bz Add command-line option --default-suppressions

n-i-bz Add support for BLKDISCARDZEROES ioctl

n-i-bz ppc32/64: fix aregression with the mtfshO/mtfsbl instructions

n-i-bz Add support for sys pivot_root and sys unshare

(3.10.0.BETAL: 2 September 2014, vex r2940, valgrind r14428)
(3.10.0.BETA2: 8 September 2014, vex r2950, valgrind r14503)
(3.10.0: 10 September 2014, vex r2950, valgrind r14514)

Release 3.9.0 (31 October 2013)

3.9.0 isafeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, ARM/Android,
X86/Android, X86/MacOSX 10.7 and AMD64/MacOSX 10.7. Support for
MacOSX 10.8 is significantly improved relative to the 3.8.0 release.

* PLATFORM CHANGES

* Support for MIPS64 LE and BE running Linux. Valgrind has been
tested on M1PS64 Dehian Squeeze and Debian Wheezy distributions.

* Support for MIPS DSP ASE on MIPS32 platforms.

* Support for s390x Decimal Floating Point instructions on hosts that
have the DFP facility installed.

* Support for POWERS (Power |SA 2.07) instructions

* Support for Intel AV X2 instructions. Thisisavailable only on 64
bit code.

* |nitial support for Intel Transactional Synchronization Extensions,
both RTM and HLE.

* |nitial support for Hardware Transactional Memory on POWER.

* Improved support for MacOSX 10.8 (64-bit only). Memcheck can now
run large GUI apps tolerably well.

47

NEWS

* TOOL CHANGES

* Memcheck:

- Improvements in handling of vectorised code, leading to
significantly fewer false error reports. Y ou need to use the flag
--partial-loads-ok=yes to get the benefits of these changes.

- Better control over the leak checker. It isnow possibleto
specify which leak kinds (definite/indirect/possible/reachable)
should be displayed, which should be regarded as errors, and which
should be suppressed by agiven leak suppression. Thisis done
using the options --show-leak-kinds=kind1,kind2,..,
--errors-for-leak-kinds=kind1,kind2,.. and an optional
"match-leak-kinds:" line in suppression entries, respectively.

Note that generated leak suppressions contain this new line and

are therefore more specific than in previous releases. To get the
same behaviour as previous releases, remove the "match-leak-kinds:"
line from generated suppressions before using them.

- Reduced "possible leak" reports from the leak checker by the use
of better heuristics. The available heuristics provide detection
of valid interior pointers to std::stdstring, to new[] allocated
arrays with elements having destructors and to interior pointers
pointing to an inner part of a C++ object using multiple
inheritance. They can be selected individually using the
option --leak-check-heuristics=heur1,heur2,...

- Better control of stacktrace acquisition for heap-allocated
blocks. Using the --keep-stacktraces option, it is possible to
control independently whether a stack trace is acquired for each
alocation and deallocation. This can be used to create better
"use after free" errors or to decrease Valgrind's resource
consumption by recording less information.

- Better reporting of leak suppression usage. Thelist of used
suppressions (shown when the -v option is given) now shows, for
each leak suppressions, how many blocks and bytes it suppressed
during the last leak search.

* Helgrind:
- False errors resulting from the use of statically initialised
mutexes and condition variables (PTHREAD_MUTEX_INITIALISER, etc)

have been removed.

- False errors resulting from the use of pthread cond waits that
timeout, have been removed.

* OTHER CHANGES

* Some attempt to tune Valgrind's space requirements to the expected

48

NEWS

capabilities of the target:

- The default size of the translation cache has been reduced from 8
sectors to 6 on Android platforms, since each sector occupies
about 40M B when using Memcheck.

- The default size of the translation cache has been increased to 16
sectors on all other platforms, reflecting the fact that large
applications require instrumentation and storage of huge amounts
of code. For similar reasons, the number of memory mapped
segments that can be tracked has been increased by a factor of 6.

- In all cases, the maximum number of sectorsin the translation
cache can be controlled by the new flag --num-transtab-sectors.

* Changesin how debug info (line numbers, etc) is read:

- Valgrind no longer temporarily mmaps the entire object to read
fromit. Instead, reading is done through a small fixed sized
buffer. Thisavoids virtual memory usage spikes when Valgrind
reads debuginfo from large shared objects.

- A new experimental remote debug info server. Valgrind can read
debug info from a different machine (typically, abuild host)
where debuginfo objects are stored. This can save alot of time
and hassle when running Valgrind on resource-constrained targets
(phones, tablets) when the full debuginfo objects are stored
somewhere else. Thisis enabled by the --debuginfo-server=
option.

- Consistency checking between main and debug objects can be
disabled using the --all ow-mismatched-debuginfo option.

* Stack unwinding by stack scanning, on ARM. Unwinding by stack
scanning can recover stack traces in some cases when the normal
unwind mechanismsfail. Stack scanning is best described as"a
nasty, dangerous and misleading hack” and so is disabled by default.
Use --unw-stack-scan-thresh and --unw-stack-scan-frames to enable
and control it.

* Detection and merging of recursive stack frame cycles. When your
program has recursive algorithms, this limits the memory used by
Valgrind for recorded stack traces and avoids recording
uninteresting repeated calls. Thisis controlled by the command
line option --merge-recursive-frame and by the monitor command
"v.set merge-recursive-frames”.

* File name and line numbers for used suppressions. Thelist of used
suppressions (shown when the -v option is given) now shows, for each
used suppression, the file name and line number where the suppression
is defined.

* New and modified GDB server monitor features:

49

NEWS

- valgrind.h has anew client request, VALGRIND_MONITOR_COMMAND,
that can be used to execute gdbserver monitor commands from the
client program.

- A new monitor command, "v.info open_fds", that givesthelist of
open file descriptors and additional details.

- An optional message in the "v.info n_errs found" monitor command,
for example "v.info n_errs found test 1234 finished", allowing a
comment string to be added to the process output, perhaps for the
purpose of separating errors of different tests or test phases.

- A new monitor command "v.info execontext" that shows information
about the stack traces recorded by Valgrind.

- A new monitor command "v.do expensive sanity check general” to run
some internal consistency checks.

* New flag --sigill-diagnostics to control whether a diagnostic
message is printed when the J T encounters an instruction it can't
trandlate. The actual behavior -- delivery of SIGILL to the
application -- is unchanged.

* The maximum amount of memory that Valgrind can use on 64 bit targets
has been increased from 32GB to 64GB. This should make it possible
to run applications on Memcheck that natively require up to about 35GB.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

123837 system call: 4th argument is optional, depending on cmd

135425 memcheck should tell you where Freed blocks were Mallocd
164485 VG_N_SEGNAMES and VG_N_SEGMENTS are (till) too small
207815 Adds some of the drmioctls to syswrap-linux.c

251569 vex amd64->IR: OxF 0x1 0xF9 OxBF 0x90 0xDO0 0x3 0x0 (RDTSCP)
252955 Impossible to compile with ccache

253519 Memcheck reports auxv pointer accesses asinvalid reads.

263034 Crash when loading some PPC64 binaries

269599 |ncrease deepest backtrace

274695 s390x: Support "compare to/from logical" instructions (z196)
275800 s390x: Autodetect cache info (part 2)

280271 Valgrind reports possible memory leaks on still-reachable std::string
284540 Memcheck shouldn't count suppressions matching still-reachable [..]
289578 Backtraces with ARM unwind tables (stack scan flags)

50

NEWS

296311 Wrong stack traces due to -fomit-frame-pointer (x86)

304832 ppc32: build failure

305431 Usefind_buildid shdr fallback for separate .debug files

305728 Add support for AV X2 instructions

305948 ppc64: code generation for ShiD64 / ShrD64 asserts

306035 s390x: Fix IR generation for LAAG and friends

306054 s390x: Condition code computation for convert-to-int/logical
306098 s390x: aternate opcode form for convert to/from fixed

306587 Fix cache line detection from auxiliary vector for PPC.

306783 Mipsunhandled syscall : 4025 / 4079 /4182

307038 DWARF2 CFlI reader: unhandled DW_OP_ opcode 0x8 (DW_OP_constlu et al)
307082 HG false positive: pthread _cond destroy: destruction of unknown CV
307101 sys capget second argument can be NULL

307103 sys openat: If pathname is absolute, then dirfd isignored.

307106 amd64->IR: fO Of c0 02 (lock xadd byte)

307113 s390x: DFP support

307141 vagrind doest work in mips-linux system

307155 filter_gdb should filter out syscall-template. ST _PSEUDO

307285 x86_amd64 feature test for avx in test suite iswrong

307290 memcheck overlap testcase needs memcpy version filter

307463 Please add "&limit=0" to the "all open bugs" link

307465 --show-possibly-lost=no should reduce the error count / exit code
307557 Leakson Mac OS X 10.7.5 libraries at Imagel oader::recursivel nit[..]
307729 pkgconfig support broken valgrind.pc

307828 Memcheck false errors SSE optimized wescpy, wescmp, wesrchr, weschr
307955 Building valgrind 3.7.0-r4 fails in Gentoo AMD64 when using clang
308089 Unhandled syscall on ppc64: prctl

308135 PPC32 MPC8xx has 16 bytes cache size

308321 testsuite memcheck filter interferes with gdb _filter

308333 == 307106

308341 vgdb should report process exit (or fatal signal)

308427 s390 memcheck reports tsearch cjump/cmove depends on uninit
308495 Remove build dependency on installed Xen headers

308573 Interna error on 64-bit instruction executed in 32-bit mode

308626 == 308627

308627 pmovmskb validity bit propagation isimprecise

308644 vgdb command for having the info for the track-fds option

308711 give moreinfo about aspacemgr and arenasin out_of _memory
308717 ARM: implement fixed-point VCVT.F64.[SU]32

308718 ARM implement SMLALBB family of instructions

308886 Missing support for PTRACE_SET/GETREGSET

308930 syscall name _to_handle at (303 on amd64) not handled

309229 V-hit tester does not report number of tests generated

309323 print unrecognized instuction on MIPS

309425 Provide a--sigill-diagnostics flag to suppressillegal [..]

309427 SSE optimized stpnepy trigger uninitialised value [..] errors

309430 Sdf hosting ppc64 encounters a vassert error on operand type
309600 valgrind is ahit confused about 0-sized sections

309823 Generate errors for still reachable blocks

309921 PCMPISTRI validity bit propagation isimprecise

309922 none/tests/ppcb4a/test_dfp5 sometimesfails

310169 Thelop_CmpORD class of lopsis not supported by the vbit checker.
310424 --read-var-info does not properly describe static variables

310792 search additional path for debug symbols

51

NEWS

310931 s390x: Message-security assist (MSA) instruction extension [..]
311100 PPC DFP implementation of the integer operandsisinconsistent |[..]
311318 ARM: "128-hit constant is not implemented” error message

311407 ssse3 beopy (actually converted memcpy) causesinvalid read [..]
311690 V crashes because it redirects branches inside of aredirected function
311880 x86 64: make regtest hangs at shell_validl

311922 WARNING: unhandled syscall: 170

311933 == 251569

312171 ppc: insn selection for DFP

312571 Rounding mode call wrong for the DFP lops]..]

312620 Changeto lop_D32toD64 [..] for s390 DFP support broke ppc [..]
312913 Dangling pointers error should also report the alloc stack trace
312980 Building on Mountain Lion generates some compiler warnings
313267 Adding MIPS64/Linux port to Valgrind

313348 == 251569

313354 == 251569

313811 Buffer overflow in assert_fail

314099 coverity pointed out error in VEX guest_ppc_tolR.c insn_suffix
314269 ppc: dead code in insn selection

314718 ARM: implement integer divide instruction (sdiv and udiv)

315345 cl-format.xml and callgrind/dump.c don't agree on using cfl= or cfi=
315441 sendmsg syscall should ignore unset msghdr msg_flags

315534 msgrev inside athread causes valgrind to hang (block)

315545 Assertion '(UChar*)sec->tt[tteNo].tcptr <= (UChar*)hcode' failed
315689 dislnstr(thumb): unhandled instruction; 0xF852 0xOE10 (LDRT)
315738 dislnstr(arm): unhandled instruction: OXEEBEOBEE (vcvt.s32.f64)
315959 valgrind man page has bogus SGCHECK (and no BBV) OPTIONS section
316144 vagrind.1 manpage contains unknown ??? strings|..]

316145 callgrind command line options in manpage reference (unknown) [..]
316145 callgrind command line options in manpage reference[..]

316181 drd: Fixed a4x slowdown for certain applications

316503 Valgrind does not support SSE4 "movntdga” instruction

316535 Use of [signed int| instead of [size_t| in valgrind messages

316696 fluidanimate program of parsec 2.1 stuck

316761 syscall open_by handle at (304 on amd64, 342 on x86) not handled
317091 Use-WI,-Ttext-segment when static linking if possible|..]

317186 "Impossible happens' when occurs VCVT instruction on ARM
317318 Support for Threading Building Blocks "scalable_malloc"

317444 amd64->IR: 0xC4 0x41 0x2C 0xC2 0xD2 0x8 (vcmpeq_ugps)
317461 Fix BMI assembler configure check and avx2/bmi/fmavgtest preregs
317463 bmi testcase IR SANITY CHECK FAILURE

317506 memcheck/tests/vhit-test fails with unknown opcode after [..]
318050 libmpiwrap failsto compile with out-of-source build

318203 setsockopt handling needs to handle SOL_SOCKET/SO_ATTACH_FILTER

318643 annotate trace memory testsinfinite loop on arm and ppc [..]
318773 amd64->IR: 0xF3 0x48 0xOF 0xBC 0xC2 0xC3 0x66 0xO0F
318929 Crash with: dislnstr(thumb): OxF321 0x0001 (ssat16)

318932 Add missing PPC64 and PPC32 system call support

319235 --db-attach=yesis broken with Y ama (ptrace scoping) enabled
319395 Crash with unhandled instruction on STRT (Thumb) instructions
319494 VEX Makefile-gce standalone build update after r2702

319505 [MIPSEL] Crash: unhandled UNRAY operator.

319858 dislnstr(thumb): unhandled instruction on instruction STRBT
319932 dislnstr(thumb): unhandled instruction on instruction STRHT

52

NEWS

320057 Problems when we try to mmap more than 12 memory pages on MI1PS32
320063 Memory from PTRACE_GET_THREAD_AREA isreported uninitialised
320083 dislnstr(thumb): unhandled instruction on instruction LDRBT

320116 bind on AF_BLUETOOTH produces warnings because of sockaddr_rc padding
320131 WARNING: unhandled syscall: 369 on ARM (prlimit64)

320211 Stack buffer overflow in ./coregrind/m_main.c with huge TMPDIR

320661 vgModuleLoca read elf debug_info(): "Assertion '!di->soname’

320895 add fanotify support (patch included)

320998 vex amd64->IR pcmpestri and pcmpestrm SSE4.2 instruction

321065 Valgrind updatesfor Xen 4.3

321148 Unhandled instruction:
321363 Unhandled instruction:
321364 Unhandled instruction:
321466 Unhandled instruction:
321467 Unhandled instruction:
321468 Unhandled instruction:
321619 Unhandled instruction:
321620 Unhandled instruction:
321621 Unhandled instruction:
321692 Unhandled instruction:

PLI (Thumb 1, 2, 3)

SSAX (ARM + Thumb)
SXTAB16 (ARM + Thumb)
SHASX (ARM + Thumb)
SHSAX (ARM + Thumb)
SHSUB16 (ARM + Thumb)
SHSUB8 (ARM + Thumb)
UASX (ARM + Thumb)
USAX (ARM + Thumb)
UQADD16 (ARM + Thumb)

321693 Unhandled instruction: LDRSBT (Thumb)

321694 Unhandled instruction;: UQASX (ARM + Thumb)

321696 Unhandled instruction; UQSAX (Thumb + ARM)

321697 Unhandled instruction;: UHASX (ARM + Thumb)

321703 Unhandled instruction;: UHSAX (ARM + Thumb)

321704 Unhandled instruction: REVSH (ARM + Thumb)

321730 Add cg_diff and cg_merge man pages

321738 Add vgdb and valgrind-listener man pages

321814 == 315545

321891 Unhandled instruction: LDRHT (Thumb)

321960 pthread create() then aloca() causing invalid stack write errors
321969 ppc32 and ppc64 don't support [If]setxattr

322254 Show threadname together with tid if set by application

322294 Add initial support for IBM Power ISA 2.07

322368 Assertion failure in wathread_hijack under OS X 10.8

322563 vex mips->IR: 0x70 0x83 0xFO 0x3A

322807 VALGRIND_PRINTF_BACKTRACE writes callstack to xml and text to stderr
322851 ObXXX binary literal syntax is not standard

323035 Unhandled instruction: LDRSHT(Thumb)

323036 Unhandled instruction;: SMMLS (ARM and Thumb)

323116 The memcheck/tests/ppc64/power |SA2 05.c failsto build [..]
323175 Unhandled instruction: SMLALD (ARM + Thumb)

323177 Unhandled instruction;: SMLSLD (ARM + Thumb)

323432 Cadlling pthread _cond_destroy() or pthread mutex_destroy() [..]
323437 Phase 2 support for IBM Power I1SA 2.07

323713 Support mmxext (integer sse) subset on 1386 (athlon)

323803 Transactional memory instructions are not supported for Power
323893 SSE3 not available on amd cpusin valgrind

323905 Probable false positive from Valgrind/drd on close()

323912 valgrind.h header isn't compatible for mingw64

324047 Valgrind doesn't support [LDR,ST]{ S}[B,H]T ARM instructions
324149 helgrind: When pthread_cond_timedwait returns ETIMEDOUT [..]
324181 mmap does not handle MAP_32BIT

324227 memcheck false positive leak when athread calls exit+block [..]

53

NEWS

324421 Support for fanotify APl on ARM architecture

324514 gdbserver monitor cmd output behaviour consistency |[..]

324518 ppc64: Emulation of dcbt instructions does not handle|[..]

324546 noneltests/ppc32test_isa 2 07 part2 requests -m64

324582 When access is made to freed memory, report both allocation [..]
324594 Fix overflow computation for Power 1SA 2.06 insns. mulldo/mulldo.
324765 ppcb4: illegal instruction when executing none/tests/ppc64/jm-misc
324816 Incorrect VEX implementation for xscvspdp/xvevspdp for SNaN inputs
324834 Unhandled instructions in Microsoft C run-time for x86_64

324894 Phase 3 support for IBM Power ISA 2.07

326091 drd: Avoid false race reports from optimized strlen() impls

326113 valgrind libvex hwcaps error on AMD64

n-i-bz Some wrong command line options could be ignored

n-i-bz patch to alow fair-sched on android

n-i-bz report error for vgdb snapshot requested before execution

n-i-bz same as 303624 (fixed in 3.8.0), but for x86 android

(3.9.0: 31 October 2013, vex r2796, valgrind r13708)

Release 3.8.1 (19 September 2012)

3.8.1lisabug fix release. It fixes some assertion failuresin 3.8.0

that occur moderately frequently in real use cases, adds support for
some missing instructions on ARM, and fixes a deadlock condition on
MacOSX. If you package or deliver 3.8.0 for others to use, you might
want to consider upgrading to 3.8.1 instead.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

284004 == 301281

289584 Unhandled instruction: 0xF 0x29 OXE5 (MOVAPS)

295808 amd64->IR: 0xF3 OxF 0xBC 0xCO (TZCNT)

298281 wcslen causes false(?) uninitialised value warnings

301281 valgrind hangs on OS X when the process calls system()
304035 dislnstr(arm): unhandled instruction OxE1023053

304867 implement MOV BE instruction in x86 mode

304980 Assertion'lo <= hi' failed in vgModuleLocal_find _rx_mapping
305042 amd64: implement OF 7F encoding of movq between two registers
305199 ARM: implement QDADD and QDSUB

305321 amd64->IR: OxF 0xD OxC (prefetchw)

305513 killed by fatal signal: SIGSEGV

305690 DRD reporting invalid semaphore when sem_trywait fails
305926 Invalid alignment checks for some AV X instructions

NEWS

306297 dislnstr(thumb): unhandled instruction OXxE883 0x000C

306310 3.8.0 release tarball missing somefiles

306612 RHEL 6 glibc-2.X default suppressions need /lib*/libc-* patterns
306664 vex amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x46 0x66 OxF
n-i-bz shmat of a segment > 4Gb does not work

n-i-bz simulate_control_c script wrong USR1 signal number on mips
n-i-bz vgdb ptrace calls wrong on mips|...]

n-i-bz Fixesfor more MPI false positives

n-i-bz exp-sgcheck's memcpy causes programs to segfault

n-i-bz OSX build w/ clang: asserts at startup

n-i-bz Incorrect undef'dness prop for lop DPBtoBCD and lop BCDtoDPB
n-i-bz fix a couple of union tag-vs-field mixups

n-i-bz OSX: use__ NR_poll_nocancel rather than _ NR_poll

The following bugs were fixed in 3.8.0 but not listed in this NEWS
file at thetime:

254088 Valgrind should know about UD2 instruction
301280 == 254088

301902 == 254088

304754 NEWS blows TeX'slittle mind

(3.8.1: 19 September 2012, vex r2537, valgrind r12996)

Release 3.8.0 (10 August 2012)

3.8.0 isafeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS/Linux, ARM/Android, X86/Android,
X86/MacOSX 10.6/10.7 and AMD64/MacOSX 10.6/10.7. Support for recent
distros and toolchain components (glibc 2.16, gcc 4.7) has been added.
Thereisinitia support for MacOSX 10.8, but it is not usable for

serious work at present.

* PLATFORM CHANGES

* Support for MIPS32 platforms running Linux. Valgrind has been
tested on MI1PS32 and MI1PS32r2 platforms running different Debian
Squeeze and MeeGo distributions. Both little-endian and big-endian
cores are supported. Thetools Memcheck, Massif and Lackey have
been tested and are known to work. See README.mips for more details.

* Preliminary support for Android running on x86.
* Preliminary (as-yet largely unusable) support for MacOSX 10.8.

* Support for Intel AV X instructions and for AES instructions. This
support is available only for 64 bit code.

* Support for POWER Decimal Floating Point instructions.

55

NEWS

* TOOL CHANGES

* Non-libc malloc implementations are now supported. Thisis useful
for tools that replace malloc (Memcheck, Massif, DRD, Helgrind).
Using the new option --soname-synonyms, such tools can be informed
that the malloc implementation is either linked statically into the
executable, or is present in some other shared library different
from libc.so. This makesit possible to process statically linked
programs, and programs using other malloc libraries, for example
TCMalloc or JEMalloc.

* For tools that provide their own replacement for malloc et al, the
option --redzone-size=<number> allows users to specify the size of
the padding blocks (redzones) added before and after each client
allocated block. Smaller redzones decrease the memory needed by
Valgrind. Bigger redzones increase the chance to detect blocks
overrun or underrun. Prior to this change, the redzone size was
hardwired to 16 bytesin Memcheck.

* Memcheck:

- Theleak _check GDB server monitor command now can
control the maximum nr of loss records to output.

- Reduction of memory use for applications allocating
many blocks and/or having many partially defined bytes.

- Addition of GDB server monitor command 'block_list' that lists
the addresses/sizes of the blocks of aleak search loss record.

- Addition of GDB server monitor command ‘who_points_at' that lists
the locations pointing at a block.

- If aredzonesize > Oisgiven, VALGRIND MALLOCLIKE _BLOCK now will
detect an invalid access of these redzones, by marking them
noaccess. Similarly, if aredzone sizeis given for amemory
pool, VALGRIND_MEMPOOL_ALLOC will mark the redzones no access.
This still allowsto find some bugsiif the user has forgotten to
mark the pool superblock noaccess.

- Performance of memory leak check has been improved, especially in
cases where there are many |eaked blocks and/or many suppression
rules used to suppress leak reports.

- Reduced noise (false positive) level on MacOSX 10.6/10.7, due to
more precise analysis, which isimportant for LLVM/Clang
generated code. Thisisat the cost of somewhat reduced
performance. Note there is no change to analysis precision or
costs on Linux targets.

* DRD:

- Added even more facilities that can help finding the cause of adata

56

NEWS

race, namely the command-line option --ptrace-addr and the macro

DRD_STOP_TRACING_VAR(x). More information can be found in the manual.

- Fixed a subtle bug that could cause fal se positive data race reports.

* OTHER CHANGES

* The C++ demangler has been updated so as to work well with C++
compiled by up to at least g++ 4.6.

* Tool developers can make replacement/wrapping more flexible thanks
to the new option --soname-synonyms. Thiswas reported above, but
infact isvery general and appliesto all function
replacement/wrapping, not just to malloc-family functions.

* Round-robin scheduling of threads can be selected, using the new
option --fair-sched= yes. Prior to this change, the pipe-based
thread serialisation mechanism (which is still the default) could
give very unfair scheduling. --fair-sched=yesimproves
responsiveness of interactive multithreaded applications, and
improves repeatability of results from the thread checkers Helgrind
and DRD.

* For tool developers: support to run Valgrind on Valgrind has been
improved. We can now routinely Valgrind on Helgrind or Memcheck.

* gdbserver now shows the float shadow registers as integer
rather than float values, as the shadow values are mostly
used as bit patterns.

* Increased limit for the --num-callers command line flag to 500.

* Performance improvements for error matching when there are many
suppression records in use.

* Improved support for DWARF4 debugging information (bug 284184).
* |nitial support for DWZ compressed Dwarf debug info.

* Improved control over the IR optimiser's handling of the tradeoff
between performance and precision of exceptions. Specifically,
--vex-iropt-precise-memory-exns has been removed and replaced by
--vex-iropt-register-updates, with extended functionality. This
allowsthe Valgrind gdbserver to always show up to date register
valuesto GDB.

* Modest performance gains through the use of trand ation chaining for
JIT-generated code.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin

57

NEWS

bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that
are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

197914 Building valgrind from svn now requires automake-1.10

203877 increase to 16Mb maximum allowed alignment for memalign et al
219156 Handle statically linked malloc or other malloc lib (e.g. tcmalloc)
247386 make perf does not run all performance tests

270006 Valgrind scheduler unfair

270777 Adding MIPS/Linux port to Valgrind

270796 s390x: Removed broken support for the TSinsn

271438 Fix configure for proper SSE4.2 detection

273114 s390x: Support TR, TRE, TROO, TROT, TRTO, and TRTT instructions
273475 Add support for AV X instructions

274078 improved configure logic for mpicc

276993 fix mremap 'no thrash checks

278313 Fedora 15/x64: err read debug info with --read-var-info=yes flag
281482 memcheck incorrect byte allocation count in realloc() for silly argument
282230 group allocator for small fixed size, use it for MC_Chunk/SEc vbit
283413 Fix wrong sanity check

283671 Robustize alignment computation in LibVEX_Alloc

283961 Adding support for some HCI IOCTLs

284124 parse_type DIE: confused by: DWARF 4

284864 == 273475 (Add support for AV X instructions)

285219 Too-restrictive constraints for Thumb2 " SP plus/minus register"

285662 (MacOSX): Memcheck needs to replace memcpy/memmove

285725 == 273475 (Add support for AV X instructions)

286261 add wrapper for linux 12C_RDWR ioctl

286270 vgpreload is not friendly to 64->32 hit execs, gives 1d.so warnings
286374 Running cachegrind with --branch-sim=yes on 64-bit PowerPC program fails
286384 configure fails"checking for a supported version of gcc"

286497 == 273475 (Add support for AV X instructions)

286596 == 273475 (Add support for AV X instructions)

286917 dislnstr(arm): unhandled instruction: QADD (also QSUB)

287175 ARM: scalar VFP fixed-point VCVT instructions not handled

287260 Incorrect conditional jump or move depends on uninitialised value(s)
287301 vex amd64->IR: 0x66 OxF 0x38 0x41 0xCO 0xB8 0x0 0x0 (PHMINPOSUW)
287307 == 273475 (Add support for AV X instructions)

287858 VG_(strerror): unknown error

288298 (MacOSX) unhandled syscall shm_unlink

288995 == 273475 (Add support for AV X instructions)

289470 Loading of large Mach-O thin binariesfails.

289656 == 273475 (Add support for AV X instructions)

289699 vgdb connection in relay mode erroneously closed due to buffer overrun
289823 == 293754 (PCMPXSTRXx not implemented for 16-bit characters)
289839 s390x: Provide support for unicode conversion instructions

289939 monitor cmd ‘leak _check' with details about leaked or reachable blocks
290006 memcheck doesn't mark %xmm as initialized after "pcmpegw Yoxmm %xmm"
290655 Add support for AESKEY GENASSIST instruction

290719 valgrind-3.7.0 fails with automake-1.11.2 due to"pkglibdir" usage

58

NEWS

290974 vgdb must align pagesto VKI_SHMLBA (16KB) on ARM

291253 ESregister not initialised in valgrind simulation

291568 Fix 3DNOW-related crashes with baseline x86_64 CPU (w patch)
291865 s390x: Support the "Compare Double and Swap" family of instructions
292300 == 273475 (Add support for AV X instructions)

292430 unrecognized instructionin__intel_get new_mem_ops _cpuid

292493 == 273475 (Add support for AV X instructions)

292626 Missing fentl F SETOWN_EX and F GETOWN_EX support
292627 Missing support for some SCSI ioctls

292628 none/tests’x86/bugl25959-x86.c triggers undefined behavior

292841 == 273475 (Add support for AV X instructions)

292993 implement the getcpu syscall on amd64-linux

292995 Implement the “cross memory attach” syscallsintroduced in Linux 3.2
293088 Add some VEX sanity checks for ppc64 unhandled instructions
293751 == 290655 (Add support for AESKEY GENASSIST instruction)
293754 PCMPxSTRx not implemented for 16-hit characters

293755 == 293754 (No tests for PCMPxSTRXx on 16-hit characters)

293808 CLFLUSH not supported by latest VEX for amd64

294047 valgrind does not correctly emulate prlimit64(..., RLIMIT_NOFILE, ...)
294048 MPSADBW instruction not implemented

294055 regtest none/tests/shell failswhen localeisnot setto C

294185 INT 0x44 (and others) not supported on x86 guest, but used by Jikes RVM
294190 --vgdb-error=xxx can be out of sync with errors shown to the user
294191 amd64: fnsave/frstor and 0x66 size prefixes on FP instructions
294260 disinstr AMD64: disInstr miscalculated next %orip

294523 --partial-loads-ok=yes causes fal se negatives

294617 vex amd64->IR: 0x66 OxF 0x3A OxDF 0xD1 0x1 OXE8 0x6A

294736 vex amd64->IR: 0x48 OxF 0xD7 0xD6 0x48 0x83

294812 patch allowing to run (on x86 at least) helgrind/drd on tool.

295089 can not annotate source for both helgrind and drd

295221 POWER Processor decimal floating point instruction support missing
295427 building for i386 with clang on darwinll requires "-new_linker linker"
295428 coregrind/m_main.c has incorrect x86 assembly for darwin

295590 Helgrind: Assertion 'cvi->nWaiters > 0' failed

295617 ARM - Add some missing syscalls

295799 Missing \n with get_vbitsin gdbserver when lineis% 80...]

296229 Linux user input device ioctls missing wrappers

296318 ELF Debug info improvements (more than one rx/rw mapping)
296422 Add trandation chaining support

296457 vex amd64->IR: 0x66 OxF 0x3A 0xDF 0xD1 0x1 OxE8 0x6A (dup of AES)
296792 valgrind 3.7.0: add SIOCSHWTSTAMP (0x89B0) ioctl wrapper
296983 Fix build issues on x86_64/ppc64 without 32-hit toolchains

297078 gdbserver signa handling problems]..]

297147 drd false positives on newly allocated memory

297329 disalow decoding of IBM Power DFP insns on some machines
297497 POWER Processor decimal floating point instruction support missing
297701 Another aliasfor strncasecmp_| in libc-2.13.s0

297911 'invalid write' not reported when using APIs for custom mem allocators.
297976 s390x: revisit EX implementation

297991 Valgrind interferes with mmap()+ftell()

297992 Support systems missing WIFCONTINUED (e.g. pre-2.6.10 Linux)
297993 Fix compilation of valgrind with gcc -g3.

298080 POWER Processor DFP support missing, part 3

298227 == 273475 (Add support for AV X instructions)

59

NEWS

298335 == 273475 (Add support for AV X instructions)

298354 Unhandled ARM Thumb instruction OXEBOD 0x0585 (streq)

298394 s390x: Don't bail out on an unknown machine model. [..]

298421 acceptd() syscall (366) support is missing for ARM

298718 vex amd64->IR: OxF 0xB1 OxCB 0x9C Ox8F 0x45

298732 valgrind installation problem in ubuntu with kernel version 3.x

298862 POWER Processor DFP instruction support missing, part 4

298864 DWARF reader mis-parses DW_FORM _ref addr

298943 massif asserts with --pages-as-heap=yes when brk is changing [..]
299053 Support DWARF4 DW_AT high_pc constant form

299104 == 273475 (Add support for AV X instructions)

299316 Helgrind: hg _main.c:628 (map_threads lookup): Assertion 'thr' failed.
299629 dup3() syscall (358) support ismissing for ARM

299694 POWER Processor DFP instruction support missing, part 5

299756 Ignore --free-fill for MEMPOOL_FREE and FREEL IKE client requests
299803 == 273475 (Add support for AV X instructions)

299804 == 273475 (Add support for AV X instructions)

299805 == 273475 (Add support for AV X instructions)

300140 ARM - Missing (T1) SMMUL

300195 == 296318 (ELF Debug info improvements (more than one rx/rw mapping))
300389 Assertion “are valid_hwcaps(VexArchAMDG64, [..])' failed.

300414 FCOM and FCOMP unimplemented for and64 guest

301204 infinite loop in canonicaliseSymtab with ifunc symbol

301229 == 203877 (increase to 16Mb maximum allowed alignment for memalign etc)
301265 add x86 support to Android build

301984 configure script doesn't detect certain versions of clang

302205 Fix compiler warnings for POWER VEX code and POWER test cases
302287 Unhandled movbe instruction on Atom processors

302370 PPC: fnmadd, fnmsub, fnmadds, fnmsubs insns always negate the result
302536 Fix for the POWER Valgrind regression test: memcheck-1SA2.0.
302578 Unrecognized isntruction 0xc5 0x32 0xc2 Oxca 0x09 vempngess
302656 == 273475 (Add support for AV X instructions)

302709 valgrind for ARM needs extratls support for android emulator [..]
302827 add wrapper for COROM_GET_CAPABILITY

302901 Valgrind crashes with dwz optimized debuginfo

302918 Enable testing of the vmaddfp and vnsubfp instructions in the testsuite
303116 Add support for the POWER instruction popcntb

303127 Power test suite fixes for frsgrte, vrefp, and vrsgrtefp instructions.
303250 Assertion “instrs_in->arr_used <= 10000' failed w/ OpenSSL code
303466 == 273475 (Add support for AV X instructions)

303624 segmentation fault on Android 4.1 (e.g. on Galaxy Nexus OMAP)
303963 strstr() function produces wrong results under valgrind callgrind
304054 CALL_FN_xx macros need to enforce stack alignment

304561 tee system call not supported

715750 (MacOSX): Incorrect invalid-address errors near OXFFFFxxxx (mozbug#)
n-i-bz Add missing gdbserver xml files for shadow registers for ppc32

n-i-bz Bypass gcc4.4/4.5 code gen bugs causing out of memory or asserts
n-i-bz Fix assert in gdbserver for watchpoints watching the same address

n-i-bz Fix false positivein sys _clone on amd64 when optional args|..]

n-i-bz s390x: Shadow registers can now be examined using vgdb

(3.8.0-TEST3: 9 August 2012, vex r2465, valgrind r12865)
(38.0: 10 August 2012, vex r2465, valgrind r12866)

60

NEWS

Release 3.7.0 (5 November 2011)

3.7.0 isafeature release with many significant improvements and the
usual collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, ARM/Android, X86/Darwin and AMD64/Darwin.
Support for recent distros and toolchain components (glibc 2.14, gcc

4.6, MacOSX 10.7) has been added.

* PLATFORM CHANGES

* Support for IBM z/Architecture (s390x) running Linux. Valgrind can
analyse 64-bit programs running on z/Architecture. Most user space
instructions up to and including z10 are supported. Valgrind has
been tested extensively on z9, z10, and z196 machines running SLES
10/11, RedHat 5/6m, and Fedora. The Memcheck and Massif tools are
known to work well. Callgrind, Helgrind, and DRD work reasonably
well on z9 and later models. See README.s390 for more details.

* Preliminary support for MacOSX 10.7 and XCode 4. Both 32- and
64-hit processes are supported. Some complex threaded applications
(Firefox) are observed to hang when run as 32 bit applications,
whereas 64-bit versions run OK. The cause is unknown. Memcheck
will likely report some false errors. In general, expect some rough
spots. Thisrelease also supports MacOSX 10.6, but drops support
for 10.5.

* Preliminary support for Android (on ARM). Valgrind can now run
large applications (eg, Firefox) on (eg) a Samsung Nexus S. See
README.android for more details, plus instructions on how to get
started.

* Support for the IBM Power 1SA 2.06 (Power7 instructions)

* General correctness and performance improvements for ARM/Linux, and,
by extension, ARM/Android.

* Further solidification of support for SSE 4.2 in 64-bit mode. AVX
instruction set support is under development but is not availablein
this release.

* Support for AIX5 has been removed.

* TOOL CHANGES
* Memcheck: some incremental changes:

- reduction of memory use in some circumstances

- improved handling of freed memory, which in some circumstances

can cause detection of use-after-free that would previously have

61

NEWS

been missed

- fix of alongstanding bug that could cause fal se negatives (missed
errors) in programs doing vector saturated narrowing instructions.

* Helgrind: performance improvements and major memory use reductions,
particularly for large, long running applications which perform many
synchronisation (lock, unlock, etc) events. Plus many smaller
changes:

- display of locksets for both threads involved in arace
- general improvements in formatting/clarity of error messages

- addition of facilities and documentation regarding annotation
of thread safe reference counted C++ classes

- new flag --check-stack-refs=nolyes [yed], to disable race checking
on thread stacks (a performance hack)

- new flag --free-is-write=nolyes [no], to enable detection of races
where one thread accesses heap memory but another one freesiit,
without any coordinating synchronisation event

* DRD: enabled XML output; added support for delayed thread deletion
in order to detect races that occur close to the end of athread
(--join-list-vol); fixed amemory leak triggered by repeated client
memory allocatation and deallocation; improved Darwin support.

* exp-ptrcheck: thistool has been renamed to exp-sgcheck

* exp-sgcheck: thistool has been reduced in scope so asto improve
performance and remove checking that Memcheck does better.
Specifically, the ability to check for overruns for stack and global
arrays is unchanged, but the ability to check for overruns of heap
blocks has been removed. The tool has accordingly been renamed to
exp-sgcheck ("Stack and Global Array Checking").

* OTHER CHANGES

* GDB server: Vagrind now has an embedded GDB server. That meansit
is possible to control aValgrind run from GDB, doing al the usual
things that GDB can do (single stepping, breakpoints, examining
data, etc). Tool-specific functionality is also available. For
example, it is possible to query the definedness state of variables
or memory from within GDB when running Memcheck; arbitrarily large
memory watchpoints are supported, etc. To usethe GDB server, start
Vagrind with the flag --vgdb-error=0 and follow the on-screen
instructions.

* Improved support for unfriendly self-modifying code: a new option
--smc-check=dll-non-fileis available. This adds the relevant
consistency checks only to code that originates in non-file-backed
mappings. In effect this confines the consistency checking only to

62

NEWS

code that is or might be JIT generated, and avoids checks on code
that must have been compiled ahead of time. This significantly
improves performance on applications that generate code at run time.

* |t is now possible to build aworking Valgrind using Clang-2.9 on
Linux.

* new client requests VALGRIND _{DISABLE,ENABLE} ERROR_REPORTING.
These enable and disable error reporting on a per-thread, and
nestable, basis. Thisisuseful for hiding errorsin particularly
troublesome pieces of code. The MPI wrapper library (libmpiwrap.c)
now uses this facility.

* Added the --mod-funcname option to cg_diff.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX
where XXXXXX isthe bug number as listed below.

79311 malloc silly arg warning does not give stack trace

210935 port valgrind.h (not valgrind) to win32 to support client requests
214223 vagrind SIGSEGV on startup gec 4.4.1 ppc32 (G4) Ubuntu 9.10
243404 Port to zSeries

243935 Helgrind: incorrect handling of ANNOTATE_HAPPENS BEFORE()/AFTER()
247223 non-x86: Suppress warning: 'regparm’ attribute directive ignored
250101 huge "free" memory usage due to m_mallocfree.c fragmentation
253206 Some fixesfor the faultstatus testcase

255223 capget testcase fails when running as root

256703 xlc_dbl_u32.c testcase broken

256726 Helgrind tests have broken inline asm

259977 == 214223 (Vagrind segfaultsdoing __builtin_longjmp)

264800 testcase compile failure on zseries

265762 make public VEX headers compilable by G++ 3.x

265771 assertion in jumps.c (r11523) fails with glibc-2.3

266753 configure script does not give the user the option to not use QtCore
266931 gen_insn_test.pl is broken

266961 |d-linux.s0.2 i?786-linux strlen issues

266990 setnsinstruction causes false positive

267020 Make directory for temporary files configurable at run-time.

267342 == 267997 (segmentation fault on Mac OS 10.6)

267383 Assertion 'vgPlain_strlen(dir) + vgPlain_strlen(file) + 1 < 256' failed
267413 Assertion 'DRD_(g_threadinfo)[tid].synchr_nesting >= 1' failed.
267488 regtest: darwin support for 64-bit build

267552 SIGSEGV (misaligned stack error) with DRD, but not with other tools
267630 Add support for IBM Power ISA 2.06 -- stage 1

63

NEWS

267769 == 267997 (Darwin: memcheck triggers segmentation fault)

267819 Add client request for informing the core about reallocation

267925 laog data structure quadratic for a single sequence of lock

267968 drd: (vgDrd_thread_set_joinable): Assertion '0 <= (int)tid ..' failed
267997 MacOSX: 64-hit V segfaults on launch when built with X code 4.0.1
268513 missed optimizationsin fold Expr

268619 s390x: fpr - gpr transfer facility

268620 s390x: reconsider "long displacement” requirement

268621 s390x: improve IR generation for XC

268715 s390x: FLOGR isnot universally available

268792 == 267997 (valgrind seg faults on startup when compiled with X code 4)
268930 s390x: MHY isnot universally available

269078 arm->IR: unhandled instruction SUB (SP minus immediate/register)
269079 Support ptrace system call on ARM

269144 missing "Bad option" error message

269209 conditional load and store facility (z196)

269354 Shift by zero on x86 can incorrectly clobber CC_NDEP

269641 == 267997 (valgrind segfaultsimmediately (segmentation fault))
269736 s390x: minor code generation tweaks

269778 == 272986 (vagrind.h: swap rolesof VALGRIND_DO_CLIENT_REQUEST() ..)
269863 s390x: remove unused function parameters

269864 s390x: tweak s390_emit_load cc

269884 == 250101 (overhead for huge blocks exhausts space too soon)
270082 s390x: Make sure to point the PSW address to the next address on SIGILL
270115 s390x: rewrite some testcases

270309 == 267997 (valgrind crash on startup)

270320 add support for Linux FIOQSIZE ioctl() call

270326 segfault while trying to sanitize the environment passed to execle
270794 IBM POWERY support patch causes regression in none/tests

270851 IBM POWERY fcfidusinstruction causes memcheck to fail

270856 IBM POWER7 xsnmaddadp instruction causes memcheck to fail on 32bit app
270925 hyper-optimized strspn() in /lib64/libc-2.13.s0 needs fix

270959 s390x: invalid use of RO as base register

271042 VSX configure check fails when it should not

271043 Valgrind build fails with assembler error on ppc64 with binutils 2.21
271259 s390x: fix code confusion

271337 == 267997 (Vagrind segfaults on MacOS X)

271385 s390x: Implement Ist_ MBE

271501 s390x: misc cleanups

271504 s390x: promote likely and unlikely

271579 ppc: using wrong enum type

271615 unhandled instruction "popcnt” (arch=amd10h)

271730 Fix bug when checking ioctls: duplicate check

271776 s390x: provide STFLE instruction support

271779 s390x: provide clock instructions like STCK

271799 Darwin: ioctls without an arg report a memory error

271820 arm: fix type confusion

271917 pthread cond timedwait failure leads to not-locked false positive
272067 s390x: fix DISP20 macro

272615 A typo in debug output in mc_|leakcheck.c

272661 callgrind_annotate chokes when run from paths containing regex chars
272893 amd64->IR: 0x66 OxF 0x38 0x2B 0xC1 0x66 OxF Ox7F == (closed as dup)
272955 Unhandled syscall error for pwrite64 on ppc64 arch

272967 make documentation build-system more robust

NEWS

272986 Fix gcc-4.6 warnings with valgrind.h

273318 amd64->IR: 0x66 0xF 0x3A 0x61 0xC1 0x38 (missing PCMPxSTRXx case)
273318 unhandled PCMPxSTRX case: vex amd64->IR: 0x66 0xF 0x3A 0x61 0xC1 0x38
273431 valgrind segfaultsin eval CfiExpr (debuginfo.c:2039)

273465 Cadlgrind: jumps.c:164 (new_jcc): Assertion '(0 <=jmp) && ...
273536 Build error: multiple definition of “vgDrd_pthread_cond_initializer'
273640 ppc64-linux: unhandled syscalls setresuid(164) and setresgid(169)
273729 == 283000 (lllegal opcode for SSE2 "roundsd" instruction)

273778 exp-ptrcheck: unhandled sysno == 259

274089 exp-ptrcheck: unhandled sysno == 208

274378 s390x: Various dispatcher tweaks

274447 WARNING: unhandled syscall: 340

274776 amd64->IR: 0x66 OxF 0x38 0x2B 0xC5 0x66

274784 == 267997 (valgrind Is -l resultsin Segmentation Fault)

274926 valgrind does not build against linux-3

275148 configure FAIL with glibc-2.14

275151 Fedora 15/ glibc-2.14 'make regtest' FAIL

275168 Make Valgrind work for MacOSX 10.7 Lion

275212 == 275284 (lots of false positivesfrom __memcpy_ssse3 back et a)
275278 valgrind does not build on Linux kernel 3.0.* dueto silly

275284 Valgrind memcpy/memmove redirection stopped working in glibc 2.14/x86_64
275308 Fix implementation for ppc64 fres instruc

275339 s390x: fix testcase compile warnings

275517 s390x: Provide support for CKSM instruction

275710 s390x: get rid of redundant address mode cal culation

275815 == 247894 (Vagrind doesn't know about Linux readahead(2) syscall)
275852 == 250101 (valgrind uses all swap space and is killed)

276784 Add support for IBM Power ISA 2.06 -- stage 3

276987 gdbsrv: fix tests following recent commits

277045 Valgrind crasheswith unhandled DW_OP_ opcode Ox2a

277199 Thetest isa 2 06 partl.c in none/tests/ppc64 should be a symlink
277471 Unhandled syscall: 340

277610 valgrind crashesin VG_(Iseek)(core fd, phdrg[idx].p_offset, ...)
277653 ARM: support Thumb2 PLD instruction

277663 ARM: NEON float VMUL by scalar incorrect

277689 ARM: tests for VSTn with register post-index are broken

277694 ARM: BLX LR instruction broken in ARM mode

277780 ARM: VMOV.F32 (immediate) instruction is broken

278057 fuse filesystem syscall deadlocks

278078 Unimplemented syscall 280 on ppc32

278349 F GETPIPE_SZ and F_SETPIPE_SZ Linux fentl commands
278454 VALGRIND_STACK_DEREGISTER has wrong output type
278502 == 275284 (Vagrind confuses memcpy() and memmove())

278892 gdbsrv: factorize gdb version handling, fix doc and typos

279027 Support for MVCL and CLCL instruction

279027 s390x: Provide support for CLCL and MV CL instructions

279062 Remove aredundant check in the insn selector for ppc.

279071 JDK creates PTEST with redundant REX.W prefix

279212 gdbsrv: add monitor cmd v.info scheduler.

279378 exp-ptrcheck: the 'impossible’ happened on mkfifo call

279698 memcheck discards valid-bits for packuswb

279795 memcheck reports uninitialised values for mincore on amd64
279994 Add support for IBM Power ISA 2.06 -- stage 3

280083 mempolicy syscall check errors

65

NEWS

280290 vex amd64->IR: 0x66 OxF 0x38 0x28 0xC1 0x66 OxF Ox6F

280710 s390x: config filesfor nightly builds

280757 /tmp dir still used by valgrind even if TMPDIR is specified

280965 Valgrind breaks fentl locks when program does mmap

281138 WARNING: unhandled syscall: 340

281241 == 275168 (valgrind useless on Macos 10.7.1 Lion)

281304 == 275168 (Darwin: dyld "cannot load inserted library")

281305 == 275168 (unhandled syscall: unix:357 on Darwin 11.1)

281468 s390x: handle do_clone and gcc clonesin call traces

281488 ARM: VFP register corruption

281828 == 275284 (false memmove warning: " Source and destination overlap™)

281883 s390x: Fix system call wrapper for "clone".

282105 generalise 'reclaimSuperBlock' to also reclaim splittable superblock

282112 Unhandled instruction bytes: 0OxDE 0xD9 0x9B OxDF (fcompp)

282238 SLES10: make check fails

282979 strcasestr needs replacement with recent(>=2.12) glibc

283000 vex amd64->IR: 0x66 OxF 0x3A OxA 0xC0 0x9 OxF3 OxF

283243 Regression in ppc64 memcheck tests

283325 == 267997 (Darwin: V segfaults on startup when built with Xcode 4.0)

283427 re-connect epoll_pwait syscall on ARM linux

283600 gdbsrv: android: port vgdb.c

283709 none/tests/faultstatus needs to account for page size

284305 filter_gdb needs enhancement to work on ppc64

284384 clang 3.1 -Wunused-value warnings in valgrind.h, memcheck.h

284472 Thumb2 ROR.W encoding T2 not implemented

284621 XML-escape process command linein XML output

n-i-bz cachegrind/callgrind: handle CPUID information for CoreiX Intel CPUs
that have non-power-of-2 sizes (also AMDS)

n-i-bz don't be spooked by libraries mashed by elfhack

n-i-bz don't be spooked by libxul.so linked with gold

n-i-bz improved checking for VALGRIND _CHECK_MEM _|S DEFINED

(3.7.0-TEST1: 27 October 2011, vex r2228, valgrind r12245)

(3.7.0.RC1: 1 November 2011, vex r2231, valgrind r12257)
(3.7.0: 5 November 2011, vex r2231, valgrind r12258)

Release 3.6.1 (16 February 2011)

3.6.1isabug fix release. It adds support for some SSE4
instructions that were omitted in 3.6.0 due to lack of time. Initia
support for glibc-2.13 has been added. A number of bugs causing
crashing or assertion failures have been fixed.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX

66

NEWS

where XXXXXX isthe bug number as listed below.

188572 Valgrind on Mac should suppress setenv() mem leak

194402 vex amd64->IR: 0x48 OxF OXAE 0x4 (proper FX{ SAVE,RSTOR} support)
210481 vex amd64->IR: Assertion “sz == 2 || sz == 4' failed (REX.W POPQ)
246152 callgrind internal error after pthread _cancel on 32 Bit Linux

250038 ppcb4: Altivec LVSR and LV SL instructions fail their regtest

254420 memory pool tracking broken

254957 Test code failing to compile due to changes in memcheck.h

255009 helgrind/drd: crash on chmod with invalid parameter

255130 readdwarf3.c parse type DIE confused by GNAT Adatypes

255355 helgrind/drd: crash on threaded programs doing fork

255358 == 255355

255418 (SSE4.x) rint call compiled with ICC

255822 --gen-suppressions can create invalid files: "too many callers|...]"
255888 closing valgrindoutput tag outputted to log-stream on error

255963 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A 0x9 0xDB 0x0 (ROUNDPD)
255966 Slowness when using mempool annotations

256387 vex x86->IR: 0xD4 OxA 0x2 0x7 (AAD and AAM)

256600 super-optimized strcasecmp() false positive

256669 vex amd64->IR: Unhandled LOOPNEL insn on amd64

256968 (SSE4.x) vex amd64->IR: 0x66 0xF 0x38 0x10 0xD3 0x66 (BLENDV Px)
257011 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A OxE OxFD O0xAO (PBLENDW)
257063 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A 0x8 0xCO 0x0 (ROUNDPS)
257276 Missing case in memcheck --track-origins=yes

258870 (SSE4.x) Add support for EXTRACTPS SSE 4.1 instruction

261966 (SSE4.x) support for CRC32B and CRC32Q islacking (also CRC32{W,L})
262985 VEX regression invalgrind 3.6.0 in handling PowerPC VM X

262995 (SSE4.x) crash when trying to valgrind gcc-snapshot (PCMPxSTRx $0)
263099 callgrind_annotate counts Ir improperly [...]

263877 undefined coprocessor instruction on ARMv7

265964 configure FAIL with glibc-2.13

n-i-bz Fix compile error w/ icc-12.x in guest_arm _tolR.c

n-i-bz Dacs: fix bogus descriptions for VALGRIND_CREATE BLOCK et a
n-i-bz Massif: don't assert on shmat() with --pages-as-heap=yes

n-i-bz Bug fixes and major speedups for the exp-DHAT space profiler

n-i-bz DRD: disable --free-is-write due to implementation difficulties

(3.6.1: 16 February 2011, vex r2103, valgrind r11561).

Release 3.6.0 (21 October 2010)

3.6.0 isafeature release with many significant improvements and the
usual collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, X86/Darwin and AMD64/Darwin. Support for recent distros
and toolchain components (glibc 2.12, gec 4.5, OSX 10.6) has been added.

Here are some highlights. Details are shown further down;

67

NEWS

* Support for ARM/Linux.

* Support for recent Linux distros; Ubuntu 10.10 and Fedora 14.
* Support for Mac OS X 10.6, both 32- and 64-bit executables.
* Support for the SSE4.2 instruction set.

* Enhancements to the Callgrind profiler, including the ability to
handle CPUs with three levels of cache.

* A new experimental heap profiler, DHAT.

* A huge number of bug fixes and small enhancements.

Here are details of the above changes, together with descriptions of
many other changes, and alist of fixed bugs.

* PLATFORM CHANGES

* Support for ARM/Linux. Valgrind now runs on ARMv7 capable CPUs
running Linux. It isknown to work on Ubuntu 10.04, Ubuntu 10.10,
and Maemo 5, so you can run Valgrind on your Nokia N900 if you want.

Thisrequiresa CPU capable of running the ARMv7-A instruction set
(Cortex A5, A8 and A9). Valgrind provides fairly complete coverage
of the user space instruction set, including ARM and Thumb integer
code, VFPv3, NEON and V6 mediainstructions. The Memcheck,
Cachegrind and Massif tools work properly; other tools work to
varying degrees.

* Support for recent Linux distros (Ubuntu 10.10 and Fedora 14), along
with support for recent releases of the underlying toolchain
components, notably gcc-4.5 and glibc-2.12.

* Support for Mac OS X 10.6, both 32- and 64-bit executables. 64-hit
support also works much better on OS X 10.5, and isas solid as
32-hit support now.

* Support for the SSE4.2 instruction set. SSE4.2 is supported in
64-bit mode. In 32-bit mode, support isonly available up to and
including SSSE3. Some exceptions. SSE4.2 AES instructions are not
supported in 64-bit mode, and 32-bhit mode does in fact support the
bare minimum SSE4 instructions to needed to run programs on Mac OS X
10.6 on 32-hit targets.

* Support for IBM POWERS cpus has been improved. The Power ISA up to

and including version 2.05 is supported.

* TOOL CHANGES

68

NEWS

* Cachegrind has a new processing script, cg_diff, which finds the
difference between two profiles. It's very useful for evaluating
the performance effects of a changein a program.

Related to this change, the meaning of cg_annotate's (rarely-used)
--threshold option has changed; thisis unlikely to affect many
people, if you do use it please see the user manual for details.

* Callgrind now can do branch prediction simulation, similar to
Cachegrind. Inaddition, it optionally can count the number of
executed global bus events. Both can be used for a better
approximation of a"Cycle Estimation” as derived event (you need to
update the event formulain K Cachegrind yourself).

* Cachegrind and Callgrind now refer to the LL (last-level) cache
rather than the L2 cache. Thisisto accommodate machines with
three levels of caches -- if Cachegrind/Callgrind auto-detects the
cache configuration of such amachineit will run the simulation as
if the L2 cacheisn't present. This means the results are less
likely to match the true result for the machine, but
Cachegrind/Callgrind's results are already only approximate, and
should not be considered authoritative. The results are still
useful for giving ageneral idea about a program'’s locality.

* Massif has a new option, --pages-as-heap, which is disabled by
default. When enabled, instead of tracking allocations at the level
of heap blocks (as allocated with malloc/new/new(]), it instead
tracks memory allocations at the level of memory pages (as mapped by
mmap, brk, etc). Each mapped page istreated as its own block.
Interpreting the page-level output is harder than the heap-level
output, but this option is useful if you want to account for every
byte of memory used by a program.

* DRD has two new command-line options: --free-is-write and
--trace-alloc. The former allows to detect reading from already freed
memory, and the latter allows tracing of all memory allocations and
deallocations.

* DRD has several new annotations. Custom barrier implementations can
now be annotated, as well as benign races on static variables.

* DRD's happens before / happens after annotations have been made more
powerful, so that they can now also be used to annotate e.g. a smart
pointer implementation.

* Helgrind's annotation set has also been drastically improved, so as
to provide to users a general set of annotations to describe locks,
semaphores, barriers and condition variables. Annotationsto
describe thread-safe reference counted heap objects have also been
added.

* Memcheck has a new command-line option, --show-possibly-lost, which
is enabled by default. When disabled, the leak detector will not
show possibly-lost blocks.

69

NEWS

* A new experimental heap profiler, DHAT (Dynamic Heap Analysis Toal),
has been added. DHAT keepstrack of allocated heap blocks, and also
inspects every memory reference to see which block (if any) isbeing
accessed. Thisgivesalot of insight into block lifetimes,
utilisation, turnover, liveness, and the location of hot and cold
fields. You can use DHAT to do hot-field profiling.

* OTHER CHANGES

* Improved support for unfriendly self-modifying code: the extra
overhead incurred by --smc-check=all has been reduced by
approximately afactor of 5 as compared with 3.5.0.

* Ability to show directory names for source filesin error messages.
Thisis combined with a flexible mechanism for specifying which
parts of the paths should be shown. Thisis enabled by the new flag
--full path-after.

* A new flag, --require-text-symbol, which will stop therunif a
specified symbol is not found it a given shared object when it is
loaded into the process. This makes advanced working with function
intercepting and wrapping safer and more reliable.

* Improved support for the Valkyrie GUI, version 2.0.0. GUI output
and control of Valgrind is now available for the tools Memcheck and
Helgrind. XML output from Valgrind is available for Memcheck,
Helgrind and exp-Ptrcheck.

* More reliable stack unwinding on amd64-linux, particularly in the
presence of function wrappers, and with gcc-4.5 compiled code.

* Modest scalahility (performance improvements) for massive
long-running applications, particularly for those with huge amounts
of code.

* Support for analyzing programs running under Wine with has been
improved. The header files <valgrind/valgrind.h>,
<valgrind/memcheck.h> and <valgrind/drd.h> can now be used in
Windows-programs compiled with MinGW or one of the Microsoft Visual
Studio compilers.

* A rare but serious error in the 64-bit x86 CPU simulation was fixed.
The 32-bit simulator was not affected. Thisdid not occur often,
but when it did would usually crash the program under test.
Bug 245925.

* A large number of bugs were fixed. These are shown below.

* A number of bugs were investigated, and were candidates for fixing,
but are not fixed in 3.6.0, due to lack of developer time. They may
get fixed in later releases. They are:

194402 vex amd64->IR: 0x48 OxF OXAE 0x4 0x24 0x49 (FXSAVE64)

70

NEWS

212419 false positive "lock order violated" (A+B vs A)
213685 Undefined value propagates past dependency breaking instruction
216837 Incorrect instrumentation of NSOperationQueue on Darwin
237920 valgrind segfault on fork failure
242137 support for code compiled by LLVM-2.8
242423 Another unknown Intel cache config value
243232 Inconsistent Lock Orderings report with trylock
243483 ppc: callgrind triggers VEX assertion failure
243935 Helgrind: implementation of ANNOTATE_HAPPENS BEFORE() iswrong
244677 Helgrind crash hg_main.c:616 (map_threads lookup): Assertion
'thr' failed.
246152 callgrind internal error after pthread _cancel on 32 Bit Linux
249435 Analyzing wine programs with callgrind triggers a crash
250038 ppcb4: Altivec Ivsr and lvdl instructions fail their regtest
250065 Handling large allocations
250101 huge "free" memory usage due to m_mallocfree.c
"superblocks fragmentation”
251569 vex amd64->IR: OxF 0x1 0xF9 0x8B 0x4C 0x24 (RDTSCP)
252091 Callgrind on ARM does not detect function returns correctly
252600 [PATCH] Allow lhsto be a pointer for shl/shr
254420 memory pool tracking broken
n-i-bz support for adding symbolsfor JT generated code

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX
where XXXXXX isthe bug number as listed below.

135264 dcbzl instruction missing

142688 == 250799

153699 Valgrind should report unaligned reads with movdga

180217 ==212335

190429 Valgrind reports lost of errorsin ld.so
with x86_64 2.9.90 glibc

197266 valgrind appears to choke on the xmms instruction
"roundsd" on x86_64

197988 Crash when demangling very large symbol names

202315 unhandled syscall: 332 (inotify_initl)

203256 Add page-level profiling to Massif

205093 dsymutil=yes needs quotes, locking (partial fix)

205241 Snow Leopard 10.6 support (partial fix)

206600 Leak checker failsto upgrade indirect blocks when their
parent becomes reachable

210935 port valgrind.h (not valgrind) to win32 so apps run under
wine can make client requests

211410 vex amd64->IR: 0x15 OxFF OxFF 0x0 0x0 0x89
within Linux ip-stack checksum functions

71

NEWS

212335 unhandled instruction bytes: 0xF3 OxF 0xBD 0xCO
(Izent Yoeax,%eax)

213685 Undefined value propagates past dependency breaking instruction
(partial fix)

215914 Valgrind inserts bogus empty environment variable

217863 == 197988

219538 adjtimex syscall wrapper wrong in readonly adjtime mode

222545 shmat fails under valgind on some arm targets

222560 ARM NEON support

230407 == 202315

231076 == 202315

232509 Docs build fails with formatting inside <title></title> elements

232793 == 202315

235642 [PATCH] syswrap-linux.c: support evdev EVIOCG* ioctls

236546 vex x86->IR: 0x66 0xF Ox3A OxA

237202 vex amd64->IR: OxF3 0xF 0xB8 0xC0 0x49 0x3B

237371 better support for VALGRIND_MALLOCLIKE_BLOCK

237485 symlink (syscall 57) is not supported on Mac OS

237723 sysno == 101 exp-ptrcheck: the 'impossible’ happened:
unhandled syscall

238208 is just_below_ ESP doesn't take into account red-zone

238345 valgrind passes wrong $0 when executing a shell script

238679 mq_timedreceive syscall doesn't flag the reception buffer
as "defined"

238696 fcntl command F_ DUPFD_CLOEXEC not supported

238713 unhandled instruction bytes: 0x66 OxF 0x29 0xC6

238713 unhandled instruction bytes: 0x66 OxF 0x29 0xC6

238745 3.5.0 Make fails on PPC Altivec opcodes, though configure
says "Altivec off"

239992 vex amd64->IR: 0x48 OxF 0xC4 0xC1 0x0 0x48

240488 == 197988

240639 == 212335

241377 == 236546

241903 == 202315

241920 == 212335

242606 unhandled syscall: setegid (in Ptrcheck)

242814 Helgrind "Impossible has happened” during
QApplication::initInstance();

243064 Valgrind attempting to read debug information from iso

243270 Make stack unwinding in Valgrind wrappers morereliable

243884 exp-ptrcheck: the 'impossible happened: unhandled syscall
sysno = 277 (mq_open)

244009 exp-ptrcheck unknown syscallsin analyzing lighttpd

244493 ARM VFP d16-d31 registers support

244670 add support for audit_session_self syscall on Mac OS 10.6

244921 The xml report of helgrind tool is not well format

244923 In the xml report file, the <preamble> not escape the
xml char, eg '<','&",">'

245535 print full path namesin plain text reports

245925 x86-64 red zone handling problem

246258 Valgrind not catching integer underruns + new [] s

246311 reg/reg cmpxchg doesn't work on amd64

246549 unhandled syscall unix:277 while testing 32-bit Darwin app

246888 Improve Makefile.vex.am

72

NEWS

247510 [OS X 10.6] Memcheck reports unaddressable bytes passed
to [f]Jchmod_extended

247526 IBM POWERG (I1SA 2.05) support isincomplete

247561 Some leak testcases fails due to reachable addresses in
caller saveregs

247875 sizeofIRTypeto handle Ity 1128

247894 [PATCH] unhandled syscall sys readahead

247980 Doesn't honor CFLAGS passed to configure

248373 darwinl0.supp is empty in the trunk

248822 Linux FIBMAP ioctl hasint parameter instead of long

248893 [PATCH] make readdwarf.c big endianess safe to enable
unwinding on big endian systems

249224 Syscall 336 not supported (SYS proc_info)

249359 == 245535

249775 Incorrect scheme for detecting NEON capabilities of host CPU

249943 jni VM init fails when using valgrind

249991 Valgrind incorrectly declares AESKEY GENASSIST support
since VEX r2011

249996 linux/arm:; unhandled syscall: 181 (__NR_pwrite64)

250799 frexp$fenv_access off function generates SIGILL

250998 vex x86->IR: unhandled instruction bytes. 0x66 0x66 0x66 Ox2E

251251 support pclmulgdg insn

251362 valgrind: ARM: attach to debugger either fails or provokes
kernel oops

251674 Unhandled syscall 294

251818 == 254550

254257 Add support for debugfiles found by build-id

254550 [PATCH] Implement DW_ATE_UTF (DWARF4)

254646 Wrapped functions cause stack misalignment on OS X
(and possibly Linux)

254556 ARM: valgrinding anything fails with SIGSEGV for OxFFFFOFAQ

(3.6.0: 21 October 2010, vex r2068, valgrind r11471).

Release 3.5.0 (19 August 2009)

3.5.0 isafeature release with many significant improvements and the
usual collection of bug fixes. The main improvement isthat Valgrind
now works on Mac OS X.

This release supports X86/Linux, AMD64/Linux, PPC32/Linux, PPC64/Linux

and X86/Darwin. Support for recent distros and toolchain components
(glibc 2.10, gce 4.5) has been added.

Here is a short summary of the changes. Details are shown further
down:

* Support for Mac OS X (10.5.x).

73

NEWS

* |mprovements and simplifications to Memcheck's leak checker.

* Clarification and simplifications in various aspects of Valgrind's
text output.

* XML output for Helgrind and Ptrcheck.
* Performance and stability improvements for Helgrind and DRD.
* Genuinely atomic support for x86/amd64/ppc atomic instructions.

* A new experimental tool, BBV, useful for computer architecture
research.

* Improved Wine support, including ability to read Windows PDB
debuginfo.

Here are details of the above changes, followed by descriptions of
many other minor changes, and alist of fixed bugs.

* Valgrind now runson Mac OS X. (Note that Mac OS X is sometimes
called "Darwin" because that is the name of the OS core, which is the

level that Valgrind works at.)
Supported systems:

- It requires OS 10.5.x (Leopard). Porting to 10.4.x is not planned

because it would require work and 10.4 is only becoming less common.

- 32-bit programs on x86 and AMD64 (a.k.a x86-64) machines are supported

fairly well. For 10.5.x, 32-bit programs are the default even on
64-bit machines, so it handles most current programs.

- 64-bit programs on x86 and AMD64 (a.k.a x86-64) machines are not
officially supported, but simple programs at least will probably work.

However, start-up is slow.

- PowerPC machines are not supported.

Things that don't work:

- The Ptrcheck toal.

- Objective-C garbage collection.

- --db-attach=yes.

- If you have Rogue Amoeba's "Instant Hijack" program installed,
Valgrind will fail with a SIGTRAP at start-up. See

https://bugs.kde.org/show_bug.cgi?id=193917 for detailsand a
simple work-around.

74

NEWS

Usage notes:

- You will likely find --dsymutil=yes a useful option, as error
messages may be imprecise without it.

- Mac OS X support is new and therefore will be less robust than the
Linux support. Please report any bugs you find.

- Threaded programs may run more slowly than on Linux.

Many thanks to Greg Parker for developing this port over severa years.

* Memcheck's leak checker has been improved.

- The results for --leak-check=summary now match the summary results
for --leak-check=full. Previously they could differ because
--leak-check=summary counted "indirectly lost" blocks and
"suppressed” blocks as "definitely lost”.

- Blocks that are only reachable via at |east one interior-pointer,
but are directly pointed to by a start-pointer, were previously
marked as "still reachable". They are now correctly marked as
"possibly lost".

- The default value for the --leak-resolution option has been
changed from "low" to "high". In general, this means that more
leak reports will be produced, but each leak report will describe
fewer leaked blocks.

- With --leak-check=full, "definitely lost" and "possibly lost"
|eaks are now considered as proper errors, ie. they are counted
for the "ERROR SUMMARY" and affect the behaviour of
--error-exitcode. These leaks are not counted as errors if
--leak-check=summary is specified, however.

- Documentation for the leak checker has been improved.

* Various aspects of Valgrind's text output have changed.

- Valgrind's start-up message has changed. It is shorter but also
includes the command being run, which makesit easier to use
--trace-children=yes. An example:

- Valgrind's shut-down messages have also changed. Thisis most
noticeable with Memcheck, where the leak summary now occurs before
the error summary. This change was necessary to alow leaksto be
counted as proper errors (see the description of the leak checker
changes above for more details). Thiswas also necessary to fix a
longstanding bug in which uses of suppressions against leaks were
not "counted”, leading to difficulties in maintaining suppression
files (see https://bugs.kde.org/show_bug.cgi?id=186790).

75

NEWS

- Behavior of -v has changed. In previous versions, -v printed out
amixture of marginally-user-useful information, and tool/core
statistics. The statistics printing has now been moved to its own
flag, --stats=yes. This means -v is less verbose and more likely
to convey useful end-user information.

- The format of some (non-XML) stack trace entries has changed a
little. Previously there were six possible forms:

0x80483BF-: redlly (a.c:20)
0x80483BF-: really (in /foo/a.out)
0x80483BF-: really

0x80483BF: (within /foo/a.out)
0x80483BF: ?7?7? (a.c:20)
0x80483BF: ?7??

The third and fourth of these forms have been made more consistent
with the others. The six possible forms are now:

0x80483BF-: redly (a.c:20)
0x80483BF-: really (in /foo/a.out)
0x80483BF: redly (in ?7?)
0x80483BF: ??? (in /foo/a.out)
0x80483BF: ?7?7? (a.c:20)
0x80483BF: ?7??

Stack traces produced when --xml=yes is specified are different

and unchanged.

* Helgrind and Ptrcheck now support XML output, so they can be used
from GUI tools. Also, the XML output mechanism has been
overhauled.

- The XML format has been overhauled and generalised, so it is more
suitable for error reporting toolsin general. The Memcheck
specific aspects of it have been removed. The new format, which
isan evolution of the old format, is described in
docg/internal s/’xml-output-protocol 4.txt.

- Memcheck has been updated to use the new format.

- Helgrind and Ptrcheck are now able to emit output in this format.

- The XML output mechanism has been overhauled. XML isnow output
to its own file descriptor, which means that:

* Valgrind can output text and XML independently.

* The longstanding problem of XML output being corrupted by
unexpected un-tagged text messages is solved.

As before, the destination for text output is specified using

76

NEWS

--log-file=, --log-fd= or --log-socket=.
Asbefore, XML output for atool is enabled using --xml=yes.

Because there'sanew XML output channel, the XML output
destination is now specified by --xml-file=, --xml-fd= or
--xml-socket=.

Initial feedback has shown this causes some confusion. To
clarify, the two envisaged usage scenarios are:

(1) Normal text output. In this case, do not specify --xml=yes
nor any of --xml-file=, --xml-fd= or --xml-socket=.

(2) XML output. In this case, specify --xml=yes, and one of
--xml-file=, --xml-fd= or --xml-socket= to select the XML
destination, one of --log-file=, --log-fd= or --log-socket=
to select the destination for any remaining text messages,
and, importantly, -q.

-g makes Valgrind completely silent on the text channel,
except in the case of critical failures, such as Valgrind
itself segfaulting, or failing to read debugging information.
Hence, in this scenario, it suffices to check whether or not
any output appeared on the text channdl. If yes, thenitis
likely to be acritical error which should be brought to the
attention of the user. If no (the text channel produced no
output) then it can be assumed that the run was successful.

This allows GUIs to make the critical distinction they need to
make (did the run fail or not?) without having to search or
filter the text output channel in any way.
It is also recommended to use --child-silent-after-fork=yesin
scenario (2).
* |mprovements and changes in Helgrind:

- XML output, as described above

- Checks for consistent association between pthread condition
variables and their associated mutexes are now performed.

- pthread_spinlock functions are supported.

- Modest performance improvements.

- Initial (skeletal) support for describing the behaviour of
non-POSIX synchronisation objects through ThreadSanitizer
compatible ANNOTATE_* macros.

- More controllable tradeoffs between performance and the level of

detail of "previous' accessesin arace. There are now three

7

NEWS

settings:

* --history-level=full. Thisisthe default, and was also the
default in 3.4.x. It shows both stacks involved in arace, but
requires alot of memory and can be very slow in programs that
do many inter-thread synchronisation events.

* --history-level=none. This only shows the later stack involved
inarace. Thiscan be much faster than --history-level=full,
but makes it much more difficult to find the other access
involved in the race.

The new intermediate setting is
* --history-level=approx

For the earlier (other) access, two stacks are presented. The
earlier accessis guaranteed to be somewhere in between the two
program points denoted by those stacks. Thisis not as useful

as showing the exact stack for the previous access (as per
--history-level=full), but it is better than nothing, and it's

amost as fast as --history-level=none.

* New features and improvementsin DRD:

- The error messages printed by DRD are now easier to interpret.
Instead of using two different numbers to identify each thread
(Vagrind thread ID and DRD thread ID), DRD does now identify
threads via a single number (the DRD thread D). Furthermore
"first observed at" information is now printed for al error
messages related to synchronization objects.

- Added support for named semaphores (sem_open() and sem_close()).

- Race conditions between pthread barrier_wait() and
pthread barrier_destroy() calls are now reported.

- Added support for custom allocators through the macros
VALGRIND_MALLOCLIKE_BLOCK() VALGRIND_FREELIKE_BLOCK() (defined in
in <valgrind/valgrind.h>). An aternative for these two macrosis
the new client request VG_USERREQ DRD_CLEAN_MEMORY (defined in
<valgrind/drd.h>).

- Added support for annotating non-POSI X synchronization objects
through several new ANNOTATE_*() macros.

- OpenMP: added support for the OpenMP runtime (libgomp) included
with gcc versions 4.3.0 and 4.4.0.

- Faster operation.
- Added two new command-line options (--first-race-only and

--segment-merging-interval).

78

NEWS

* Genuinely atomic support for x86/amd64/ppc atomic instructions

Valgrind will now preserve (memory-access) atomicity of LOCK-
prefixed x86/amd64 instructions, and any others implying a global
buslock. Ditto for PowerPC I{ w,d} arx/st{ w,d} cx. instructions.

This means that Valgrinded processes will "play nicely" in
situations where communication with other processes, or the kernel,
is done through shared memory and coordinated with such atomic
instructions. Prior to this change, such arrangements usually
resulted in hangs, races or other synchronisation failures, because
Valgrind did not honour atomicity of such instructions.

* A new experimental tool, BBV, has been added. BBV generates basic
block vectors for use with the SimPoint analysis tool, which allows
aprogram's overall behaviour to be approximated by running only a
fraction of it. Thisisuseful for computer architecture
researchers. Y ou can run BBV by specifying --tool=exp-bbv (the
"exp-" prefix is short for "experimenta"). BBV was written by
Vince Weaver.

* Modestly improved support for running Windows applications under
Wine. In particular, initial support for reading Windows .PDB debug
information has been added.

* A new Memcheck client request VALGRIND_COUNT_LEAK_ BLOCKS has been
added. Itissimilar to VALGRIND COUNT_LEAKS but counts blocks
instead of bytes.

* The Valgrind client requests VALGRIND_PRINTF and
VALGRIND_PRINTF_BACKTRACE have been changed dlightly. Previously,
the string was always printed immediately on its own line. Now, the
string will be added to a buffer but not printed until anewlineis
encountered, or other Valgrind output is printed (note that for
VALGRIND_PRINTF_BACKTRACE, the back-trace itself is considered
"other Valgrind output"). Thisallows you to use multiple
VALGRIND_PRINTF callsto build up asingle output line, and also to
print multiple output lines with a single request (by embedding
multiple newlines in the string).

* The graphs drawn by Massif's ms_print program have changed dlightly:
- The half-height chars'." and '," are no longer drawn, because
they are confusing. The --y option can be used if the default

y-resolution is not high enough.

- Horizontal lines are now drawn after the top of a snapshot if

79

NEWS

thereis agap until the next snapshot. This makesit clear that
the memory usage has not dropped to zero between snapshots.

* Something that happened in 3.4.0, but wasn't clearly announced: the
option --read-var-info=yes can be used by some tools (Memcheck,
Helgrind and DRD). When enabled, it causes Valgrind to read DWARF3
variable type and location information. This makes those tools
start up more slowly and increases memory consumption, but
descriptions of data addresses in error messages become more
detailed.

* exp-Omega, an experimental instantaneous leak-detecting tool, was
disabled in 3.4.0 due to alack of interest and maintenance,
although the source code was still in the distribution. The source
code has now been removed from the distribution. For anyone
interested, the removal occurred in SVN revision r10247.

* Some changes have been made to the build system.

- VEX/ is now integrated properly into the build system. This means
that dependency tracking within VEX/ now works properly, "make
install" will work without requiring "make" before it, and
paralel builds (ie. 'make -j") now work (previously a
.NOTPARALLEL directive was used to seriadize builds, ie. 'make -j'
was effectively ignored).

- The --with-vex configure option has been removed. It was of
little use and removing it simplified the build system.

- The location of some install files has changed. This should not
affect most users. Those who might be affected:

* For people who use Valgrind with MPI programs, the installed
libmpiwrap.so library has moved from
S(INSTALL)/<platform>/libmpiwrap.so to
S(INSTALL)/libmpiwrap-<platform>.so.

* For people who distribute standalone Valgrind tools, the
installed libraries such as $(INSTALL)/<platform>/libcoregrind.a
have moved to $(INSTALL)/libcoregrind-<platform>.a.

These changes simplify the build system.
- Previoudly, all the distributed suppression (*.supp) files were
installed. Now, only default.suppisinstaled. Thisshould not

affect users as the other installed suppression files were not
read; the fact that they were installed was a mistake.

* KNOWN LIMITATIONS:

80

NEWS

- Memcheck is unusable with the Intel compiler suite version 11.1,
when it generates code for SSE2-and-above capable targets. This
is because of icc's use of highly optimised inlined strlen
implementations. It causes Memcheck to report huge numbers of
false errors even in simple programs. Helgrind and DRD may also
have problems.

Versions 11.0 and earlier may be OK, but this has not been
properly tested.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX
where XXXXXX isthe bug number as listed below.

84303 How about a LockCheck tool?

91633 dereference of null ptrin vgPlain_st_basetype

97452 Vagrind doesn't report any pthreads problems

100628 |eak-check gets assertion failure when using
VALGRIND_MALLOCLIKE_BLOCK on malloc()ed memory

108528 NPTL pthread cleanup handlers not called

110126 Valgrind 2.4.1 configure.in tramples CFLAGS

110128 mallinfo is not implemented...

110770 VEX: Generated files not always updated when making valgrind

111102 Memcheck: problems with large (memory footprint) applications

115673 Vex'sdecoder should never assert

117564 False positive: Syscall param clone(child_tidptr) contains
uninitialised byte(s)

119404 executing ssh from inside valgrind fails

133679 Callgrind does not write path names to sources with dwarf debug
info

135847 configure.in problem with non gnu compilers (and possible fix)

136154 threads.c:273 (vgCallgrind post_signal): Assertion
"*(vgCallgrind_current_fn_stack.top) == 0' failed.

136230 memcheck reports "possibly lost", should be "still reachable”

137073 NULL argto MALLOCLIKE_BLOCK causes crash

137904 Valgrind reports a memory leak when using POSI X threads,
whileit shouldn't

139076 valgrind VT_GETSTATE error

142228 complaint of elf _dynamic_do_relaintrivia usage

145347 spurious warning with USBDEVFS REAPURB

148441 (wine) can't find memory leak in Wine, win32 binary
executablefile.

148742 Leak-check fails assert on exit

149878 add (proper) check for calloc integer overflow

150606 Call graph is broken when using callgrind control

152393 leak errors produce an exit code of 0. | need some way to

81

NEWS

cause leak errorsto result in a nonzero exit code.
157154 documentation (leak-resolution doc speaks about num-callers
def=4) + what isaloss record
159501 incorrect handling of ALSA ioctls
162020 Valgrinding an empty/zero-byte file crashes valgrind
162482 ppc: Vagrind crashes while reading stabs information
162718 x86: avoid segment selector 0 insys set thread area()
163253 (wine) canonicaliseSymtab forgot some fieldsin DiSym
163560 VEX/test_ main.c ismissing from valgrind-3.3.1
164353 malloc_usable size() doesn't return ausable size
165468 |Inconsistent formatting in memcheck manual -- please fix
169505 main.c:286 (endOfInstr):
Assertion 'ii->cost_offset == *cost_offset’ failed
177206 Generate default.supp during compile instead of configure
177209 Configurevalt_load address based on arch+os
177305 eventfd/ syscall 323 patch lost
179731 Testsfail to build because of inlining of non-local asm labels
181394 helgrind: libhb_core.c:3762 (msm_write): Assertion
‘ordxx == POrd_EQ || ordxx == POrd_L T' failed.
181594 Bogus warning for empty text segment
181707 dwarf doesn't require enumerations to have name
185038 exp-ptrcheck: "unhandled syscall: 285" (fallocate) on x86_64
185050 exp-ptrcheck: sg_main.c:727 (add block to Global Tree):
Assertion "lalready present’ failed.
185359 exp-ptrcheck: unhandled syscall getresuid()
185794 "WARNING: unhandled syscall: 285" (fallocate) on x86_64
185816 Valgrind is unable to handle debug info for files with split
debug info that are prelinked afterwards
185980 [darwin] unhandled syscall: sem_open
186238 bbTolR_AMDG64: dislnstr miscal culated next %rip
186507 exp-ptrcheck unhandled syscalls prctl, etc.
186790 Suppression pattern used for leaks are not reported
186796 Symbols with length>200 in suppression files are ignored
187048 drd: mutex PTHREAD PROCESS SHARED attribute missinterpretation
187416 exp-ptrcheck: support for _ NR_{setregid,setreuid,setresuid}
188038 helgrind: hg_main.c:926: mk_SHVAL _fail: the 'impossible’ happened
188046 bhashismsin the configure script
188127 amd64->IR: unhandled instruction bytes: 0xFO OxF 0xBO OxA
188161 memcheck: --track-origins=yes asserts "mc_machine.c:672
(get_otrack shadow_offset_wrk): the 'impossible’ happened.”
188248 helgrind: pthread cleanup_push, pthread rwlock unlock,
assertion fail "!lock->heldBy"
188427 Add support for epoll_createl (with patch)
188530 Support for SSOCGSTAMPNS
188560 Include valgrind.spec in the tarball
188572 Valgrind on Mac should suppress setenv() mem leak
189054 Valgrind fails to build because of duplicate non-local asm labels
189737 vex amd64->IR: unhandled instruction bytes: OXAC
189762 epoll_create syscall not handled (--tool=exp-ptrcheck)
189763 drd assertion failure: s _threadinfo[tid].is recording
190219 unhandled syscall: 328 (x86-linux)
190391 dup of 181394; see above
190429 Valgrind reports lots of errorsin Id.so with x86_64 2.9.90 glibc
190820 No debug information on powerpc-linux

82

NEWS

191095 PATCH: Improve ushdevfsioctl handling
191182 memcheck: VALGRIND_LEAK_ CHECK quadratic when big nr of chunks
or big nr of errors
191189 --xml=yes should obey --gen-suppressions=all
191192 syslog() needs a suppression on macosx
191271 DARWIN: WARNING: unhandled syscall: 33554697 a.k.a.: 265
191761 getrlimit on MacOSX
191992 muiltiple --fn-skip only works sometimes; dependent on order
192634 V. reports "aspacem sync_check_mapping_callback:
segment mismatch" on Darwin
192954 extension _missing on 2 client requests
194429 Crash at start-up with glibc-2.10.1 and linux-2.6.29
194474 "INSTALL" file has different build instructions than "README"
194671 Unhandled syscall (sem_wait?) from mac valgrind
195069 memcheck: reports leak (memory still reachable) for
printf("%d', X)
195169 drd: (vgDrd_barrier_post wait):
Assertion 'r->sg[p->post_iteration]' failed.
195268 valgrind --log-file doesn't accept ~/...
195838 VEX abort: LibVEX_N_SPILL_BYTEStoo small for CPUID boilerplate
195860 WARNING: unhandled syscall: unix:223
196528 need aerror suppression for pthread rwlock init under os x?
197227 Support aio_* syscalls on Darwin
197456 valgrind should reject --suppressions=(directory)
197512 DWARF2 CFl reader: unhandled CFI instruction 0:10
197591 unhandled syscall 27 (mincore)
197793 Merge DCAS branch to the trunk == 85756, 142103
197794 Avoid duplicate filenamesin Vex
197898 make check fails on current SVN
197901 make check fails also under exp-ptrcheck in current SVN
197929 Make --leak-resolution=high the default
197930 Reduce spacing between leak reports
197933 Print command line of client at start-up, and shorten preamble
197966 unhandled syscall 205 (x86-linux, --tool=exp-ptrcheck)
198395 add BBV to the distribution as an experimental tool
198624 Missing syscallson Darwin: 82, 167, 281, 347
198649 callgrind_annotate doesn't cumulate counters
199338 callgrind_annotate sorting/thresholds are broken for al but Ir
199977 Valgrind complains about an unrecognized instruction in the
atomic_incs test program
200029 valgrind isn't ableto read Fedora 12 debuginfo
200760 darwin unhandled syscall: unix:284
200827 DRD doesn't work on Mac OS X
200990 VG_(read millisecond_timer)() does not work correctly
201016 Valgrind does not support pthread_kill() on Mac OS
201169 Document --read-var-info
201323 Pre-3.5.0 performance sanity checking
201384 Review user manual for the 3.5.0 release
201585 mfpvr not implemented on ppc
201708 testsfailing because x86 direction flag is |eft set
201757 Valgrind doesn't handle any recent sys futex additions
204377 64-bit valgrind can not start a shell script
(with #!/path/to/shell) if the shell is a 32-bit executable
n-i-bz drd: fixed assertion failure triggered by mutex reinitialization.

83

NEWS

n-i-bz drd: fixed a bug that caused incorrect messages to be printed
about memory allocation events with memory access tracing enabled
n-i-bz drd: fixed amemory leak triggered by vector clock deallocation

(3.5.0: 19 Aug 2009, vex r1913, valgrind r10846).

Release 3.4.1 (28 February 2009)

3.4.1isabug-fix release that fixes some regressions and assertion
failuresin debug info reading in 3.4.0, most notably incorrect stack
traces on amd64-linux on older (glibc-2.3 based) systems. Various
other debug info problems are also fixed. A number of bugsin the
exp-ptrcheck tool introduced in 3.4.0 have been fixed.

In view of the fact that 3.4.0 contains user-visible regressions
relative to 3.3.x, upgrading to 3.4.1 isrecommended. Packagers are
encouraged to ship 3.4.1 in preference to 3.4.0.

The fixed bugs are as follows. Note that "n-i-bz" standsfor "not in
bugzilla' -- that is, a bug that was reported to us but never got a
bugzillaentry. We encourage you to file bugsin bugzilla
(http://bugs.kde.org/enter_valgrind_bug.cgi) rather than mailing the
developers (or mailing lists) directly -- bugs that are not entered
into bugzillatend to get forgotten about or ignored.

n-i-bz Fix various bugs reading icc-11 generated debug info

n-i-bz Fix various bugs reading gcc-4.4 generated debug info

n-i-bz Preliminary support for glibc-2.10 / Fedora 11

n-i-bz Cachegrind and Callgrind: handle non-power-of-two cache sizes,
so asto support (eg) 24k Atom D1 and Core2 with 3/6/12MB L2.

179618 exp-ptrcheck crashed / exit prematurely

179624 helgrind: false positive races with pthread create and
recv/open/close/read

134207 pkg-config output contains @VG_PLATFORM @

176926 floating point exception at valgrind startup with PPC 440EPX

181594 Bogus warning for empty text segment

173751 amd64->IR: 0x48 0xF 0x6F 0x45 (even more redundant rex prefixes)

181707 Dwarf3 doesn't require enumerations to have name

185038 exp-ptrcheck: "unhandled syscall: 285" (fallocate) on x86_64

185050 exp-ptrcheck: sg_main.c:727 (add block to Global Tree):
Assertion "lalready present’ failed.

185359 exp-ptrcheck unhandled syscall getresuid()

(3.4.1.RCL: 24 Feb 2008, vex r1884, valgrind r9253).
(3.4.1: 28 Feb 2008, vex r1884, valgrind r9293).

Release 3.4.0 (2 January 2009)

3.4.0 isafeature release with many significant improvements and the
usual collection of bug fixes. This release supports X86/Linux,

NEWS

AMDG64/Linux, PPC32/Linux and PPC64/Linux. Support for recent distros
(using gcc 4.4, glibc 2.8 and 2.9) has been added.

3.4.0 brings some significant tool improvements. Memcheck can now
report the origin of uninitialised values, the thread checkers

Helgrind and DRD are much improved, and we have a new experimental
tool, exp-Ptrcheck, which is able to detect overruns of stack and

global arrays. In detail:

* Memcheck is now able to track the origin of uninitialised values.
When it reports an uninitialised value error, it will try to show
the origin of the value, as either a heap or stack allocation.
Origin tracking is expensive and so is not enabled by default. To
use it, specify --track-origins=yes. Memcheck's speed will be
essentially halved, and memory usage will be significantly
increased. Neverthelessit can drastically reduce the effort
required to identify the root cause of uninitialised value errors,
and so is often a programmer productivity win, despite running more
slowly.

* A version (1.4.0) of the Valkyrie GUI, that works with Memcheck in
3.4.0, will be released shortly.

* Helgrind's race detection algorithm has been completely redesigned
and reimplemented, to address usability and scalability concerns:

- The new algorithm has alower false-error rate: it is much less
likely to report races that do not really exist.

- Helgrind will display full call stacks for both accesses involved
inarace. Thismakesit easier to identify the root causes of
races.

- Limitations on the size of program that can run have been removed.

- Performance has been modestly improved, although that is very
workload-dependent.

- Direct support for Qt4 threading has been added.
- pthread_barriers are now directly supported.
- Helgrind works well on all supported Linux targets.
* The DRD thread debugging tool has seen major improvements:

- Greatly improved performance and significantly reduced memory
usage.

- Support for several major threading libraries (Boost. Thread, Qt4,
glib, OpenMP) has been added.

- Support for atomic instructions, POSIX semaphores, barriers and
reader-writer locks has been added.

85

NEWS

- Works now on PowerPC CPUs too.

- Added support for printing thread stack usage at thread exit time.
- Added support for debugging lock contention.

- Added amanud for Drd.

* A new experimental tool, exp-Ptrcheck, has been added. Ptrcheck
checks for misuses of pointers. Inthat senseitisabit like
Memcheck. However, Ptrcheck can do things Memcheck can't: it can
detect overruns of stack and global arrays, it can detect
arbitrarily far out-of-bounds accesses to heap blocks, and it can
detect accesses heap blocks that have been freed avery long time
ago (millions of blocks in the past).

Ptrcheck currently works only on x86-linux and amd64-linux. To use
it, use --tool=exp-ptrcheck. A simple manual is provided, as part

of the main Valgrind documentation. Asthisisan experimental

tool, we would be particularly interested in hearing about your
experiences with it.

* exp-Omega, an experimental instantaneous leak-detecting tool, isno
longer built by default, although the code remainsin the repository
and thetarball. Thisisdue to three factors: a perceived lack of
users, alack of maintenance, and concerns that it may not be
possible to achieve reliable operation using the existing design.

* Asusual, support for the latest Linux distros and toolchain
components has been added. 1t should work well on Fedora Core 10,
OpenSUSE 11.1 and Ubuntu 8.10. gcc-4.4 (in its current pre-release
state) is supported, asis glibc-2.9. The C++ demangler has been

updated so as to work well with C++ compiled by even the most recent

gt+'s.

* Y ou can now use frame-level wildcards in suppressions. Thiswas a
frequently-requested enhancement. A line"..." in a suppression now
matches zero or more frames. This makesit easier to write
suppressions which are precise yet insensitive to changesin
inlining behaviour.

* 3.4.0 adds support on x86/amd64 for the SSSE3 instruction set.

* Very basic support for IBM Power6 has been added (64-bit processes only).

* Valgrind is now cross-compilable. For example, itis possibleto
cross compile Valgrind on an x86/amd64-linux host, so that it runs
on appc32/64-linux target.

* You can set the main thread's stack size at startup using the
new --main-stacksize= flag (subject of course to ulimit settings).
Thisisuseful for running apps that need alot of stack space.

86

NEWS

* The limitation that you can't use --trace-children=yes together
with --db-attach=yes has been removed.

* The following bugs have been fixed. Note that "n-i-bz" stands for
"not in bugzilla" -- that is, abug that was reported to us but
never got a bugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly.

n-i-bz Make return types for some client requests 64-bit clean

n-i-bz glibc 2.9 support

n-i-bz ignore unsafe .valgrindrc's (CV E-2008-4865)

n-i-bz MPI_Init(0,0) isvalid but libmpiwrap.c segfaults

n-i-bz Building in an env without gdb gives bogus gdb attach

92456 Tracing the origin of uninitialised memory

106497 Valgrind does not demangle some C++ template symbols
162222 ==106497

151612 Suppression with"..." (frame-level wildcardsin .supp files)
156404 Unable to start oocalc under memcheck on openSUSE 10.3 (64-hit)
159285 unhandled syscall: 25 (stime, on x86-linux)

159452 unhandled ioctl 0x8B01 on "valgrind iwconfig"

160954 ppc build of valgrind crashes with illegal instruction (isel)
160956 mallinfo implementation, w/ patch

162092 Vagrind fails to start gnome-system-monitor

162819 malloc free fill test doesn't pass on glibc2.8 x86

163794 assertion failure with "--track-origins=yes"

163933 sigcontext.err and .trapno must be set together

163955 remove constraint ! (--db-attach=yes & & --trace-children=yes)
164476 Missing kernel module loading system calls

164669 SV N regression: mmap() drops posix file locks

166581 Callgrind output corruption when program forks

167288 Patch file for missing system calls on Cell BE

168943 unsupported scas instruction pentium

171645 Unrecognised instruction (MOV SD, non-binutils encoding)
172417 x86->IR: 0x82. ...

172563 amd64->IR: 0xD9 OxF5 - fpreml

173099 .Ids linker script generation error

173177 [x86_64] syscalls: 125/126/179 (capget/capset/quotactl)
173751 amd64->IR: 0x48 OxF 0x6F 0x45 (even more redundant prefixes)
174532 == 173751

174908 --log-file value not expanded correctly for corefile

175044 Add lookup_dcookie for amd64

175150 x86->IR: 0xF2 OxF 0x11 0xC1 (movss non-binutils encoding)

Developer-visible changes:

* Valgrind's debug-info reading machinery has been majorly overhauled.
It can now correctly establish the addresses for ELF data symbols,
which is something that has never worked properly before now.

Also, Vagrind can now read DWARF3 type and location information for
stack and global variables. This makesit possible to use the

framework to build tools that rely on knowing the type and locations

of stack and global variables, for example exp-Ptrcheck.

87

NEWS

Reading of such information is disabled by default, because most
toolsdon't need it, and because it is expensive in space and time.
However, you can force Valgrind to read it, using the
--read-var-info=yes flag. Memcheck, Helgrind and DRD are able to
make use of such information, if present, to provide source-level
descriptions of data addresses in the error messages they create.

(3.4.0.RCL: 24 Dec 2008, vex r1878, valgrind r88s2).
(3.4.0: 3 Jan 2009, vex r1878, valgrind r8899).

88

3. OLDER NEWS

Release 3.3.1 (4 June 2008)

3.3.1 fixes a bunch of bugsin 3.3.0, adds support for glibc-2.8 based
systems (openSUSE 11, Fedora Core 9), improves the existing glibc-2.7
support, and adds support for the SSSE3 (Core 2) instruction set.

3.3.1 will likely be the last release that supports some very old
systems. In particular, the next major release, 3.4.0, will drop
support for the old LinuxThreads threading library, and for gcc
versions prior to 3.0.

The fixed bugs are as follows. Note that "n-i-bz" stands for "not in
bugzilla' -- that is, abug that was reported to us but never got a
bugzillaentry. We encourage you to file bugsin bugzilla
(http://bugs.kde.org/enter_valgrind_bug.cgi) rather than mailing the
developers (or mailing lists) directly -- bugs that are not entered
into bugzillatend to get forgotten about or ignored.

n-i-bz Massif segfaults at exit

n-i-bz Memcheck asserts on Altivec code

n-i-bz fix sizeof bug in Helgrind

n-i-bz check fd on sys llseek

n-i-bz update syscall liststo kernel 2.6.23.1

n-i-bz support sys sync file range

n-i-bz handle sys_sysinfo, sys getresuid, sys getresgid on ppc64-linux

n-i-bz intercept memcpy in 64-bit 1d.so's

n-i-bz Fix wrappersfor sys {futimesat,utimensat}

n-i-bz Minor false-error avoidance fixes for Memcheck

n-i-bz libmpiwrap.c: add awrapper for MPI_Waitany

n-i-bz helgrind support for glibc-2.8

n-i-bz partial fix for mc_|leakcheck.c:698 assert:
'lc_shadowsd]i]->data + Ic_shadowq[i] ...

n-i-bz Massif/Cachegrind output corruption when programs fork

n-i-bz register allocator fix: handle spill stores correctly

n-i-bz add support for PA6T PowerPC CPUs

126389 vex x86->IR: OxF OXAE (FXRSTOR)

158525 ==126389

152818 vex x86->IR: 0xF3 OXAC (repz lodsh)

153196 vex x86->IR: 0xF2 OxXA6 (repnz cmpsb)

155011 vex x86->IR: OxCF (iret)

155091 Warning [...] unhandled DW_OP_ opcode 0x23

156960 ==155901

155528 support Core2/SSSE3 insns on x86/amd64

155929 ms print fails on massif outputs containing long lines

157665 valgrind fails on shmdt(0) after shmat to O

157748 support x86 PUSHFW/POPFW

158212 helgrind: handle pthread rwlock_try{ rd,wr}lock.

158425 sys poll incorrectly emulated when RES==0

158744 vex amd64->IR: 0xFO 0x41 OxF 0xCO (xaddb)

89

OLDER NEWS

160907 Support for a couple of recent Linux syscalls
161285 Patch -- support for eventfd() syscall

161378 illegal opcode in debug libm (FUCOM PP)
160136 ==161378

161487 number of suppressionsfilesislimited to 10
162386 ms_print typo in milliseconds time unit for massif
161036 exp-drd: client allocated memory was never freed
162663 signalfd wrapper fails on 64bit linux

(3.3.1.RC1: 2 June 2008, vex r1854, valgrind r8169).
(3.3.1: 4 June 2008, vex r1854, valgrind r8180).

Release 3.3.0 (7 December 2007)

3.3.0isafeature release with many significant improvements and the

usual collection of bug fixes. This release supports X86/Linux,
AMDG64/Linux, PPC32/Linux and PPC64/Linux. Support for recent distros
(using gce 4.3, glibc 2.6 and 2.7) has been added.

The main excitement in 3.3.0 is new and improved tools. Helgrind

works again, Massif has been completely overhauled and much improved,
Cachegrind now does branch-misprediction profiling, and a new category
of experimental tools has been created, containing two new tools:

Omega and DRD. There are many other smaller improvements. In detail:

- Helgrind has been completely overhauled and works for the first time
since Valgrind 2.2.0. Supported functionality is: detection of
misuses of the POSIX PThreads API, detection of potential deadlocks
resulting from cyclic lock dependencies, and detection of data
races. Compared to the 2.2.0 Helgrind, the race detection algorithm
has some significant improvements aimed at reducing the false error
rate. Handling of various kinds of corner cases has been improved.
Efforts have been made to make the error messages easier to
understand. Extensive documentation is provided.

- Massif has been completely overhauled. Instead of measuring
space-time usage -- which wasn't always useful and many people found
confusing -- it now measures space usage at various pointsin the
execution, including the point of peak memory allocation. Its
output format has also changed: instead of producing PostScript
graphs and HTML text, it produces asingle text output (viathe new
'ms_print' script) that contains both a graph and the old textual
information, but in amore compact and readable form. Finaly, the
new version should be more reliable than the old one, asit has been
tested more thoroughly.

- Cachegrind has been extended to do branch-misprediction profiling.
Both conditional and indirect branches are profiled. The default
behaviour of Cachegrind is unchanged. To use the new functionality,
give the option --branch-sim=yes.

- A new category of "experimental tools' has been created. Such tools

90

OLDER NEWS

may not work as well as the standard tools, but are included because
some people will find them useful, and because exposure to awider
user group provides tool authors with more end-user feedback. These
toolshave a"exp-" prefix attached to their names to indicate their
experimental nature. Currently there are two experimental tools:

* exp-Omega: an instantaneous leak detector. See
exp-omega/docs/omega_introduction.txt.

* exp-DRD: a data race detector based on the happens-before
relation. See exp-drd/docsREADME.txt.

- Scalability improvements for very large programs, particularly those
which have amillion or more malloc'd blocks in use at once. These
improvements mostly affect Memcheck. Memcheck is also up to 10%
faster for all programs, with x86-linux seeing the largest
improvement.

- Works well on the latest Linux distros. Has been tested on Fedora
Core 8 (x86, amd64, ppc32, ppc64) and openSUSE 10.3. glibc 2.6 and
2.7 are supported. gcc-4.3 (inits current pre-rel ease state) is
supported. At the sametime, 3.3.0 retains support for older
distros.

- The documentation has been modestly reorganised with the aim of
making it easier to find information on common-usage scenarios.
Some advanced material has been moved into a new chapter in the main
manual, so as to unclutter the main flow, and other tidying up has
been done.

- Thereis experimental support for Al1X 5.3, both 32-bit and 64-bit
processes. Y ou need to be running a 64-hit kernel to use Valgrind
on a 64-bit executable.

- There have been some changes to command line options, which may
affect you:

* --log-file-exactly and
--log-file-qualifier options have been removed.

To make up for this --log-file option has been made more powerful.
It now accepts a %p format specifier, which is replaced with the
process ID, and a %q{ FOO} format specifier, which is replaced with
the contents of the environment variable FOO.

* --child-silent-after-fork=yesjno [no]
Causes Valgrind to not show any debugging or logging output for
the child process resulting from afork() call. Thiscan make the
output less confusing (although more misleading) when dealing with
processes that create children.

* --cachegrind-out-file, --callgrind-out-file and --massif-out-file

91

OLDER NEWS

These control the names of the output files produced by

Cachegrind, Callgrind and Massif. They accept the same %p and %q
format specifiersthat --log-file accepts. --calgrind-out-file

replaces Callgrind's old --base option.

* Cachegrind's 'cg_annotate' script no longer uses the --<pid>
option to specify the output file. Instead, the first non-option
argument is taken to be the name of the output file, and any
subsequent non-option arguments are taken to be the names of
source files to be annotated.

* Cachegrind and Callgrind now use directory names where possiblein
their output files. This means that the -1 option to
'cg_annotate' and 'callgrind_annotate’ should not be needed in
most cases. It also means they can correctly handle the case
where two source files in different directories have the same
name.

- Memcheck offers anew suppression kind: "Jump". Thisisfor
suppressing jump-to-invalid-address errors. Previously you had to
use an "Addrl" suppression, which didn't make much sense.

- Memcheck has new flags --malloc-fill=<hexnum> and
--free-fill=<hexnum> which free malloc'd / free'd areas with the
specified byte. This can help shake out obscure memory corruption
problems. The definedness and addressability of these areasis
unchanged -- only the contents are affected.

- The behaviour of Memcheck's client requests VALGRIND_GET_VBITS and
VALGRIND_SET VBITS have changed slightly. They no longer issue
addressability errors -- if either array is partialy unaddressable,
they just return 3 (as before). Also, SET_VBITS doesn't report
definedness errors if any of the V hits are undefined.

- The following Memcheck client requests have been removed:
VALGRIND_MAKE_NOACCESS
VALGRIND_MAKE_WRITABLE
VALGRIND_MAKE_READABLE
VALGRIND_CHECK_WRITABLE
VALGRIND_CHECK_READABLE
VALGRIND_CHECK_DEFINED

They were deprecated in 3.2.0, when equivalent but better-named client
requests were added. See the 3.2.0 release notes for more details.

- The behaviour of thetool Lackey has changed slightly. First, the output
from --trace-mem has been made more compact, to reduce the size of the
traces. Second, a new option --trace-superblocks has been added, which
shows the addresses of superblocks (code blocks) as they are executed.

- The following bugs have been fixed. Note that "n-i-bz" stands for
"not in bugzilla" -- that is, abug that was reported to us but
never got a bugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly.

92

OLDER NEWS

n-i-bz x86_linux_REDIR_FOR _index() broken

n-i-bz guest-amd64/tolR.c:2512 (dis op2_E_G): Assertion "0’ failed.
n-i-bz Support x86 INT insn (INT (OXCD) 0x40 - 0x43)

n-i-bz Add sys utimensat system call for Linux x86 platform

79844 Helgrind complains about race condition which does not exist
82871 Massif output function names too short

89061 Massif: ms main.c:485 (get_ X Con): Assertion “xpt->max_chi..."
92615 Write output from Massif at crash

95483 massif feature request: include peak alocation in report

112163 MASSIF crashed with signal 7 (SIGBUS) after running 2 days
119404 problems running setuid executables (partial fix)

121629 add instruction-counting mode for timing

127371 javavm giving unhandled instruction bytes: 0x26 Ox2E 0x64 0x65
129937 ==150380

129576 Massif loses track of memory, incorrect graphs

132132 massif --format=html output does not do html entity escaping
132950 Heap alloc/usage summary

133962 unhandled instruction bytes. 0xF2 0x4C OxF 0x10

134990 use -fno-stack-protector if possible

136382 ==134990

137396 | would redlly like helgrind to work again...

137714 x86/amd64->IR: 0x66 OxF 0xF7 0xC6 (maskmovg, maskmovddq)
141631 Massif: percentages don't add up correctly

142706 massif numbers don't seem to add up

143062 massif crashes on app exit with signal 8 SIGFPE

144453 (get_XCon): Assertion 'xpt->max_children != 0' failed.

145559 valgrind aborts when malloc_statsis called

145609 valgrind aborts all runs with 'repeated section!’

145622 --db-attach broken again on x86-64

145837 ==149519

145887 PPC32: getitimer() system call is not supported

146252 ==150678

146456 (update X Con): Assertion 'xpt->curr_space >= -space _delta...
146701 ==134990

146781 Adding support for private futexes

147325 valgrind internal error on syscall (SYS io_destroy, 0)

147498 amd64->IR: 0xFO OxF 0xB0 OxF (lock cmpxchg %ocl,(%erdi))
147545 Memcheck: mc_main.c:817 (get_sec vhits8): Assertion 'n' failed.
147628 SALC opcode 0xd6 unimplemented

147825 crash on amd64-linux with gcc 4.2 and glibc 2.6 (CFI)

148174 Incorrect type of freed list_volume causes assertion |[...]
148447 x86_64 : new NOP codes. 66 66 66 66 2e Of 1f

149182 PPC Trap instructions not implemented in valgrind

149504 Assertion hit on aloc_ xpt->curr_space >= -space_delta
149519 ppc32: V aborts with SIGSEGV on execution of asignal handler
149892 ==137714

150044 SEGV during stack deregister

150380 dwarf/gcc interoperation (dwarf3 read problems)

150408 ==148447

150678 guest-amd64/tolR.c:3741 (dis_Grp5): Assertion "sz == 4' failed
151209 V unable to execute programs for users with UID > 2716
151938 help on --db-command= misleading

152022 subw $0x28, %%osp causes assertion failure in memcheck

93

OLDER NEWS

152357 inb and outb not recognized in 64-bit mode
152501 vex x86->IR: 0x27 0x66 0x89 0x45 (daa)
152818 vex x86->IR: 0xF3 OxAC OxFC 0x9C (rep lodsb)

Developer-visible changes:

- The names of some functions and types within the Vex IR have
changed. Run 'svnlog -r1689 VEX/pub/libvex_ir.h' for full details.
Any existing standalone tools will have to be updated to reflect
these changes. The new names should be clearer. Thefile
VEX/publ/libvex_ir.h is also much better commented.

A number of new debugging command line options have been added.
These are mostly of use for debugging the symbol table and line
number readers:

--trace-symtab-patt=<patt> limit debuginfo tracing to obj name <patt>
--trace-cfi=nolyes show call-frame-info details? [no]
--debug-dump=syms mimic /usr/bin/readelf --syms
--debug-dump=line mimic /usr/bin/readelf --debug-dump=line

--debug-dump=frames mimic /usr/bin/readelf --debug-dump=frames

--sym-offsetssyegno show symsin form 'name+offset’ ? [no]

- Internally, the code base has been further factorised and
abstractified, particularly with respect to support for non-Linux
OSs.

(3.3.0.RC1: 2 Dec 2007, vex r1803, valgrind r7268).
(3.3.0.RC2: 5 Dec 2007, vex r1804, valgrind r7282).
(3.3.0.RC3: 9 Dec 2007, vex r1804, valgrind r7288).
(3.3.0: 10 Dec 2007, vex r1804, valgrind r7290).

Release 3.2.3 (29 Jan 2007)

Unfortunately 3.2.2 introduced a regression which can cause an
assertion failure ("vex: the “impossible’ happened: eqlRConst") when
running obscure pieces of SSE code. 3.2.3 fixes this and adds one
more glibc-2.5 intercept. In all other respectsit isidentical to

3.2.2. Please do not use (or package) 3.2.2; instead use 3.2.3.

n-i-bz vex: the “impossible’ happened: eglRConst
n-i-bz Add an intercept for glibc-2.5 _ stpcpy_chk

(3.2.3: 29 Jan 2007, vex r1732, valgrind r6560).

Release 3.2.2 (22 Jan 2007)

3.2.2 fixes abunch of bugsin 3.2.1, adds support for glibc-2.5 based
systems (openSUSE 10.2, Fedora Core 6), improves support for icc-9.X
compiled code, and brings modest performance improvements in some
areas, including amd64 floating point, powerpc support, and startup

94

OLDER NEWS

responsiveness on al targets.

The fixed bugs are asfollows. Note that "n-i-bz" standsfor "not in
bugzilla' -- that is, a bug that was reported to us but never got a
bugzillaentry. We encourage you to file bugsin bugzilla
(http://bugs.kde.org/enter_valgrind_bug.cgi) rather than mailing the
developers (or mailing lists) directly.

129390 ppc?->IR: somekind of VMX prefetch (dstt)

129968 amd64->IR: OxF OxAE 0x0 (fxsave)

134319 ==129968

133054 'makeingtal’ fails with syntax errors

118903 ==133054

132998 startup failsin when running on UML

134207 pkg-config output contains @VG_PLATFORM@
134727 valgrind exits with "Value too large for defined data type"
n-i-bz ppc32/64: support merfs

n-i-bz Cachegrind/Callgrind: Update cache parameter detection
135012 x86->IR: 0xD7 0x8A OxEO OxDO (xlat)

125959 ==135012

126147 x86->IR: 0xF2 OXA5 OxF 0x77 (repne movsw)

136650 amd64->IR: 0xC2 0x8 0x0

135421 x86->IR: unhandled Grp5(R) case 6

n-i-bz Improved documentation of the IR intermediate representation
n-i-bz jcxz (x86) (userslist, 8 Nov)

n-i-bz ExeContext hashing fix

n-i-bz fix CFl reading failures ("Dwarf CFl 0:24 0:32 0:48 0:7")
n-i-bz fix Cachegrind/Callgrind simulation bug

n-i-bz libmpiwrap.c: fix handling of MPI_LONG_DOUBLE
n-i-bz make User errors suppressible

136844 corrupted malloc line when using --gen-suppressions=yes
138507 ==136844

n-i-bz Speed up the JIT's register allocator

n-i-bz Fix confusing leak-checker flag hints

n-i-bz Support recent autoswamp versions

n-i-bz ppc32/64 dispatcher speedups

n-i-bz ppc64 front end rid/rlw improvements

n-i-bz ppc64 back end imm64 improvements

136300 support 64K pages on ppc64-linux

139124 ==136300

n-i-bz fix ppc insn set tests for gcc >= 4.1

137493 x86->IR: recent binutils no-ops

137714 x86->IR: 0x66 0xF OxF7 0xC6 (maskmovdqu)

138424 "failed in UME with error 22" (produce a better error msg)
138856 ==138424

138627 Enhancement support for prctl ioctls

138896 Add support for ush ioctls

136059 ==138896

139050 ppc32->IR: mfspr 268/269 instructions not handled
n-i-bz ppc32->IR: Ivxl/stvxl

n-i-bz glibc-2.5 support

n-i-bz memcheck: provide replacement for mempcpy

n-i-bz memcheck: replace bcmpinld.so

n-i-bz Use'ifndef' in VEX's Makefile correctly

95

OLDER NEWS

n-i-bz Suppressionsfor MVL 4.0.1 on ppc32-linux

n-i-bz libmpiwrap.c: Fixesfor MPICH

n-i-bz More robust handling of hinted client mmaps

139776 Invalid read in unaligned memcpy with Intel compiler v9
n-i-bz Generate valid XML even for very long fn names

n-i-bz Don't prompt about suppressions for unshown reachable leaks
139910 amd64 rcl is not supported

n-i-bz DWARF CFl reader: handle DW_CFA_undefined

n-i-bz DWARF CFl reader: handle icc9 generated CFl info better
n-i-bz fix false uninit-value errsin icc9 generated FP code

n-i-bz reduce extraneous framesin libmpiwrap.c

n-i-bz support pselect6 on amd64-linux

(3.2.2: 22 Jan 2007, vex r1729, valgrind r6545).

Release 3.2.1 (16 Sept 2006)

3.2.1 adds x86/amd64 support for all SSE3 instructions except monitor
and mwait, further reduces memcheck's false error rate on all
platforms, adds support for recent binutils (in OpenSUSE 10.2 and
Fedora Rawhide) and fixes a bunch of bugsin 3.2.0. Some of the fixed
bugs were causing large programs to segfault with --tool=callgrind and
--tool=cachegrind, so an upgrade is recommended.

In view of the fact that any 3.3.0 release is unlikely to happen until
well into 1Q07, we intend to keep the 3.2.X line alive for awhile
yet, and so we tentatively plan a 3.2.2 rel ease sometime in December
06.

The fixed bugs are asfollows. Note that "n-i-bz" stands for "not in
bugzilla' -- that is, a bug that was reported to us but never got a
bugzillaentry.

n-i-bz Expanding brk() into last available page asserts
n-i-bz ppcé4-linux stack RZ fast-case snafu

n-i-bz 'c'in --gen-supps=yes doesn't work

n-i-bz VG_N_SEGMENTStoo low (users, 28 June)
n-i-bz VG_N_SEGNAMES too low (Stu Robinson)
106852 x86->IR: fisttp (SSE3)

117172 FUTEX_WAKE does not use uaddr2

124039 Lacks support for VKI_[GP]IO_UNIMAP*
127521 amd64->IR: OxFO 0x48 0xF 0xC7 (cmpxchg8b)
128917 amd64->IR: 0x66 OxF 0xF6 0xC4 (psadbw,SSE2)
129246 JJ: ppc32/ppc64 syscalls, w/ patch

129358 x86->IR: fisttpl (SSE3)

129866 cachegrind/callgrind causes executable to die
130020 Can't stat .so/.exe error while reading symbols
130388 Valgrind aborts when process calls malloc_trim()
130638 PATCH: ppc32 missing system calls

130785 amd64->IR: unhandled instruction "pushfq"
131481: (HINT_NOP) vex x86->IR: OxF 0x1F 0x0 OxF
131298 ==131481

132146 Programs with long sequences of bswap[l,q]s

96

OLDER NEWS

132918 vex amd64->IR: 0xD9 OxF8 (fprem)

132813 Assertion at priv/guest-x86/tolR.c:652 fails

133051 ‘cfsi->len >0 && cfsi->len < 2000000 failed

132722 valgrind header files are not standard C

n-i-bz Livelocks entire machine (userslist, Timothy Terriberry)

n-i-bz Alex Bennee mmap problem (9 Aug)

n-i-bz BartV: Don't print more lines of a stack-trace than were obtained.

n-i-bz ppc32 SuSE 10.1 redir

n-i-bz amd64 padding suppressions

n-i-bz amd64 insn printing fix.

n-i-bz ppc cmp reg,reg fix

n-i-bz x86/amd64 iropt e/rflag reduction rules

n-i-bz SuSE 10.1 (ppc32) minor fixes

133678 amd64->IR: 0x48 OxF 0xC5 0xCO (pextrw?)

133694 aspacem assertion; aspacem _minAddr <= holeStart

n-i-bz callgrind: fix warning about malformed creator line

n-i-bz callgrind: fix annotate script for data produced with
--dump-instr=yes

n-i-bz callgrind: fix failed assertion when toggling
instrumentation mode

n-i-bz callgrind: fix annotate script fix warnings with
--collect-jumps=yes

n-i-bz docs path hardwired (Dennis Lubert)

The following bugs were not fixed, due primarily to lack of developer
time, and also because bug reporters did not answer requests for
feedback in time for the release:

129390 ppc?->IR: somekind of VMX prefetch (dstt)

129968 amd64->IR: OxF OxAE 0x0 (fxsave)

133054 'makeingtal’ fails with syntax errors

n-i-bz Signal race condition (userslist, 13 June, Johannes Berg)

n-i-bz Unrecognised instruction at address 0x70198EC2 (userslist,
19 July, Bennee)

132998 startup failsin when running on UML

The following bug was tentatively fixed on the mainline but the fix
was considered too risky to pushinto 3.2.X:

133154 crash when using client requests to register/deregister stack

(3.2.1: 16 Sept 2006, vex r1658, valgrind r6070).

Release 3.2.0 (7 June 2006)

3.2.0isafeature release with many significant improvements and the
usual collection of bug fixes. This release supports X86/Linux,
AMDG64/Linux, PPC32/Linux and PPC64/Linux.

Performance, especially of Memcheck, isimproved, Addrcheck has been
removed, Callgrind has been added, PPC64/Linux support has been added,
Lackey has been improved, and MPI support has been added. In detail:

97

OLDER NEWS

- Memcheck has improved speed and reduced memory use. Run times are
typically reduced by 15-30%, averaging about 24% for SPEC CPU2000.
The other tools have smaller but noticeable speed improvements. We
are interested to hear what improvements users get.

Memcheck uses less memory due to the introduction of a compressed
representation for shadow memory. The space overhead has been
reduced by afactor of up to four, depending on program behaviour.
This means you should be able to run programs that use more memory
than before without hitting problems.

- Addrcheck has been removed. It has not worked since version 2.4.0,
and the speed and memory improvements to Memcheck make it redundant.
If you liked using Addrcheck because it didn't give undefined value
errors, you can use the new Memcheck option --undef-value-errors=no
to get the same behaviour.

- The number of undefined-value errorsincorrectly reported by
Memcheck has been reduced (such false reports were aready very
rare). In particular, efforts have been made to ensure Memcheck
works really well with gecc 4.0/4.1-generated code on X86/Linux and
AMDG64/Linux.

- Josef Weidendorfer's popular Callgrind tool has been added. Folding
it inwas alogical step given its popularity and usefulness, and
makes it easier for usto ensure it works "out of the box" on all
supported targets. The associated KDE K Cachegrind GUI remains a
separate project.

- A new release of the Valkyrie GUI for Memcheck, version 1.2.0,
accompaniesthisrelease. |mprovements over previous rel eases
include improved robustness, many refinements to the user interface,
and use of a standard autoconf/automake build system. Y ou can get
it from http://www.val grind.org/downloads/guis.html.

- Valgrind now works on PPC64/Linux. Aswith the AMDG64/Linux port,
this supports programs using to 32G of address space. On 64-hit
capable PPC64/Linux setups, you get a dual architecture build so
that both 32-bit and 64-bit executables can be run. Linux on POWER5
is supported, and POWER4 is also believed to work. Both 32-bit and
64-bit DWARF2 is supported. This port is known to work well with
both gcc-compiled and xlc/xIf-compiled code.

- Floating point accuracy has been improved for PPC32/Linux.
Specifically, the floating point rounding mode is observed on all FP
arithmetic operations, and multiply-accumulate instructions are
preserved by the compilation pipeline. This means you should get FP
results which are bit-for-bit identical to anative run. These
improvements are also present in the PPC64/Linux port.

- Lackey, the example tool, has been improved:
* |t has a new option --detailed-counts (off by default) which

causes it to print out a count of loads, stores and ALU operations

98

OLDER NEWS

done, and their sizes.

* |t has a new option --trace-mem (off by default) which causes it
to print out atrace of al memory accesses performed by a
program. It's agood starting point for building Valgrind tools
that need to track memory accesses. Read the comments at the top
of thefile lackey/lk_main.c for details.

* The original instrumentation (counting numbers of instructions,
jumps, etc) is now controlled by anew option --basic-counts. It
ison by default.

- MPI support: partial support for debugging distributed applications
using the MPI library specification has been added. Vagrindis
aware of the memory state changes caused by a subset of the MPI
functions, and will carefully check data passed to the (PYMPI_
interface.

- A new flag, --error-exitcode=, has been added. This allows changing
the exit code in runs where Valgrind reported errors, which is
useful when using Valgrind as part of an automated test suite.

- Various segfaults when reading old-style "stabs" debug information
have been fixed.

- A simple performance evaluation suite has been added. See
perffREADME and README_DEVELOPERS for details. There are
various bells and whistles.

- New configuration flags:
--enable-only32bit
--enabl e-only64bit
By default, on 64 bit platforms (ppc64-linux, and64-linux) the build
system will attempt to build a Valgrind which supports both 32-bit
and 64-hit executables. This may not be what you want, and you can
override the default behaviour using these flags.

Please note that Helgrind is till not working. We have made an
important step towards making it work again, however, with the
addition of function wrapping (see below).

Other user-visible changes:

- Valgrind now has the ability to intercept and wrap arbitrary
functions. Thisisapreliminary step towards making Helgrind work
again, and was required for MPI support.

- There are some changes to Memcheck's client requests. Some of them
have changed names:

MAKE_NOACCESS --> MAKE_MEM_NOACCESS
MAKE_WRITABLE --> MAKE_MEM_UNDEFINED
MAKE_READABLE -->MAKE_MEM_DEFINED

99

OLDER NEWS

CHECK_WRITABLE --> CHECK_MEM_IS ADDRESSABLE
CHECK_READABLE --> CHECK_MEM_IS DEFINED
CHECK_DEFINED --> CHECK_VALUE_IS DEFINED

The reason for the change is that the old names are subtly
misleading. The old names will still work, but they are deprecated
and may be removed in afuture release.

We also added a new client request:

MAKE_MEM_DEFINED_IF_ADDRESSABLE(a, len)

whichislike MAKE_MEM_DEFINED but only affects abyteif the byteis

already addressable.

- The way client requests are encoded in the instruction stream has
changed. Unfortunately, this means 3.2.0 will not honour client
requests compiled into binaries using headers from earlier versions
of Valgrind. Wewill try to keep the client request encodings more
stablein future.

BUGS FIXED:

108258 NPTL pthread cleanup handlers not called

117290 valgrind issigKILL'd on startup

117295 ==117290

118703 m_signals.c:1427 Assertion 'tst->status == VgTs WaitSys
118466 add %reg, %oreg generates incorrect validity for bit 0
123210 New: strlen from Id-linux on amd64

123244 DWARF2 CFl reader: unhandled CFl instruction 0:18
123248 syscallsin glibc-2.4: openat, fstatat, symlinkat
123258 socketcall.recvmsg(msg.msg_iov[i] pointsto uninit
123535 mremap(new_addr) requires MREMAP_FIXED in 4th arg
123836 small typo in the doc

124029 ppc compilefailed: “vor' gcc 3.3.5

124222 Segfault: @@don't know what type ;' is

124475 ppc32: crash (syscall?) timer_settime()

124499 amd64->IR: OxF OxE 0x48 0x85 (femms)

124528 FATAL: aspacem assertion failed: segment_is sane
124697 vex x86->IR: OxF 0x70 0xC9 0x0 (pshufw)

124892 vex x86->IR: OxF3 OXxAE (REPx SCASB)

126216 ==124892

124808 ppc32: sys sched getaffinity() not handled

n-i-bz Very long stabs strings crash m_debuginfo

n-i-bz amd64->IR: 0x66 OxF OxF5 (pmaddwd)

125492 ppc32: support a bunch more syscalls

121617 ppc32/64: coredumping gives assertion failure
121814 Coregrind return error as exitcode patch

126517 ==121814

125607 amd64->IR: 0x66 OxF 0xA3 0x2 (btw etc)

125651 amd64->IR: OxF8 0x49 0xFF OxE3 (clc?)

126253 x86 movx iswrong

126451 3.2 SVN doesn't work on ppc32 CPU's without FPU
126217 increase # threads

100

OLDER NEWS

126243 vex x86->IR: popw mem

126583 amd64->IR: 0x48 OxF 0xA4 0xC2 (shld $1,%rax,%rdx)

126668 amd64->IR: Ox1C OxFF (sbb $0xff,%al)

126696 support for CDROMREADRAW ioctl and CDROMREADTOCENTRY fix
126722 assertion; segment_is sane at m_aspacemgr/aspacemgr.c:1624

126938 bad checking for syscalls linkat, renameat, symlinkat

(3.2.0RC1: 27 May 2006, vex r1626, vagrind r5947).
(3.2.0: 7 June 2006, vex r1628, valgrind r5957).

Release 3.1.1 (15 March 2006)

3.1.1 fixes abunch of bugsreported in 3.1.0. Thereisno new
functionality. Thefixed bugs are:

(note: "n-i-bz" means "not in bugzilla" -- this bug does not have
abugzilla entry).

n-i-bz ppc32: fsub 3,3,3 in dispatcher doesn't clear NaNs
n-i-bz ppc32: _ NR {set,get} priority

117332 x86: missing lineinfo withicc 8.1

117366 amd64: 0xDD 0x7C fnstsw

118274 ==117366

117367 amd64: 0xD9 OxF4 fxtract

117369 amd64: NR_getpriority (140)

117419 ppc32: Ifsuf5, -4(rll)

117419 ppc32: fsort

117936 more stabs problems (segfaults while reading debug info)
119914 ==117936

120345 ==117936

118239 amd64: OxF OXAE Ox3F (clflush)

118939 vma86old system call

n-i-bz memcheck/tests'mempool reads freed memory
n-i-bz AshleyP's custom-allocator assertion

n-i-bz Dirk strict-aliasing stuff

n-i-bz More space for debugger cmd line (Dan Thaler)
n-i-bz Clarified leak checker output message

n-i-bz AshleyP's --gen-suppressions output fix

n-i-bz cg_annotate's --sort option broken

n-i-bz OSet 64-bit fastcmp bug

n-i-bz VG_(getgroups) fix (Shinichi Noda)

n-i-bz ppc32: alocate from callee-saved FP/VMX regs
n-i-bz misaligned path word-size bug in mc_main.c
119297 Incorrect error message for sse code

120410 x86: prefetchw (OxF OxD 0x48 0x4)

120728 TIOCSERGETLSR, TIOCGICOUNT, HDIO_GET_DMA ioctls
120658 Build fixesfor gcc 2.96

120734 x86: Support for changing EIP in signal handler
n-i-bz memcheck/tests/zeropage de-looping fix

n-i-bz x86: fxtract doesn't work reliably

121662 x86: lock xadd (0xFO OxF 0xCO 0x2)

121893 calloc does not always return zeroed memory
121901 no support for syscall tkill

101

OLDER NEWS

n-i-bz Suppression update for Debian unstable

122067 amd64: fcmovnu (OxDB 0xD9)

n-i-bz ppc32: broken signal handling in cpu feature detection
n-i-bz ppc32: rounding mode problems (improved, partial fix only)
119482 ppc32: mtfsbl

n-i-bz ppc32: mtocrf/mfocrf

(3.1.1: 15 March 2006, vex r1597, valgrind r5771).

Release 3.1.0 (25 November 2005)

3.1.0isafeature release with a number of significant improvements:;
AMDG64 support is much improved, PPC32 support is good enough to be
usable, and the handling of memory management and address space is
much more robust. In detail:

- AMD®64 support is much improved. The 64-bit vs. 32-hit issuesin
3.0.X have been resolved, and it should "just work" now in all
cases. On AM D64 machines both 64-bit and 32-bit versions of
Valgrind are built. Theright version will be invoked
automatically, even when using --trace-children and mixing execution
between 64-hit and 32-hit executables. Also, many more instructions
are supported.

- PPC32 support is now good enough to be usable. It should work with
all tools, but please et us know if you have problems. Three
classes of CPUs are supported: integer only (no FP, no Altivec),
which covers embedded PPC uses, integer and FP but no Altivec
(G3-ish), and CPUs capable of Altivec too (G4, Gb5).

- Valgrind's address space management has been overhauled. Asa
result, Valgrind should be much more robust with programs that use
large amounts of memory. There should be many fewer "memory
exhausted" messages, and debug symbols should be read correctly on
large (eg. 300MB+) executables. On 32-bit machines the full address
space available to user programs (usually 3GB or 4GB) can be fully
utilised. On 64-hit machines up to 32GB of space is usable; when
using Memcheck that means your program can use up to about 14GB.

A side effect of this changeisthat Valgrind is no longer protected
against wild writes by the client. Thisfeature was nice but relied
on the x86 segment registers and so wasn't portable.

- Most users should not notice, but as part of the address space
manager change, the way Valgrind is built has been changed. Each
tool is now built as a statically linked stand-al one executable,
rather than as a shared object that is dynamically linked with the
core. The"valgrind" program invokes the appropriate tool depending
on the --tool option. This slightly increases the amount of disk
space used by Valgrind, but it greatly simplified many things and
removed Valgrind's dependence on glibc.

Please note that Addrcheck and Helgrind are still not working. Work

102

OLDER NEWS

is underway to reinstate them (or equivalents). We apologise for the
inconvenience.

Other user-visible changes:
- The --weird-hacks option has been renamed --sim-hints.

- The --time-stamp option no longer gives an absolute date and time.
It now prints the time elapsed since the program began.

- It should build with gcc-2.96.

- Valgrind can now run itself (see README_DEVEL OPERS for how).
Thisis not much use to you, but it means the devel opers can now
profile Valgrind using Cachegrind. Asaresult a couple of
performance bad cases have been fixed.

- The XML output format has changed dightly. See
docs/internal s/xml-output.txt.

- Core dumping has been reinstated (it was disabled in 3.0.0 and 3.0.1).
If your program crashes while running under Valgrind, a core file with
the name "vgcore.<pid>" will be created (if your settings allow core
file creation). Note that the floating point information is not all
there. If Valgrind itself crashes, the OS will create anormal core
file

The following are some user-visible changes that occurred in earlier
versions that may not have been announced, or were announced but not
widely noticed. So we're mentioning them now.

- The --tool flag is optional once again; if you omit it, Memcheck
isrun by default.

- The --num-callers flag now has adefault value of 12. It was
previously 4.

- The --xml=yes flag causes Valgrind's output to be produced in XML
format. Thisisdesigned to make it easy for other programsto
consume Valgrind's output. The format is described in thefile
docs/interna s/xml-format.txt.

- The --gen-suppressions flag supports an "al" value that causes every
suppression to be printed without asking.

- The --log-file option no longer puts "pid" in the filename, eg. the
old name "foo.pid12345" is now "f00.12345".

- There are several graphical front-ends for Valgrind, such as Valkyrie,
Alleyoop and Valgui. See http://www.valgrind.org/downloads/guis.html
for alist.

BUGS FIXED:

103

OLDER NEWS

109861 amd64 hangs at startup

110301 ditto

111554 valgrind crashes with Cannot allocate memory

111809 Memcheck tool doesn't start java

111901 cross-platform run of cachegrind fails on opteron

113468 (vgPlain_mprotect range): Assertion'r 1= -1' failed.

92071 Reading debugging info uses too much memory

109744 memcheck loses track of mmap from direct |d-linux.so.2

110183 tail of page with _end

82301 FV memory layout too rigid

98278 Infinite recursion possible when allocating memory

108994 Valgrind runs out of memory due to 133x overhead

115643 valgrind cannot allocate memory

105974 vg_hashtable.c static hash table

109323 ppc32: dispatch.S uses Altivec insn, which doesn't work on POWER.

109345 ptrace setregs not yet implemented for ppc

110831 Would like to be able to run against both 32 and 64 hit
binarieson AMD64

110829 ==110831

111781 compile of valgrind-3.0.0 fails on my linux (gcc 2.X prob)

112670 Cachegrind: cg_main.c:486 (handleOneStatement ...

112941 vex x86: 0xD9 0xF4 (fxtract)

110201 ==112941

113015 vex amd64->IR: OxE3 0x14 0x48 0x83 (jrcxz)

113126 Crash with binaries built with -gstabs+/-ggdb

104065 == 113126

115741 ==113126

113403 Partial SSE3 support on x86

113541 vex: Grp5(x86) (alt encoding inc/dec) case 1

113642 valgrind crashes when trying to read debug information

113810 vex x86->IR: 66 OF F6 (66 + PSADBW == SSE PSADBW)

113796 read() and write() do not work if buffer isin shared memory

113851 vex x86->IR: (pmaddwd): 0x66 OxF OxF5 0xC7

114366 vex amd64 cannnot handle _asm__("fninit")

114412 vex amd64->IR: OxF OxAD 0xC2 0xD3 (128-bit shift, shrdq?)

114455 vex amd64->IR: OxF OxAC 0xDO0 0x1 (also shrdq)

115590: amd64->IR: 0x67 OXE3 0x9 OXEB (address size override)

115953 valgrind svn r5042 does not build with parallel make (-j3)

116057 maximum instruction size- VG_MAX_INSTR_SZB too small?

116483 shmat failes with invalid argument

102202 valgrind crashes when realloc'ing until out of memory

109487 == 102202

110536 == 102202

112687 == 102202

111724 vex amd64->IR: 0x41 OxF OxAB (more BT{,S,R,C} fun n games)

111748 vex amd64->IR: OxDD OxE2 (fucom)

111785 makefailsif CC contains spaces

111829 vex x86->IR: shb AL, Ib

111851 vex x86->IR: 0x9F 0x89 (lIahf/sahf)

112031 iopl on AMD64 and README_MISSING_SYSCALL_OR_IOCTL update

112152 code generation for Xin_MFence on x86 with SSEO subarch

112167 ==112152

112789 ==112152

112199 naked ar tool isused in vex makefile

104

OLDER NEWS

112501 vex x86->IR: movq (0xF 0x7F 0xC1 OxF) (mmx MOV Q)
113583 ==112501
112538 memalign crash
113190 Broken linksin docs/html/
113230 Valgrind sys pipe on x86-64 wrongly thinks file descriptors
should be 64bit
113996 vex amd64->IR: fucomp (OxDD OxE9)
114196 vex x86->IR: out %eax,(%dx) (OXEF 0xC9 0xC3 0x90)
114289 Memcheck failsto intercept malloc when used in an uclibc environment
114756 mbind syscall support
114757 Valgrind dies with assertion: Assertion 'noLargerThan > 0' failed
114563 stack tracking module not informed when valgrind switches threads
114564 clone() and stacks
114565 == 114564
115496 glibc crashes trying to use sysinfo page
116200 enable fsetxattr, fgetxattr, and fremovexattr for and64

(3.1.0RC1: 20 November 2005, vex r1466, valgrind r5224).
(3.1.0: 26 November 2005, vex r1471, valgrind r5235).

Release 3.0.1 (29 August 2005)

3.0.1 fixes abunch of bugsreported in 3.0.0. Thereisno new
functionality. Some of the fixed bugs are critical, so if you
use/distribute 3.0.0, an upgrade to 3.0.1 is recommended. The fixed
bugs are:

(note: "n-i-bz" means "not in bugzilla" -- this bug does not have
abugzilla entry).

109313 (== 110505) x86 cmpxchg8b

n-i-bz x86: track but ignore changes to %eflags.AC (alignment check)

110102 dis op2 E_G(amd64)

110202 x86 sys waitpid(#286)

110203 clock_getres(,0)

110208 execve fail wrong retval

110274 SSE1 now mandatory for x86

110388 amd64 0xDD 0xD1

110464 amd64 0xDC 0x1D FCOMP

110478 amd64 OxF 0xD PREFETCH

n-i-bz XML <unique> printing wrong

n-i-bz Dirk r4359 (amd64 syscalls from trunk)

110591 amd64 and x86: rdtsc not implemented properly

n-i-bz Nick r4384 (stub implementations of Addrcheck and Helgrind)

110652 AMDG64 valgrind crashes on cwtd instruction

110653 AMDG64 valgrind crashes on sarb $0x4,foo(%rip) instruction

110656 PATH=/usr/bin::/bin valgrind foobar stats ./fooba

110657 Small test fixes

110671 vex x86->IR: unhandled instruction bytes: 0OxF3 0xC3 (rep ret)

n-i-bz Nick (Cachegrind should not assert when it encounters a client
regquest.)

110685 amd64->IR: unhandled instruction bytes: OxE1 0x56 (loope Jb)

110830 configuring with --host fails to build 32 bit on 64 bit target

105

OLDER NEWS

110875 Assertion when execvefails

n-i-bz Updates to Memcheck manual

n-i-bz Fixed broken malloc_usable size()

110898 opteron instructions missing: btq btsq btrq bsfq

110954 x86->IR: unhandled instruction bytes; OXE2 0xF6 (loop Jb)

n-i-bz Make suppressions work for "???" lines in stacktraces.

111006 bogus warnings from linuxthreads

111092 x86: dis Grp2(Reg): unhandled case(x86)

111231 sctp_getladdrs() and sctp_getpaddrs() returns uninitialized
memory

111102 (comment #4) Fixed 64-hit unclean "silly arg" message

n-i-bz vex x86->IR: unhandled instruction bytes; 0x14 0x0

n-i-bz minor umount/fentl wrapper fixes

111090 Internal Error running Massif

101204 noisy warning

111513 lllegal opcode for SSE instruction (x86 movups)

111555 VEX/Makefile: CCis set to gcc

n-i-bz Fix XML bugsin FAQ

(3.0.1: 29 August 05,

vex/branches’VEX_3 0 BRANCH r1367,
vagrind/branches’VALGRIND_3 0 BRANCH r4574).

Release 3.0.0 (3 August 2005)

3.0.0isamagjor overhaul of Valgrind. The most significant user

visible changeis that Valgrind now supports architectures other than
x86. The new architecturesit supports are AMD64 and PPC32, and the
infrastructure is present for other architectures to be added later.

AMD64 support works well, but has some shortcomings:

- It generally won't be as solid as the x86 version. For example,

support for more obscure instructions and system calls may be missing.

We will fix these asthey arise.

- Address space may be limited; see the point about
position-independent executables below.

- If Vagrind is built on an AMDG64 machine, it will only run 64-bit
executables. If you want to run 32-bit x86 executables under Valgrind
on an AMDG64, you will need to build Valgrind on an x86 machine and
copy it to the AMD64 machine. And it probably won't work if you do
something tricky like exec'ing a 32-bit program from a 64-hit program
while using --trace-children=yes. We hope to improve this situation
in the future.

The PPC32 support isvery basic. It may not work reliably even for
small programs, but it's astart. Many thanks to Paul Mackerras for
his great work that enabled this support. We are working to make
PPC32 usable as soon as possible.

106

OLDER NEWS

Other user-visible changes:

- Valgrind is no longer built by default as a position-independent
executable (PIE), as this caused too many problems.

Without PIE enabled, AMD®64 programs will only be able to access 2GB of
address space. We will fix this eventualy, but not for the moment.

Use --enable-pie at configure-time to turn this on.

- Support for programs that use stack-switching has been improved. Use
the --max-stackframe flag for smple cases, and the

VALGRIND_STACK_REGISTER, VALGRIND_STACK_DEREGISTER and

VALGRIND_STACK_CHANGE client requests for trickier cases.

- Support for programs that use self-modifying code has been improved,
in particular programs that put temporary code fragments on the stack.
Thishelpsfor C programs compiled with GCC that use nested functions,
and also Ada programs. Thisis controlled with the --smc-check
flag, although the default setting should work in most cases.

- Output can now be printed in XML format. This should make it easier
for tools such as GUI front-ends and automated error-processing
schemes to use Valgrind output asinput. The --xml flag controls this.
As part of this change, ELF directory information is read from executables,
so absolute source file paths are available if needed.

- Programs that allocate many heap blocks may run faster, due to
improvements in certain data structures.

- Addrcheck is currently not working. We hope to get it working again
soon. Helgrind is still not working, as was the case for the 2.4.0
release.

- The J Tter has been completely rewritten, and is now in a separate
library, called Vex. Thisenabled alot of the user-visible changes,
such as new architecture support. The new JIT unfortunately translates
more slowly than the old one, so programs may take longer to start.
We believe the code quality is produces is about the same, so once
started, programs should run at about the same speed. Feedback about
this would be useful.

On the plus side, Vex and hence Memcheck tracks value flow properly
through floating point and vector registers, something the 2.X line
could not do. That means that Memcheck is much more likely to be
usably accurate on vectorised code.

- There is a subtle change to the way exiting of threaded programs
ishandled. In 3.0, Valgrind'sfinal diagnostic output (leak check,
etc) is not printed until the last thread exits. If the last thread
to exit was not the original thread which started the program, any
other process wait()-ing on this one to exit may conclude it has
finished before the diagnostic output is printed. This may not be
what you expect. 2.X had adifferent scheme which avoided this

107

OLDER NEWS

problem, but caused deadlocks under obscure circumstances, so we
are trying something different for 3.0.

- Small changesin control log file naming which make it easier to
use valgrind for debugging MPI-based programs. The relevant
new flags are --log-file-exactly= and --log-file-qualifier=.

- As part of adding AMD64 support, DWARF2 CFl-based stack unwinding
support was added. In principle this means Valgrind can produce
meaningful backtraces on x86 code compiled with -fomit-frame-pointer
providing you also compile your code with -fasynchronous-unwind-tables.

- The documentation build system has been completely redone.
The documentation masters are now in XML format, and from that
HTML, PostScript and PDF documentation is generated. As aresult
the manual is now availablein book form. Note that the
documentation in the source tarballs is pre-built, so you don't need
any XML processing toolsto build Valgrind from a tarball.

Changes that are not user-visible;

- The code has been massively overhauled in order to modularise it.
Asaresult we hopeit is easier to navigate and understand.

- Lots of code has been rewritten.
BUGS FIXED:

110046 sz == 4 assertion failed

109810 vex amd64->IR: unhandled instruction bytes: 0xA3 0x4C 0x70 0xD7

109802 Add aplausible stack size command-line parameter ?

109783 unhandled ioctl TIOCMGET (running hw detection tool discover)

109780 unhandled ioctl BLKSSZGET (running fdisk -l /dev/hda)

109718 vex x86->IR: unhandled instruction: ffreep

109429 AMDG64 unhandled syscall: 127 (sigpending)

109401 false positive uninit in strchr from Id-linux.so.2

109385 "stabs" parse failure

109378 amd64: unhandled instruction REP NOP

109376 amd64: unhandled instruction LOOP Jb

109363 AMDG64 unhandled instruction bytes

109362 AMD64 unhandled syscall: 24 (sched_yield)

109358 fork() won't work with valgrind-3.0 SYN

109332 amd64 unhandled instruction: ADC Ev, Gv

109314 Bogus memcheck report on amdé4

108883 Crash; vg_memory.c:905 (vgPlain_init_shadow_range):
Assertion "vgPlain_defined init_shadow_page()' failed.

108349 mincore syscall parameter checked incorrectly

108059 build infrastructure: small update

107524 epoll_ctl event parameter checked on EPOLL_CTL_DEL

107123 Vex dieswith unhandled instructions: 0xD9 0x31 OxF OxAE

106841 auxmap & openGL problems

106713 SDL_Init causes valgrind to exit

106352 setcontext and makecontext not handled correctly

106293 addresses beyond initial client stack allocation

108

OLDER NEWS

not checked in VALGRIND_DO_LEAK_CHECK
106283 PIE client programs are loaded at address 0
105831 Assertion “vgPlain_defined_init_shadow page()' failed.
105039 long run-times probably due to memory manager
104797 valgrind needs to be aware of BLKGETSIZE64
103594 unhandled instruction: FICOM
103320 Valgrind 2.4.0 fails to compile with gcc 3.4.3 and -O0
103168 potentially memory leak in coregrind/ume.c
102039 bad permissions for mapped region at address 0xB7C73680
101881 weird assertion problem
101543 Support fadvise64 syscalls
75247 x86_64/amd64 support (the biggest "bug" we have ever fixed)

(3.0RC1: 27 July 05, vex r1303, valgrind r4283).
(3.0.0: 3 August 05, vex r1313, valgrind r4316).

Stable release 2.4.1 (1 August 2005)

(The notes for thisrelease have been lost. Sorry! It would have
contained various bug fixes but no new features.)

Stable release 2.4.0 (March 2005) -- CHANGES RELATIVE TO 2.2.0

2.4.0 brings many significant changes and bug fixes. The most
significant user-visible change is that we no longer supply our own
pthread implementation. Instead, Valgrind isfinally capable of
running the native thread library, either LinuxThreads or NPTL.

This means our libpthread has gone, along with the bugs associated
with it. Valgrind now supports the kernel's threading syscalls, and
lets you use your standard system libpthread. Asaresult:

* There are many fewer system dependencies and strange library-related
bugs. Thereisasmall performance improvement, and alarge
stability improvement.

* On the downside, Valgrind can no longer report misuses of the POSIX
PThreads API. It also means that Helgrind currently does not work.
We hope to fix these problemsin afuture release.

Note that running the native thread libraries does not mean Valgrind

is able to provide genuine concurrent execution on SMPs. We still

impose the restriction that only one thread is running at any given

time.

There are many other significant changes too:

* Memcheck is (once again) the default tool.

* The default stack backtrace is now 12 call frames, rather than 4.

109

OLDER NEWS

* Suppressions can have up to 25 call frame matches, rather than 4.

* Memcheck and Addrcheck use less memory. Under some circumstances,
they no longer allocate shadow memory if there are large regions of
memory with the same A/V states - such as an mmaped file.

* The memory-leak detector in Memcheck and Addrcheck has been
improved. It now reports more types of memory leak, including
leaked cycles. When reporting leaked memory, it can distinguish
between directly leaked memory (memory with no references), and
indirectly leaked memory (memory only referred to by other leaked
memory).

* Memcheck's confusion over the effect of mprotect() has been fixed:
previously mprotect could erroneously mark undefined data as
defined.

* Signal handling is much improved and should be very close to what
you get when running natively.

One result of thisisthat Valgrind observes changes to sigcontexts
passed to signal handlers. Such modifications will take effect when
the signal returns. Y ou will need to run with --single-step=yes to
make this useful.

* Valgrind is built in Position Independent Executable (PIE) format if
your toolchain supportsit. Thisallowsit to take advantage of all
the available address space on systems with 4Gbyte user address
spaces.

* Valgrind can now run itself (requires PIE support).

* Syscall arguments are now checked for validity. Previously all
memory used by syscalls was checked, but now the actual values
passed are also checked.

* Syscall wrappers are more robust against bad addresses being passed
to syscalls: they will fail with EFAULT rather than killing Valgrind
with SIGSEGV.

* Because clong() is directly supported, some non-pthread uses of it
will work. Partial sharing (where some resources are shared, and
some are not) is not supported.

* open() and readlink() on /proc/self/exe are supported.

BUGS FIXED:

88520 pipe+fork+dup2 kills the main program

88604 Valgrind Aborts when using $V ALGRIND_OPTS and user progra...

88614 valgrind: vg_libpthread.c;2323 (read): Assertion ‘read pt...
88703 Stabs parser failsto handle";"
88886 ioctl wrappersfor TIOCMBIS and TIOCMBIC

110

OLDER NEWS

89032 valgrind pthread cond_timedwait fails

89106 the 'impossible’ happened

89139 Missing sched setaffinity & sched getaffinity

89198 valgrind lacks support for SIOCSPGRP and SIOCGPGRP
89263 Missing ioctl trandlations for scsi-generic and CD playing
89440 tests/deadlock.c line endings

89481 ‘impossible’ happened: EXEC FAILED

89663 valgrind 2.2.0 crash on Redhat 7.2

89792 Report pthread_mutex_lock() deadlocks instead of returnin...
90111 statvfs64 givesinvalid error/warning

90128 crash+memory fault with stabs generated by gnat for arun...
90778 VALGRIND_CHECK_DEFINED() not as documented in memcheck.h
90834 cachegrind crashes at end of program without reporting re...
91028 valgrind: vg_memory.c:229 (vgPlain_unmap_range): Assertio...
91162 valgrind crash while debugging drivel 1.2.1

91199 Unimplemented function

91325 Signal routing does not propagate the siginfo structure
91599 Assertion “cv == ((void *)0)'

91604 rw_lookup clears orig and sends the NULL valueto rw_new
91821 Small problems building valgrind with $top_builddir ne $t...
91844 signa 11 (SIGSEGV) at get_tcb (libpthread.c:86) in corec...
92264 UNIMPLEMENTED FUNCTION: pthread_condattr_setpshared
92331 per-target flags necessitate AM_PROG _CC C O

92420 valgrind doesn't compile with linux 2.6.8.1/9

92513 Valgrind 2.2.0 generates some warning messages

92528 vg_symtab2.c:170 (addL oc): Assertion “loc->size > 0' failed.
93096 unhandled ioctl 0x4B3A and 0x5601

93117 Tool and core interface versions do not match

93128 Can't run valgrind --tool=memcheck because of unimplement...
93174 Vagrind can crash if passed bad argsto certain syscalls
93309 Stack framein new thread is badly aligned

93328 Wrong types used with sys sigprocmask()

93763 /usr/include/asm/msr.h ismissing

93776 valgrind: vg_memory.c:508 (vgPlain_find map_space): Asser...
93810 fentl() argument checking a bit too strict

94378 Assertion “tst->sigqueue_head ! = tst->sigqueue tail' failed.
94429 valgrind 2.2.0 segfault with mmap64 in glibc 2.3.3

94645 Impossible happened: PINSRW mem

94953 valgrind: the “impossible’ happened: SIGSEGV

95667 Valgrind does not work with any KDE app

96243 Assertion 'res==0'failed

96252 stage? loader of valgrind fails to allocate memory

96520 All programscrashing at _dl_start (in/lib/ld-2.3.3.50) ...
96660 ioctl CDOROMREADTOCENTRY causes bogus warnings
96747 After looping in a segfault handler, the impossible happens
96923 Zero sized arrays crash valgrind trace back with SIGFPE
96948 valgrind stops with assertion failure regarding mmap2
96966 valgrind fails when application opens more than 16 sockets
97398 valgrind: vg_libpthread.c;2667 Assertion failed

97407 valgrind: vg_mylibc.c:1226 (vgPlain_safe fd): Assertion "...
97427 "Warning: invalid file descriptor -1 in syscall close()" ...
97785 missing backtrace

97792 buildin obj dir fails - autoconf / makefile cleanup

97880 pthread mutex_lock fails from shared library (special ker...

111

OLDER NEWS

97975 program aborts without ang VG messages

98129 Failed when open and close file 230000 times using stdio
98175 Crasheswhen using valgrind-2.2.0 with aprogram using al...
98288 Massif broken

98303 UNIMPLEMENTED FUNCTION pthread_condattr_setpshared
98630 failed--compilation missing warnings.pm, fails to make he...
98756 Cannot valgrind signal-heavy kdrive X server

98966 valgrinding the JVM fails with a sanity check assertion
99035 Vagrind crashes while profiling

99142 |oops with message "Signal 11 being dropped from thread O...
99195 threaded apps crash on thread start (using QThread::start...
99348 Assertion “vgPlain_Iseek(core fd, 0, 1) == phdrd[i].p_off...
99568 False negative due to mishandling of mprotect

99738 valgrind memcheck crashes on program that uses sigitimer
99923 0-sized allocations are reported as leaks

99949 program seg faults after exit()

100036 "newSuperblock's request for 1048576 bytes failed"

100116 valgrind: (pthread_cond_init): Assertion “sizeof(* cond) ...
100486 memcheck reports "valgrind: the “impossible’ happened: V...
100833 second call to "mremap” failswith EINVAL

101156 (vgPlain find_map_space): Assertion “(addr & ((1 << 12)-1...
101173 Assertion “recDepth >= 0 & & recDepth < 500' failed
101291 creating threads in aforked process fails

101313 valgrind causes different behavior when resizing awindow...
101423 segfault for c++ array of floats

101562 valgrind massif dies on SIGINT even with signal handler r...

Stable release 2.2.0 (31 August 2004) -- CHANGES RELATIVE TO 2.0.0

2.2.0 brings nine months worth of improvements and bug fixes. We
believe it to be aworthy successor to 2.0.0. There are literally
hundreds of bug fixes and minor improvements. There are also some
fairly major user-visible changes:

* A complete overhaul of handling of system calls and signals, and
their interaction with threads. |n general, the accuracy of the
system call, thread and signal simulations is much improved:

- Blocking system calls behave exactly as they do when running
natively (not on valgrind). That is, if asyscall blocks only the
calling thread when running natively, than it behaves the same on
valgrind. No more mysterious hangs because V doesn't know that some
syscall or other, should block only the calling thread.

- Interrupted syscalls should now give more faithful results.
- Signal contextsin signal handlers are supported.

* |mprovements to NPTL support to the extent that V now works
properly on NPTL-only setups.

* Greater isolation between Valgrind and the program being run, so
the program is less likely to inadvertently kill Valgrind by

112

OLDER NEWS

doing wild writes.

* Massif: anew space profiling tool. Try it! It'scool, and it'll
tell you in detail where and when your C/C++ code is allocating heap.
Draws pretty .ps pictures of memory use against time. A potentially
powerful tool for making sense of your program'’s space use.

* File descriptor leakage checks. When enabled, Valgrind will print out
alist of open file descriptors on exit.

* |mproved SSE2/SSE3 support.

* Time-stamped output; use --time-stamp=yes

Stable release 2.2.0 (31 August 2004) -- CHANGES RELATIVETO 2.1.2

2.2.0isnot much different from 2.1.2, released seven weeks ago.

A number of bugs have been fixed, most notably #85658, which gave

problems for quite afew people. There have been many internal

cleanups, but those are not user visible.

The following bugs have been fixed since 2.1.2;

85658 Assert in coregrind/vg_libpthread.c:2326 (open64) !=
(void*)0 failed
This bug was reported multiple times, and so the following
duplicates of it are also fixed: 87620, 85796, 85935, 86065,
86919, 86988, 87917, 88156

80716 Semaphore mapping bug caused by unmap (sem_destroy)
(Wasfixed prior to 2.1.2)

86987 semctl and shmctl syscalls family is not handled properly
86696 valgrind 2.1.2+ RH AS2.1 + librt

86730 valgrind locks up at end of run with assertion failure
in__pthread unwind

86641 memcheck doesn't work with Mesa OpenGL/ATI on Suse 9.1
(also fixes 74298, a duplicate of this)

85947 MMX/SSE unhandled instruction 'sfence

84978 Wrong error "Conditional jump or move depends on
uninitialised value" resulting from "sbbl %reg, %reg"

86254 ssort() fails when signed int return type from comparison is
too small to handle result of unsigned int subtraction

87089 memalign(4, xxx) makes valgrind assert

113

OLDER NEWS

86407 Add support for low-level paralléel port driver ioctls.
70587 Add timestampsto Valgrind output? (wishlist)

84937 vg_libpthread.c:2505 (se_remap): Assertion ‘res==('
(fixed prior to 2.1.2)

86317 cannot load libSDL-1.2.50.0 using valgrind

86989 memcpy from mac_replace strmem.c complains about
uninitialized pointers passed when length to copy is zero

85811 gnu pascal symbol causes segmentation fault; ok in 2.0.0
79138 writing to sbrk()'d memory causes segfault

77369 sched deadlock while signal received during pthread join
and the joined thread exited

88115 Insigna handler for SIGFPE, siginfo->si_addr iswrong
under Valgrind

78765 Massif crashes on app exit if FP exceptions are enabled

Additionally there are the following changes, which are not
connected to any bug report numbers, AFAICS:

* Fix scary bug causing mis-identification of SSE storesvs
loads and so causing memcheck to sometimes give nonsense results
on SSE code.

* Add support for the POSIX message queue system calls.

* Fix to allow 32-bit Valgrind to run on AMD64 boxes. Note: this does
NOT alow Valgrind to work with 64-bit executables - only with 32-hit
executables on an AMD64 box.

* At configure time, only check whether linux/mii.h can be processed
so that we don't generate ugly warnings by trying to compileit.

* Add support for POSIX clocks and timers.

Developer (cvs head) release 2.1.2 (18 July 2004)

2.1.2 contains four months worth of bug fixes and refinements.
Although officially a developer release, we believe it to be stable
enough for widespread day-to-day use. 2.1.2 is pretty good, so try it
first, although there is achance it won't work. If so then try 2.0.0
and tell uswhat went wrong." 2.1.2 fixes alot of problems present
in 2.0.0 and is generally a much better product.

Relativeto 2.1.1, alarge number of minor problemswith 2.1.1 have

114

OLDER NEWS

been fixed, and so if you use 2.1.1 you should try 2.1.2. Users of
the last stable release, 2.0.0, might also want to try thisrelease.

The following bugs, and probably many more, have been fixed. These
are listed at http://bugs.kde.org. Reporting abug for valgrind in

the http://bugs.kde.org is much more likely to get you afix than
mailing developers directly, so please continue to keep sending bugs

there.

76869

Crashes when running any tool under Fedora Core 2 testl

This fixes the problem with returning from asignal handler
when VDSOs are turned off in FC2.

69508

java1.4.2 client fails with erroneous "stack size too small”.

This fix makes more of the pthread stack attribute related
functions work properly. Javastill doesn't work though.

71906

malloc alignment should be 8, not 4

All memory returned by malloc/new etc is now at least
8-byte aligned.

81970

vg_aloc_ThreadState: no free slots available

(closed because the workaround is simple: increase
VG_N_THREADS, rebuild and try again.)

78514

Conditional jump or move depends on uninitialized value(s)

(adight mishanding of FP code in memcheck)

77952

pThread Support (crash) (due to initialisation-ordering probs)

(also 85118)

80942
78048
73655
83060
69872
82026
70344
81297
82872
83025
83340
79714
77022
82098
83573
82999
83040
83998
82722
78958
85416

Addrcheck wasn't doing overlap checking asit should.

return NULL on malloc/new etc failure, instead of asserting
operator new() override in user .so files often doesn't get picked up
Valgrind does not handle native kernel A1O

Create proper coredumps after fatal signals

failure with new glibc versions: __libc_* functions are not exported
UNIMPLEMENTED FUNCTION: tcdrain

Cancellation of pthread cond wait does not require mutex

Using debug info from additional packages (wishlist)

Support for ioctls FIGETBSZ and FIBMAP

Support for ioctl HDIO_GET_IDENTITY

Support for the semtimedop system call.

Support for ioctls FBIOGET_V SCREENINFO and FBIOGET_FSCREENINFO
hp2ps ansification (wishlist)

Valgrind SIGSEGV on execve

show which cmdline option was erroneous (wishlist)

make valgrind VPATH and distcheck-clean (wishlist)

Assertion "newfd > vgPlain_max_fd' failed (see below)

Unchecked mmap in as_pad |eads to mysterious failures later
memcheck seg faults while running Mozilla

Arguments with colon (e.g. --logsocket) ignored

115

OLDER NEWS

Additionally there are the following changes, which are not
connected to any bug report numbers, AFAICS:

* Rearranged address space layout relative to 2.1.1, so that
Valgrind/tools will run out of memory later than currently in many
circumstances. Thisisgood news esp. for Calltree. It should
be possible for client programs to allocate over 800MB of
memory when using memcheck now.

* Improved checking when laying out memory. Should hopefully avoid
the random segmentation faults that 2.1.1 sometimes caused.

* Support for Fedora Core 2 and SUSE 9.1. Improvementsto NPTL
support to the extent that V now works properly on NPTL-only setups.

* Renamed the following options:
--logfile-fd --> --log-fd
--logfile --> --log-file
--logsocket --> --log-socket
to be consistent with each other and other options (esp. --input-fd).

* Add support for SSOCGMIIPHY, SIOCGMIIREG and SIOCSMIIREG ioctls and

improve the checking of other interface related ioctls.
* Fix building with gcc-3.4.1.
* Remove limit on number of semaphores supported.
* Add support for syscalls: set tid address (258), acct (51).
* Support instruction "repne movs' -- not official but seemsto occur.

* |mplement an emulated soft limit for file descriptorsin addition to
the current reserved area, which effectively acts as a hard limit. The
setrlimit system call now simply updates the emulated limits as best
as possible - the hard limit is not allowed to move at al and just
returns EPERM if you try and changeit. This should stop reductions
in the soft limit causing assertions when valgrind tries to allocate
descriptors from the reserved area.

(This actually came from bug #83998).

* Major overhaul of Cachegrind implementation. First user-visible change
isthat cachegrind.out files are now typically 90% smaller than they
used to be; code annotation times are correspondingly much smaller.
Second user-visible change is that hit/miss counts for code that is
unloaded at run-timeis no longer dumped into asingle "discard" pile,
but accurately preserved.

* Client requests for telling valgrind about memory poals.

Developer (cvs head) release 2.1.1 (12 March 2004)

116

OLDER NEWS

2.1.1 contains some internal structural changes needed for V's
long-term future. These don't affect end-users. Most notable
user-visible changes are:

* Greater isolation between Valgrind and the program being run, so
the program is less likely to inadvertently kill Valgrind by
doing wild writes.

* Massif: anew space profiling tool. Try it! It'scool, and it'll
tell you in detail where and when your C/C++ code is allocating heap.
Draws pretty .ps pictures of memory use against time. A potentially
powerful tool for making sense of your program'’s space use.

* Fixes for many bugs, including support for more SSE2/SSES instructions,
various signal/syscall things, and various problems with debug
info readers.

* Support for glibc-2.3.3 based systems.

We are now doing automatic overnight build-and-test runs on a variety
of distros. Asaresult, we believe 2.1.1 builds and runs on:
Red Hat 7.2, 7.3, 8.0, 9, Fedora Core 1, SuSE 8.2, SUSE 9.

The following bugs, and probably many more, have been fixed. These
are listed at http://bugs.kde.org. Reporting abug for valgrind in

the http://bugs.kde.org is much more likely to get you afix than
mailing developers directly, so please continue to keep sending bugs
there.

69616 glibc 2.3.2 w/NPTL is massively different than what valgrind expects
69856 | don't know how to instrument MM Xish stuff (Helgrind)
73892 valgrind segfaults starting with Objective-C debug info

(fix for S-type stabs)
73145 Vagrind complains too much about close(<reserved fd>)
73902 Shadow memory alocation seemsto fail on RedHat 8.0
68633 VG _N_SEMAPHORES too low (V itself was leaking semaphores)
75099 impossible to trace multiprocess programs
76839 the “impossible’ happened: dislnstr: INT but not 0x80 !
76762 vg_to_ucode.c:3748 (dis_push segreg): Assertion “sz == 4' failed.
76747 cannot include valgrind.h in c++ program
76223 parsing B(3,10) gave NULL type => impossible happens
75604 shmdt handling problem
76416 Problemswith gcc 3.4 snap 20040225
75614 using -gstabs when building your programs the “impossible’ happened
75787 Patch for some CDROM ioctls CDORM_GET_MCN, CDROM_SEND_PACKET,
75294 gcc 3.4 snapshot's libstdc++ have unsupported instructions.

(REP RET)
73326 vg_symtab2.c:272 (addScopeRange): Assertion ‘range->size > 0' failed.
72596 not recognizing __ libc_malloc
69489 Would like to attach ddd to running program
72781 Cachegrind crashes with kde programs
73055 Illegal operand at DXTCV 11CompressBlockSSE2 (more SSE opcodes)
73026 Descriptor leak check reports port numbers wrongly

117

OLDER NEWS

71705 README_MISSING_SYSCALL_OR_IOCTL out of date
72643 |Improve support for SSE/SSE2 instructions
72484 valgrind leavesit's own signal mask in place when execing
72650 Signal Handling always seems to restart system calls
72006 The mmap system call turnsall errorsin ENOMEM
71781 gdb attach is pretty useless
71180 unhandled instruction bytes: OxF OxAE 0x85 OxES8
69886 writes to zero page cause valgrind to assert on exit
71791 crash when valgrinding gimp 1.3 (stabs reader problem)
69783 unhandled syscall: 218
69782 unhandled instruction bytes: 0x66 OxF 0x2B 0x80
70385 valgrind failsif the soft file descriptor limit isless
than about 828
69529 "rep; nop" should do ayield
70827 programswith lots of shared libraries report "mmap failed"
for some of them when reading symbols
71028 glibc's strnlen is optimised enough to confuse valgrind

Unstable (cvs head) release 2.1.0 (15 December 2003)

For whatever it's worth, 2.1.0 actually seems pretty darn stable to me
(Julian). It looks eminently usable, and given that it fixes some
significant bugs, may well be worth using on a day-to-day basis.
2.1.0isknown to build and pass regression tests on; SUSE 9, SUSE
8.2, RedHat 8.

2.1.0 most notably includes Jeremy Fitzhardinge's compl ete overhaul of
handling of system calls and signals, and their interaction with

threads. In general, the accuracy of the system call, thread and

signal simulations is much improved. Specifically:

- Blocking system calls behave exactly as they do when running
natively (not on valgrind). That is, if asyscall blocks only the
calling thread when running natively, than it behaves the same on

valgrind. No more mysterious hangs because V doesn't know that some

syscall or other, should block only the calling thread.
- Interrupted syscalls should now give more faithful results.

- Finally, signal contextsin signal handlers are supported. Asa
result, konqueror on SUSE 9 no longer segfaults when notified of
file changesin directoriesit is watching.

Other changes:

- Robert Walsh's file descriptor leakage checks. When enabled,
Valgrind will print out alist of open file descriptors on
exit. Along with each file descriptor, Valgrind prints out a stack
backtrace of where the file was opened and any details relating to the
file descriptor such as the file name or socket details.
To use, give: --track-fds=yes

118

OLDER NEWS

- Implemented a few more SSE/SSE2 instructions.
- Less crud on the stack when you do 'where' inside a GDB attach.

- Fixed the following bugs:
68360: Valgrind does not compile against 2.6.0-testX kernels
68525: CV S head doesn't compile on C90 compilers
68566: pkgconfig support (wishlist)
68588: Assertion sz == 4' failed in vg_to_ucode.c (dislnstr)
69140: valgrind not able to explicitly specify a path to abinary.
69432: helgrind asserts encountering a MutexErr when there are

EraserErr suppressions

- Increase the max size of the trandlation cache from 200k average bbs
to 300k average bbs. Programs on the size of OOo (680m17) are
thrashing the cache at the smaller size, creating large numbers of
retranslations and wasting significant time as aresult.

Stable release 2.0.0 (5 Nov 2003)

2.0.0 improves SSE/SSE2 support, fixes some minor bugs, and
improves support for SUSE 9 and the Red Hat "Severn” beta.

- Further improvements to SSE/SSE2 support. The entire test suite of
the GNU Scientific Library (gdl-1.4) compiled with Intel Icc 7.1
200303072 '-g -O -xW' now works. | think this gives pretty good
coverage of SSE/SSE? floating point instructions, or at least the
subset emitted by Icc.

- Also added support for the following instructions:
MOVNTDQ UCOMISD UNPCKLPS UNPCKHPS SQRTSS

PUSH/POP %{ FS,GS}, and PUSH %CS (Nb: there is no POP %CS).

- CFl support for GDB version 6. Needed to enable newer GDBs
to figure out where they are when using --gdb-attach=yes.

- Fix this:
mc_trandate.c:1091 (memcheck_instrument): Assertion
‘u_in->size==4||u_in->size==16'failed.

- Return an error rather than panicing when given a bad socketcall.

- Fix checking of syscall rt_sigtimedwait().

- Implement _ NR_clock_gettime (syscall 265). Needed on Red Hat Severn.

- Fixed bug in overlap check in strncpy() -- it was assuming the src was 'n’

bytes long, when it could be shorter, which could cause false
positives.

119

OLDER NEWS

- Support use of select() for very large numbers of file descriptors.

- Don't fail silently if the executable is statically linked, or is
setuid/setgid. Print an error message instead.

- Support for old DWARF-1 format line number info.

Snapshot 20031012 (12 October 2003)

Three months worth of bug fixes, roughly. Most significant single

change isimproved SSE/SSE2 support, mostly thanks to Dirk Mueller.

20031012 builds on Red Hat Fedora (" Severn™) but doesn't really work

(curiously, mozillaruns OK, but a modest "Is-I" bombs). | hopeto
get aworking version out soon. It may or may not work ok on the
forthcoming SUSE 9; | hear positive noises about it but haven't been
able to verify this mysalf (not until | get hold of a copy of 9).

A detailed list of changes, in no particular order:

- Describe --gen-suppressions in the FAQ.

- Syscall _ NR waitpid supported.

- Minor MMX bug fix.

- -V prints program's argv[] at startup.

- More glibc-2.3 suppressions.

- Suppressions for stack underrun bug(s) in the c++ support library
distributed with Intel Icc 7.0.

- Fix problems reading /proc/self/maps.

- Fix a couple of messages that should have been suppressed by -q,
but weren't.

- Make Addrcheck understand "Overlap" suppressions.

- At startup, check if program is statically linked and bail out if so.
- Cachegrind: Auto-detect Intel Pentium-M, also VIA Nehemiah

- Memcheck/addrcheck: minor speed optimisations

- Handle syscall _ NR_brk more correctly than before.

- Fixed incorrect allocate/free mismatch errors when using

operator new(unsigned, std::nothrow_t const&)
operator new[](unsigned, std::nothrow_t const&)

120

OLDER NEWS

- Support POSIX pthread spinlocks.
- Fixups for clean compilation with gcc-3.3.1.

- Implemented more opcodes:
- push %es
- push %ds
- pop %es
- pop %ds
- movntq
- sfence
- pshufw
- pavgb
- ucomiss
- enter
- mov imm32, %esp
-al "in" and "out" opcodes
- inc/dec %esp
- A whole bunch of SSE/SSE2 instructions

- Memcheck: don't bomb on SSE/SSE2 code.

Snapshot 20030725 (25 July 2003)

Fixes some minor problemsin 20030716.
- Fix bugsin overlap checking for strcpy/memcpy etc.
- Do overlap checking with Addrcheck as well as Memcheck.
- Fix this:
Memcheck: the “impossible’ happened:
get_error_name: unexpected type

- Install headers needed to compile new skins.

- Remove leading spaces and coloninthe LD _LIBRARY_PATH /LD_PRELOAD
passed to non-traced children.

- Fix file descriptor leak in valgrind-listener.
- Fix longstanding bug in which the allocation point of a

block resized by realloc was not correctly set. This may
have caused confusing error messages.

Snapshot 20030716 (16 July 2003)

20030716 is a snapshot of our current CV'S head (development) branch.
Thisis the branch which will become valgrind-2.0. It contains

121

OLDER NEWS

significant enhancements over the 1.9.X branch.

Despite this being a snapshot of the CV S head, it is believed to be
quite stable -- at least as stable as 1.9.6 or 1.0.4, if not more so

-- and therefore suitable for widespread use. Please |et us know asap
if it causes problems for you.

Two reasons for releasing a snapshot now are;

- It's been awhile since 1.9.6, and this snapshot fixes
various problems that 1.9.6 has with threaded programs
on glibc-2.3.X based systems.

- S0 asto make available improvementsin the 2.0 line.
Magjor changesin 20030716, as compared to 1.9.6;

- More fixes to threading support on glibc-2.3.1 and 2.3.2-based
systems (SUSE 8.2, Red Hat 9). If you have had problems
with inconsistent/illogical behaviour of errno, h_errno or the DNS
resolver functions in threaded programs, 20030716 should improve
matters. This snapshot seems stable enough to run OpenOffice.org
1.1rc on Red Hat 7.3, SUSE 8.2 and Red Hat 9, and that's a big
threaded app if ever | saw one.

- Automatic generation of suppression records; you no longer
need to write them by hand. Use --gen-suppressions=yes.

- strepy/memcpy/etc check their arguments for overlaps, when
running with the Memcheck or Addrcheck skins.

- malloc_usable size() is now supported.

- new client requests:
-VALGRIND_COUNT_ERRORS, VALGRIND_COUNT_LEAKS:
useful with regression testing
-VALGRIND_NON_SIMD_CALL[0123]: for running arbitrary functions
onreal CPU (use with caution!)

- The GDB attach mechanism is more flexible. Allow the GDB to
be run to be specified by --gdb-path=/path/to/gdb, and specify
which file descriptor V will read itsinput from with
--input-fd=<number>.

- Cachegrind gives more accurate results (wasn't tracking instructionsin
malloc() and friends previously, is now).

- Complete support for the MM X instruction set.

- Partial support for the SSE and SSE2 instruction sets. Work for this
isongoing. About half the SSE/SSE? instructions are done, so
some SSE based programs may work. Currently you need to specify
--skin=addrcheck. Basically not suitable for real use yet.

122

OLDER NEWS

- Significant speedups (10%-20%) for standard memory checking.
- Fix assertion failure in pthread once().
- Fix this:

valgrind: vg_intercept.c:598 (vgAllRoadsLeadToRome_select):

Assertion ‘'ms_end >=ms_now' failed.

- Implement pthread mutexattr_setpshared.

- Understand Pentium 4 branch hints. Also implemented a couple more

obscure x86 instructions.

- Lots of other minor bug fixes.

- We have a decent regression test system, for the first time.
This doesn't help you directly, but it does makeit alot easier
for usto track the quality of the system, especially across
multiple linux distributions.

Y ou can run the regression tests with 'make regtest' after 'make
install' completes. On SUSE 8.2 and Red Hat 9| get this:

== 84 tests, 0 stderr failures, 0 stdout failures ==
On Red Hat 8, | get this:

== 84 tests, 2 stderr failures, 1 stdout failure ==

corecheck/tests/'res search (stdout)

memcheck/tests/sigaltstack (stderr)

sigaltstack is probably harmless. res search doesn't work
on R H 8 even running natively, so I'm not too worried.

On Red Hat 7.3, aglibc-2.2.5 system, | get these harmless failures:

== 84 tests, 2 stderr failures, 1 stdout failure ==

corecheck/tests/pth_atforkl (stdout)
corecheck/tests/pth_atforkl (stderr)
memcheck/tests/sigaltstack (stderr)

Y ou need to run on a Pl system, at least, since some tests
contain P6-specific instructions, and the test machine needs
access to the internet so that corecheck/tests/res search
(atest that the DNS resolver works) can function.

As ever, thanks for the vast amount of feedback :) and bug reports :(

We may not answer all messages, but we do at least ook at all of
them, and tend to fix the most frequently reported bugs.

Version 1.9.6 (7 May 2003 or thereabouts)

123

OLDER NEWS

Magjor changesin 1.9.6:

- Improved threading support for glibc >= 2.3.2 (SUSE 8.2,
RedHat 9, to name but two ...) It turned out that 1.9.5
had problems with threading support on glibc >= 2.3.2,

usually manifested by threaded programs deadlocking in system calls,
or running unbelievably slowly. Hopefully these are fixed now. 1.9.6

isthe first valgrind which gives reasonable support for
glibc-2.3.2. Also fixed a2.3.2 problem with pthread_atfork().

- Majorly expanded FAQ.txt. We've added workarounds for all
common problems for which aworkaround is known.

Minor changesin 1.9.6:

- Fix identification of the main thread's stack. Incorrect
identification of it was causing some on-stack addressesto not get
identified as such. Thisonly affected the usefulness of some error
messages, the correctness of the checks made is unchanged.

- Support for kernels >= 2.5.68.

- Dummy implementations of __libc_current_sigrtmin,
__libc_current_sigrtmax and __libc_allocate rtsig, hopefully

good enough to keep alive programs which previously died for lack of

them.

- Fix bug in the VALGRIND_DISCARD_TRANSLATIONS client request.

- Fix bug in the DWARF2 debug line info loader, when instructions
following each other have source lines far from each other
(e.g. with inlined functions).

- Debug info reading: read symbols from both "symtab" and "dynsym"

sections, rather than merely from the one that comes last in the
file

- New syscall support: prctl(), creat(), |ookup_dcookie().

- When checking calls to accept(), recvfrom(), getsocketopt(),
don't complain if buffer values are NULL.

- Try and avoid assertion failuresin
mash_LD_PRELOAD _and LD_LIBRARY_PATH.

- Minor bug fixesin cg_annotate.

Version 1.9.5 (7 April 2003)

It occurs to methat it would be helpful for valgrind users to record

124

OLDER NEWS

in the source distribution the changes in each release. So | now
attempt to mend my errant ways :-) Changesin this and future releases
will be documented in the NEWS file in the source distribution.

Magjor changesin 1.9.5;

- (Critical bug fix): Fix abug in the FPU simulation. Thiswas
causing some floating point conditional tests not to work right.
Several people reported this. If you had floating point code which
didn't work right on 1.9.1 to 1.9.4, it'sworth trying 1.9.5.

- Partial support for Red Hat 9. RH9 uses the new Native Posix
Threads Library (NPTL), instead of the older LinuxThreads.
This potentially causes problems with V which will take some
timeto correct. Inthe meantime we have partialy worked around
this, and so 1.9.5 works on RH9. Threaded programs still work,
but they may deadlock, because some system calls (accept, read,
write, etc) which should be nonblocking, in fact do block. This
is aknown bug which we are looking into.

If you can, your best bet (unfortunately) isto avoid using
1.9.5 on aRed Hat 9 system, or on any NPTL-based distribution.
If your glibcis 2.3.1 or earlier, you're amost certainly OK.

Minor changesin 1.9.5:

- Added some #errors to valgrind.h to ensure people don't include
it accidentally in their sources. Thisisachange from 1.0.X
which was never properly documented. Theright thing to include
is now memcheck.h. Some people reported problems and strange
behaviour when (incorrectly) including valgrind.h in code with
1.9.1--1.9.4. Thisisno longer possible.

- Add some__extension__ hits and pieces so that gcc configured
for valgrind-checking compiles even with -Werror. If you
don't understand this, ignoreit. Of interest to gcc developers
only.

- Removed a pointless check which caused problems interworking
with Clearcase. V would complain about shared objects whose
names did not end ".s0", and refuse to run. Thisis now fixed.
Infact it was fixed in 1.9.4 but not documented.

- Fixed a bug causing an assertion failure of "waiters == 1"
somewhere in vg_scheduler.c, when running large threaded apps,
notably MySQL.

- Add support for the munlock system call (124).

Some comments about future releases:

1.9.5is, we hope, the most stable Valgrind so far. It pretty much

supersedes the 1.0.X branch. If you are avalgrind packager, please
consider making 1.9.5 available to your users. You can regard the

125

OLDER NEWS

1.0.X branch as obsolete: 1.9.5 is stable and vastly superior. There
areno plans at all for further releases of the 1.0.X branch.

If you want aleading-edge valgrind, consider building the cvs head
(from SourceForge), or getting a snapshot of it. Current cool stuff

going in includes MM X support (done); SSE/SSE2 support (in progress),
asignificant (10-20%) performance improvement (done), and the usual
large collection of minor changes. Hopefully we will be able to

improve our NPTL support, but no promises.

126

4. README

Release notes for Vagrind

If you are building a binary package of Valgrind for distribution,

please read README_PACKAGERS. It contains some important information.

If you are developing Valgrind, please read README_DEVELOPERS. It contains

some useful information.
For instructions on how to build/install, see the end of thisfile.

If you have problems, consult the FAQ to seeif there are workarounds.

Executive Summary

Valgrind is aframework for building dynamic analysistools. There are
Valgrind tools that can automatically detect many memory management
and threading bugs, and profile your programs in detail. Y ou can also
use Valgrind to build new tools.

The Valgrind distribution currently includes six production-quality
tools: amemory error detector, two thread error detectors, a cache
and branch-prediction profiler, a call-graph generating cache and
branch-prediction profiler, and a heap profiler. It also includes
three experimental tools: a heap/stack/global array overrun detector,
adifferent kind of heap profiler, and a SimPoint basic block vector
generator.

Valgrind is closely tied to details of the CPU, operating system and to
alesser extent, compiler and basic C libraries. This makesit difficult
to make it portable. Nonetheless, it isavailable for the following
platforms:

- X86/Linux

- AMDG64/Linux

- PPC32/Linux

- PPC64/Linux

- ARM/Linux

- ARM64/Linux

- Xx86/macOS

- AMD64/macOS
- S390X/Linux

- MIPS32/Linux

- MIPS64/Linux

- nanoM I PS/Linux
- X86/Solaris

- AMDG64/Solaris
- X86/FreeBSD

127

README

- AMDG64/FreeBSD

Note that AMDG64 is just another name for x86_64, and Valgrind runs fine
on Intel processors. Also note that the core of macOS s called
"Darwin" and this name is used sometimes.

Vagrind islicensed under the GNU General Public License, version 2.
Read the file COPYING in the source distribution for details.

However: if you contribute code, you need to make it available as GPL
version 2 or later, and not 2-only.

Documentation

A comprehensive user guide is supplied. Point your browser at
$PREFI X/share/doc/val grind/manual .html, where $PREFIX is whatever you
specified with --prefix= when building.

Building and installing it

Toinstall from the GIT repository:

0. Clone the code from GIT:
git clone https://sourceware.org/git/valgrind.git
There are further instructions at
http://www.val grind.org/downl oads/repository.html.

1. cd into the source directory.

2. Run ./autogen.sh to setup the environment (you need the standard
autoconf tools to do so).

3. Continue with the following instructions...
Toinstall from atar.bz2 distribution:

4. Run ./configure, with some optionsif you wish. The only interesting
one isthe usua --prefix=/where/you/want/it/installed.

5. Run "make".

6. Run "make install", possibly as root if the destination permissions
require that.

7. Seeif itworks. Try "valgrind Is-I". Either thisworks, or it
bombs out with some complaint. In that case, please let us know
(see http://valgrind.org/support/bug_reports.html).

Important! Do not move the valgrind installation into a place
different from that specified by --prefix at build time. Thiswill
cause things to break in subtle ways, mostly when Valgrind handles
fork/exec calls.

128

README

The Valgrind Devel opers

129

5. README_MISSING_SYSCALL_OR_IOCTL

Dealing with missing system call or ioctl wrappersin Valgrind

Y ou're probably reading this because Valgrind bombed out whilst
running your program, and advised you to read thisfile. The good
newsisthat, in general, it's easy to write the missing syscall or

ioctl wrappers you need, so that you can continue your debugging. |If
you send the resulting patches to me, then you'll be doing afavour to
all future Valgrind users too.

Note that an "ioctl" isjust aspecial kind of system call, realy; so
there's not alot of need to distinguish them (at least conceptualy)
in the discussion that follows.

All this machinery isin coregrind/m_syswrap.

What are syscall/ioctl wrappers? What do they do?

Valgrind does what it does, in part, by keeping track of everything your
program does. When a system call happens, for example arequest to read
part of afile, control passesto the Linux kernel, which fulfills the

request, and returns control to your program. The problem is that the
kernel will often change the status of some part of your program's memory
as aresult, and tools (instrumentation plug-ins) may need to know about
this.

Syscall and ioctl wrappers have two jobs:
1. Tell atool what's about to happen, before the syscall takes place. A
tool could perform checks beforehand, eg. if memory about to be written
isactually writeable. This part is useful, but not strictly
essential.
2. Tell atool what just happened, after a syscall takes place. Thisis
so it can update its view of the program's state, eg. that memory has
just been written to. Thisstep is essential.
The "happenings' mostly involve reading/writing of memory.
So, let'slook at an example of awrapper for asystem call which

should be familiar to many Unix programmers.

The syscall wrapper for time()

The wrapper for the time system call looks like this:

PRE(sys_time)

130

README_MISSING_SYSCALL_OR_IOCTL

/* time_t time(time_t *t); */
PRINT("sys_time (%p)", ARGL1);
PRE_REG_READI1(long, "time", int *, t);
if ARG1!=0){
PRE_MEM_WRITE("time(t)", ARGL, sizeof(vki_time t));
}
}

POST(sys_time)

if (ARG1!=0) {
POST_MEM_WRITE(ARG1, sizeof(vki_time t));
}
}

The first thing we do happens before the syscall occurs, in the PRE() function.
The PRE() function typically starts with invoking to the PRINT() macro. This
PRINT() macro implements support for the --trace-syscalls command line option.
Next, the tool istold the return type of the syscall, that the syscall has

one argument, the type of the syscall argument and that the argument is being
read from aregister:

PRE_REG_READI1(long, "time", int *, t);

Next, if anon-NULL buffer is passed in as the argument, tell the tool that the
buffer is about to be written to:

if (ARG1!=0) {
PRE_MEM_WRITE("time", ARG, sizeof(vki_time_t));
}

Finally, the really important bit, after the syscall occurs, in the POST()
function: if, and only if, the system call was successful, tell the tool that
the memory was written:

if (ARG1!=0) {
POST_MEM_WRITE(ARG1, sizeof(vki_time t));
}

The POST() function won't be called if the syscall failed, so you
don't need to worry about checking that in the POST () function.
(Note: thisis sometimes a bug; some syscalls do return results when
they "fail" - for example, nanosleep returns the amount of unslept
timeif interrupted. TODO: add another per-syscall flag for this
case.)

Note that we use the type 'vki_time t'. Thisisacopy of the kernel
type, with 'vki_" prefixed. Our copies of such types are kept in the

appropriate vki*.h file(s). We don't include kernel headers or glibc headers
directly.

Writing your own syscall wrappers (see below for ioctl wrappers)

131

README_MISSING_SYSCALL_OR_IOCTL

If Valgrind tells you that system call NNN is unimplemented, do the
following:

1. Find out the name of the system call:
grep NNN /usr/include/asm/unistd*.h

This should tell you something like _ NR_mysyscallname.
Copy this entry to include/vki/vki-scnums-$(VG_PLATFORM).h.

If you can't find the system call in /usr/include, try looking in the
strace source code (https://github.com/strace/strace). Some syscalls/ioctls
are not defined explicitly, but strace may have aready figured it out.

2. Do 'man 2 mysyscallname' to get some idea of what the syscall
does. Note that the actual kernel interface can differ from this,
so you might also want to check aversion of the Linux kernel
source.

NOTE: any syscall which has something to do with signals or
threadsis probably "special”, and needs more careful handling.
Post something to valgrind-developers if you aren't sure.

3. Add acaseto the already-huge collection of wrappersin
the coregrind/m_syswrap/syswrap-*.c files.
For each in-memory parameter which isread or written by
the syscall, do one of

PRE_MEM_READ(...)
PRE_MEM_RASCIIZ(...)
PRE_MEM_WRITE(...)

for that parameter. Then do the syscall. Then, if the syscall
succeeds, issue suitable POST MEM_WRITE(...) cals.
(There's no need for POST_MEM_READ calls)

Also, add it to the syscall_tabl€e[] array; use one of GENX_, GENXY
LINX_, LINXY, PLAX_, PLAXY.

GEN* for generic syscalls (in syswrap-generic.c), LIN* for linux
specific ones (in syswrap-linux.c) and PLA* for the platform
dependent ones (in syswrap-$(PLATFORM)-linux.c).

The*XY variant if it requires a PRE() and POST() function, and
the*X _variant if it only requires a PRE()

function.

If you find this difficult, read the wrappers for other syscalls
for ideas. A good tip isto look for the wrapper for a syscall
which has a similar behaviour to yours, and useit asa
starting point.

If you need structure definitions and/or constants for your syscall,

132

README_MISSING_SYSCALL_OR_IOCTL

copy them from the kernel headers into include/vki.h and co., with
the appropriate vki_*/VKI_* name mangling. Don't #include any
kernel headers. And certainly don't #include any glibc headers.

Test it.

Note that acommon error isto call POST MEM_WRITE(...)
with 0 (NULL) asthefirst (address) argument. This usually means
your logicis dlightly inadequate. It's a sufficiently common bug
that there's a built-in check for it, and you'll get a " probably

sanity check failure" for the syscall wrapper you just made, if this
isthe case.

4. Once happy, send us the patch. Pretty please.

Writing your own ioctl wrappers

I's pretty much the same as writing syscall wrappers, except that all
the action happens within PRE(ioctl) and POST (ioctl).

There's adefault case, sometimes it isn't correct and you have to write a
more specific case to get the right behaviour.

As above, please create a bug report and attach the patch as described
on http://www.valgrind.org.

Writing your own door call wrappers (Solaris only)

Unlike syscalls or ioctls, door calls transfer data between two userspace
programs, albeit through a kernel interface. Programs may use completely
proprietary semantics in the data buffers passed between them.

Therefore it may not be possible to capture these semantics within
aValgrind door call or door return wrapper.

Nevertheless, for system or well-known door services it would be beneficial
to have a door call and adoor return wrapper. Writing such wrapper is pretty
much the same as writing ioctl wrappers. Please take a few moments to study
the following picture depicting how adoor client and adoor server interact
through the kernel interface in atypical scenario:

door client thread kernel door server thread
invokes door_call() invokes door_return()

<---- PRE(sys_door, DOOR_RETURN)
PRE(sys door, DOOR_CALL) --->
----> POST(sys door, DOOR_RETURN)

133

README_MISSING_SYSCALL_OR_IOCTL

----> server_procedure()
P
<---- PRE(sys door, DOOR_RETURN)
POST (sys _door, DOOR_CALL) <---

Thefirst PRE(sys _door, DOOR_RETURN) isinvoked with data_ptr=NULL
and data_size=0. That's because it has not received any datafrom
adoor cal, yet.

Semantics are described by the following functions
in coregring/m_syswrap/syswrap-solaris.c module;
o For adoor call wrapper the following attributes of 'params’ argument;
- data_ptr (and associated data size) asinput buffer (request);
described in door_call_pre_mem_params_data()
- rbuf (and associated rsize) as output buffer (response);
described in door_call_post_ mem_params_rbuf()
o For adoor return wrapper the following parameters:
- data_ptr (and associated data size) asinput buffer (request);
described in door_return_post_mem_data()
- data_ptr (and associated data size) as output buffer (response);
described in door_return_pre_mem_data()

There's adefault case which may not be correct and you have to write a
more specific case to get the right behaviour. Unless Valgrind's option
'--sim-hints=lax-doors' is specified, the default case also spits awarning.

As above, please create a bug report and attach the patch as described
on http://www.valgrind.org.

134

6. README_DEVELOPERS

Building and installing it

To build/install from the GIT repository or from a distribution
tarball, refer to the section with the same name in README.

Building and not installing it

To run Valgrind without having to install it, run coregrind/valgrind

with the VALGRIND_LIB environment variable set, where <dir> is the root

of the source tree (and must be an absolute path). Eg:
VALGRIND_LIB=~/grind/head4/.in_place ~/grind/head4/coregrind/valgrind

This allows you to compile and run with "make" instead of "make install",
saving you time.

Or, you can use the 'vg-in-place’ script which does that for you.
I recommend compiling with "make --quiet” to further reduce the amount of

output spewed out during compilation, letting you actually see any errors,
warnings, etc.

Building a distribution tarball

To build adistribution tarball from the valgrind sources:
make dist

In addition to compiling, linking and packaging everything up, the command
will also attempt to build the documentation.

If you only want to test whether the generated tarball is complete and runs
regression tests successfully, building documentation is not needed.

make dist BUILD_ALL_DOCS=no

If you insist on building documentation some embarrassing instructions
can be found in docs’README.

Running the regression tests

To build and run all the regression tests, run "make [--quiet] regtest".
To run asubset of the regression tests, execute:

perl tests/vg_regtest <name>

135

README_DEVELOPERS

where <name> is adirectory (al tests within will be run) or asingle
.vgtest test file, or the name of a program which has alike-named .vgtest
file. Eg:

perl tests'vg_regtest memcheck

perl testsivg_regtest memcheck/tests/badfree.vgtest
perl testsivg_regtest memcheck/tests/badfree

Running the performance tests

To build and run all the performance tests, run "make [--quiet] perf".
To run asubset of the performance suite, execute:

perl perf/vg_perf <name>
where <name> is adirectory (al tests within will be run) or asingle
.vgperf test file, or the name of a program which has a like-named .vgperf
file. Eg:

perl perfivg_perf perf/

perl perfivg_perf perf/bz2.vgperf

perl perfivg_perf perf/bz2
To compare multiple versions of Valgrind, use the --vg= option multiple
times. For example, if you have two Valgrinds next to each other, onein
trunk1/ and one in trunk2/, from within either trunkl/ or trunk2/ do thisto
compare them on al the performance tests:

perl perfivg_perf --vg=../trunk1 --vg=../trunk2 perf/

Debugging Valgrind with GDB

To debug the valgrind launcher program (<prefix>/bin/valgrind) just
run it under gdb in the normal way.

Debugging the main body of the valgrind code (and/or the code for
aparticular tool) requires a bit more trickery but can be achieved
without too much problem by following these steps:
(1) Set VALGRIND_LAUNCHER to point to the valgrind executable. Eg:
export VALGRIND_LAUNCHER=/ust/loca/bin/valgrind
or for an uninstalled version in a source directory $DIR:
export VALGRIND_LAUNCHER=$DIR/coregrind/vagrind

(2) Run gdb on the tool executable. Eg:

gdb /usr/local/lib/valgrind/lackey-ppc32-linux

136

README_DEVELOPERS

or
gdb $DIR/.in_place/memcheck-x86-linux

(3) Do "handle SIGSEGV SIGILL nostop noprint" in GDB to prevent GDB from
stopping on a SIGSEGV or SIGILL:

(gdb) handle SIGILL SIGSEGV nostop noprint
If you are using lldb, then the equivalent command is
(lldb) pro hand -p true -sfalse -n false SIGILL SIGSEGV

(4) Set any breakpoints you want and proceed as normal for gdb. The
macro VG_(FUNC) is expanded to vgPlain_FUNC, so If you want to set
abreakpoint VG_(do_exec), you could do like thisin GDB:

(gdb) b vgPlain_do_exec

(5) Run the tool with required options (the --tool option is required
for correct setup), e.g.

(gdb) run --tool=lackey pwd

Steps (1)--(3) can be put in a.gdbinit file, but any directory names must
be fully expanded (ie. not an environment variable).

A different and possibly easier way is as follows:;

(1) Run Valgrind as normal, but add the flag --wait-for-gdb=yes. This
puts the tool executable into await loop soon after it gains
control. Thisdelays startup for afew seconds.

(2) In adifferent shell, do "gdb /proc/<pid>/exe <pid>", where
<pid> you read from the output printed by (1). This attaches
GDB to the tool executable, which should be in the abovementioned
wait loop.

(3) Do "cont" to continue. After the loop finishes spinning, startup
will continue as normal. Note that comment (3) above re passing
signals applies here too.

Self-hosting
This section explains :
(A) How to configure Valgrind to run under Valgrind.
Such a setup is called self hosting, or outer/inner setup.
(B) How to run Valgrind regression tests in a 'self-hosting' mode,
e.g. to verify Valgrind has no bugs such as memory leaks.
(C) How to run Valgrind performance tests in a 'self-hosting' mode,
to analyse and optimise the performance of Valgrind and its tools.

(A) How to configure Valgrind to run under Valgrind:

137

README_DEVELOPERS

(1) Check out 2 trees, "Inner" and "Outer". Inner runs the app
directly. Outer runs Inner.

(2) Configure Inner with --enable-inner and build as usual.

(3) Configure Outer normally and build+install as usual.
Note: You must use a"make install"-ed valgrind.
Do *not* use vg-in-place for the Outer valgrind.

(4) Choose avery simple program (date) and try

outer/.../bin/valgrind --sim-hints=enabl e-outer --trace-children=yes \
--smc-check=all-non-file\
--run-libc-freeres=no --tool=cachegrind -v \
inner/.../vg-in-place --vgdb-prefix=./inner --tool=none -v prog

If you omit the --trace-children=yes, you'll only monitor Inner's launcher

program, not its stage2. Outer needs --run-libc-freeres=no, as otherwise

it will try tofind and run __libc_freeresin the inner, while libc is not

used by the inner. Inner needs --vgdb-prefix=./inner to avoid inner

gdbserver colliding with outer gdbserver.

Currently, inner does * not* use the client request
VALGRIND_DISCARD_TRANSLATIONS for the JITted code or the code patched for
trand ation chaining. So the outer needs --smc-check=all-non-file to

detect the modified code.

Debugging the whole thing might imply to use up to 3 GDB:
* a GDB attached to the Outer valgrind, allowing
to examine the state of Outer.
* aGDB using Outer gdbserver, alowing to
examine the state of Inner.
* aGDB using Inner gdbserver, allowing to
examine the state of prog.

The whole thing is fragile, confusing and slow, but it does work well enough
for you to get some useful performance data. Inner has most of

its output (ie. those lines beginning with "==<pid>==") prefixed with a">"',
which helps alot. However, when running regression tests in an Outer/Inner
setup, this prefix causes the reg test diff to fail. Give
--sim-hints=no-inner-prefix to the Inner to disable the production

of the prefix in the stdout/stderr output of Inner.

The alocatorsin coregrind/m_mallocfree.c and VEX/priv/main_util.h are
annotated with client requests so Memcheck can be used to find leaks

and use after freein an Inner Valgrind.

The Valgrind "big lock" is annotated with helgrind client requests

so Helgrind and DRD can be used to find race conditionsin an Inner
Valgrind.

All this has not been tested much, so don't be surprised if you hit problems.

When using self-hosting with an outer Callgrind tool, use '--pop-on-jump’

138

README_DEVELOPERS

(on the outer). Otherwise, Callgrind has much higher memory requirements.
(B) Regression tests in an outer/inner setup:

To run all the regression tests with an outer memcheck, do :
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
--all

To run a specific regression tests with an outer memcheck, do:
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
none/tests/args.vgtest

To run regression tests with another outer tool:
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
--outer-tool=helgrind --all

--outer-args allows to give specific arguments to the outer tool,
replacing the default one provided by vg_regtest.

Note: --outer-valgrind must be a"make install"-ed valgrind.
Do *not* use vg-in-place.

When an outer valgrind runs an inner valgrind, aregression test
produces one additional file <testname>.outer.log which contains the
errors detected by the outer valgrind. E.g. for an outer memcheck, it
contains the leaks found in the inner, for an outer helgrind or drd,

it contains the detected race conditions.

Thefile tests/outer_inner.supp contains suppressions for
theirrelevant or benign errors found in the inner.

An regression test running in the inner (e.g. memcheck/tests/badrw) will
cause the inner to report an error, which is expected and checked
as usual when running the regtests in an outer/inner setup.
However, the outer will often also observe an error, e.g. ajump
using uninitialised data, or a read/write outside the bounds of a heap
block. When the outer reports such an error, it will output the
inner host stacktrace. To this stacktrace, it will append the
stacktrace of the inner guest program. For example, thisis an error
reported by the outer when the inner runs the badrw regtest:

==8119==Invalid read of size 2

==8119== at OX7F2EFD7AF. ???

==8119== by Ox7F2C82EAF: ???

==8119== by Ox7F180867F:; 7??

==8119== by 0x40051D: main (badrw.c:5)

==8119== by Ox7F180867F:; 7??

==8119== by Ox1BFF: ???

==8119== by Ox3803B7FO: VVVVVVVV_appended_inner_guest_stack_VVVVVVVV

==8119== by 0x40055C: main (badrw.c:22)

==8119== Address 0x55cd03c is 4 bytes before a block of size 16 alloc'd

==8119== at 0x2804E26D: vgPlain_arena_malloc (m_mallocfree.c:1914)

==8119== by 0x2800BAB4: vgMemCheck new_block (mc_malloc_wrappers.c:368)
==8119== by 0x2800BC87: vgMemCheck_malloc (mc_malloc_wrappers.c:403)
==8119== by O0x28097EAE: do_client_request (scheduler.c:1861)

(m_execontext.c:332)

139

README_DEVELOPERS

==8119== by O0x28097EAE: vgPlain_scheduler (scheduler.c:1425)
==8119== by 0x280A7237: thread wrapper (syswrap-linux.c:103)

==8119== by 0x280A7237: run_a thread NORETURN (syswrap-linux.c:156)
VVVVVVVV_appended inner_guest stack VVVVVVVV (m_execontext.c:332)

==8119== by 0x3803B7FO:
==8119== by 0x4C294C4: malloc (vg_replace _malloc.c:298)
==8119== by 0x40051D: main (badrw.c:5)
In the above, the first stacktrace starts with the inner host stacktrace,
whichin this caseis some JI Tted code. Such code sometimes contains |Ps
that pointsin the inner guest code (0x40051D: main (badrw.c:5)).
After the separator, we have the inner guest stacktrace.
The second stacktrace gives the stacktrace where the heap block that was
overrun was allocated. We see it was allocated by the inner valgrind
in the client arena (first part of the stacktrace). The second part is
the guest stacktrace that did the allocation.

(C) Performance tests in an outer/inner setup:

To run all the performance tests with an outer cachegrind, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind perf

To run aspecific perf test (e.g. bz2) in this setup, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind perf/bz2

To run al the performance tests with an outer callgrind, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind \
--outer-tool=callgrind perf

Note: --outer-valgrind must be a"make install"-ed valgrind.
Do *not* use vg-in-place.

To compare the performance of multiple Valgrind versions, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind \

--outer-tool=callgrind \

--vg=../inner_xxxx --vg=../inner_yyyy perf
(whereinner_xxxx and inner_yyyy are the toplevel directories of
the versions to compare).

Cachegrind and cg_diff are particularly handy to obtain a delta
between the two versions.

When the outer tool is callgrind or cachegrind, the following
output fileswill be created for each test:
<outertoolname>.out.<inner_valgrind_dir>.<tt>.<perftestname>.<pid>
<outertoolname>.outer.log.<inner_valgrind_dir>.<tt>.<perftestname>.<pid>
(where tt is the two |etters abbreviation for the inner tool(s) run).

For example, the command
perl perfivg_perf\
--outer-valgrind=../outer_trunk/install/bin/valgrind \
--outer-tool=callgrind \
--vg=../inner_tchain --vg=../inner_trunk perf/many-loss-records

produces the files
callgrind.out.inner_tchain.no.many-loss-records.18465

140

README_DEVELOPERS

callgrind.outer.log.inner_tchain.no.many-loss-records.18465
callgrind.out.inner_tchain.me.many-loss-records.21899
callgrind.outer.log.inner_tchain.me.many-loss-records.21899
callgrind.out.inner_trunk.no.many-loss-records.21224
callgrind.outer.log.inner_trunk.no.many-loss-records.21224
callgrind.out.inner_trunk.me.many-loss-records.22916
callgrind.outer.log.inner_trunk.me.many-loss-records.22916

Printing out problematic blocks

If you want to print out a disassembly of a particular block that
causes a crash, do the following.

Try running with "--vex-guest-chase=no --trace-flags=10000000
--trace-notbel ow=999999". This should print one line for each block
trandated, and that includes the address.

Then re-run with 999999 changed to the highest bb number shown.
Thiswill print the one line per block, and also will print a
disassembly of the block in which the fault occurred.

141

/. README_PACKAGERS

Greetings, packaging person! Thisinformation isamed at people
building binary distributions of Valgrind.

Thanks for taking the time and effort to make abinary distribution of
Vagrind. The following notes may save you some trouble.

-- If your toolchain (compiler, linker) support Ito, using the configure
option --enable-Ito=yes will produce a smaller/faster valgrind
(up to 10%).

-- Do not ship your Linux distro with a completely stripped
/lib/ld.so. At least |eave the debugging symbol names on -- line
number info isn't necessary. If you don't want to leave symbols on
Id.so, aternatively you can have your distro install 1d.so's
debuginfo package by default, or make Id.so.debuginfo be a
requirement of your Vagrind RPM/DEB/whatever.

Reason for thisisthat Valgrind's Memcheck tool needsto intercept
callsto, and provide replacements for, some symbolsin Id.so at
startup (most importantly strlen). If it cannot do that, Memcheck
shows alarge number of false positives due to the highly optimised
strlen (etc) routinesin Id.so. This has caused sometroublein

the past. Asof version 3.3.0, on some targets (ppc32-linux,
ppc64-linux), Memcheck will simply stop at startup (and print an
error message) if such symbols are not present, becauseit is
infeasible to continue.

It's not like thisis going to cost you much space. We only need
the symbolsfor Id.so (afew K at most). Not the debug info and
not any debuginfo or extra symbols for any other libraries.

-- (Unfortunate but true) When you configure to build with the
--prefix=/foo/bar/xyzzy option, the prefix /foo/bar/xyzzy gets
baked into valgrind. The consequenceisthat you must_ install
valgrind at the location specified in the prefix. If you don't,
it may appear to work, but will break doing some obscure things,
particularly doing fork() and exec().

So you can't build arelocatable RPM / whatever from Valgrind.

-- Don't strip the debug info off lib/valgrind/$platform/vgprel oad* .so
intheinstallation tree. Either Vagrind won't work at all, or it
will still work if you do, but will generate less helpful error

messages. Here's an example:

Mismeatched free() / delete/ delete (]

142

README_PACKAGERS

at 0x40043249: free (vg_clientfuncs.c:171)

by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp:149)

by 0x4C261C41: PptDoc::~PptDoc(void) (include/gmemarray.h:60)

by 0x4C261FO0E: PptXml::~PptXml(void) (pptxml.cc:44)

Address 0x4BB292A8 is 0 bytesinside a block of size 64 alloc'd

at 0x4004318C: __ builtin_vec_new (vg_clientfuncs.c:152)

by 0x4C21BC15: KLaola::readSBStream(int) const (klaola.cc:314)

by 0x4C21C155: KLaola::stream(K Laola::OLENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert(QCString const &) (ol efilter.cc:272)

Thistells you that some memory allocated with new[] was freed with
free().

Mismatched free() / delete / delete[]
at 0x40043249: (inside vgpreload memcheck.so)
by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp:149)
by 0x4C261C41: PptDoc::~PptDoc(void) (include/gmemarray.h:60)
by 0x4C261FO0E: PptXml::~PptXml(void) (pptxml.cc:44)
Address 0x4BB292A8 is 0 bytesinside a block of size 64 alloc'd
at 0x4004318C: (inside vgpreload memcheck.so)
by 0x4C21BC15: KLaola::readSBStream(int) const (klaola.cc:314)
by 0x4C21C155: KLaola::stream(K Laola::OLENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert(QCString const &) (ol efilter.cc:272)

Thisisn't so helpful. Although you can tell there is a mismatch,

the names of the allocating and deall ocating functions are no longer
visible. The same kind of thing occursin various other messages
from valgrind.

-- Don't strip symbols from lib/valgrind/* in the installation tree.
Doing so will likely cause problems. Removing the line number info is
probably OK (at least for some of the filesin that directory), although
that has not been tested by the Valgrind developers.

-- Please test the final installation works by running it on something
huge. | suggest checking that it can start and exit successfully
both Firefox and OpenOffice.org. | use these astest programs, and |
know they fairly thoroughly exercise Valgrind. The command linesto use
are

valgrind -v --trace-children=yes firefox

valgrind -v --trace-children=yes soffice

If you find any more hints/tips for packaging, please report
it as a bugreport. See http://www.valgrind.org for details.

143

8. README.S390

Requirements

- You need GCC 3.4 or later to compile the s390 port.

- To run valgrind a z10 machine or any later model is recommended.
Older machine models down to and including 2990 may work but have
not been tested extensively.

Limitations

- 31-hit client programs are not supported.

- Hexadecimal floating point is not supported.

- Transactional memory is not supported. The transactional -execution
facility is masked off from HWCAP.

- FP signalling is not accurate. E.g., the "compare and signa”
instructions behave like their non-signalling counterparts.

- memcheck, cachegrind, drd, helgrind, massif, lackey, and none are
supported.

- On machine models predating z10, cachegrind will assume az10 cache
architecture. Otherwise, cachegrind will query the hosts cache system
and use those parameters.

- callgrind and all experimental tools are currently not supported.

- Some gcce versions use mvce to copy 4/8 byte values. Thiswill affect
certain debug messages. For example, memcheck will complain about
4 one-byte reads/writes instead of just a single read/write.

Hardware facilities

Valgrind does not require that the host machine has the same hardware
facilities as the machine for which the client program was compiled.
Thisis convenient. If possible, the JIT compiler will trandlate the
client instructions according to the facilities available on the host.

This means, though, that probing for hardware facilities by issuing
instructions from that facility and observing whether SIGILL isthrown
may not work. As a conseguence, programs that attempt to do so may
behave differently. It is believed that thisis arare use case.

Recommendations

Applications should be compiled with -fno-builtin to avoid
false positives due to builtin string operations when running memcheck.

Reading Material

(1) ELF ABI s390x Supplement

144

README.S390

https://github.com/I BM/s390x-ahi/rel eases

(2) z/Architecture Principles of Operation
http://publibfp.dhe.ibm.com/epubs/pdf/a227832c.pdf

(3) Z/Architecture Reference Summary
https://www.ibm.com/support/pages/system/files/2020-07/SA 22-7871-10.pdf

145

9. README.android

How to cross-compile and run on Android. Please read to the end,
since there are important details further down regarding crash
avoidance and GPU support.

These notes were last updated on 4 Nov 2014, for Valgrind SVN
revision 14689/2987.

These instructions are known to work, or have worked at sometimein
the past, for:

arm:
Android 4.0.3 running on a (rooted, AOSP build) Nexus S.
Android 4.0.3 running on Motorola Xoom.
Android 4.0.3 running on android arm emulator.
Android 4.1 running on android emulator.
Android 2.3.4 on Nexus S worked at some time in the past.

x86:
Android 4.0.3 running on android x86 emulator.

mips32:
Android 4.1.2 running on android mips emulator.
Android 4.2.2 running on android mips emulator.
Android 4.3 running on android mips emulator.
Android 4.0.4 running on BROADCOM bcm7425

arme4:
Android 4.5 (?) running on ARM Juno

On android-arm, GDBserver might insert breaks at wrong addresses.
Feedback on this welcome.

Other configurations and toolchains might work, but haven't been tested.

Feedback is welcome.
Toolchain:

For arm32, x86 and mips32 you need the android-ndk-r6 native
development kit. réb and r7 give a non-completely-working build;
see http://code.google.com/p/android/i ssues/detail 71 d=23203
For the android emulator, the versions needed and how to install
them are described in README.android_emulator.

Y ou can get android-ndk-r6 from
http://dl.google.com/android/ndk/android-ndk-r6-linux-x86.tar.bz2

For arm64 (aarch64) you need the android-ndk-r10c NDK, from
http://dl.google.com/android/ndk/android-ndk-r10c-linux-x86_64.bin

146

README.android

Install the NDK somewhere. Doesn't matter where. Then:

Modify this (obviously). Note, this"export" command is only done

s0 as to reduce the amount of typing required. None of the commands
below read it as part of their operation.

#

export NDKROOT=/path/to/android-ndk-r<version>

Then cd to the root of your Valgrind source tree.
#
cd /path/to/valgrind/source/tree

After this point, you don't need to modify anything. Just copy and
paste the commands below.

Set up toolchain paths.

#

For ARM

export AR=$NDKROOT/tool chains/arm-linux-androi deabi-4.4.3/prebuilt/li nux-x86/bin/arm-linux-androi deabi-ar
export LD=$NDKROQT/tool chaing/arm-linux-androi deabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-Id
export CC=$NDKROQT/tool chaing/arm-linux-androideabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-gcc

For x86

export AR=$NDKROOT/tool chains/x86-4.4.3/prebuilt/li nux-x86/bin/i686-android-linux-ar
export LD=$NDKROQT/tool chains/x86-4.4.3/prebuilt/linux-x86/bin/i686-android-linux-Id
export CC=3$NDKROQT/tool chaing/x86-4.4.3/prebuilt/linux-x86/bin/i 686-android-linux-gcc

For MIPS32

export AR=$NDKROOT/tool chains/mi psel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-ar
export LD=$NDKROQT/tool chaing/mipsel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-Id
export CC=3$NDKROQT/tool chaing/mipsel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-gcc

For ARM64 (AArch64)

export AR=$NDKROOT/tool chai ns/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-1inux-android-ar
export LD=$NDKROQT/tool chaing/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-linux-android-ld
export CC=$NDKROQT/tool chaing/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-linux-android-gcc

Do configuration stuff. Don't mess with the --prefix in the
configure command below, even if you think it's wrong.

Y ou may need to set the --with-tmpdir path to something
different if /sdcard doesn't work on the device -- thisis

aknown cause of difficulties.

The below re-generates configure, Makefiles, ...
Thisisnot needed if you start from arelease tarball.
Jautogen.sh

#for ARM

147

README.android

CPPFLAGS="--sysroot=$NDKROOT/platforms/android-3/arch-arm" \
CFLAGS="--sysroot=3NDKROQT/platforms/android-3/arch-arm" \
Jconfigure --prefix=/data/local/Inst \

--host=armv7-unknown-linux --target=armv7-unknown-linux \
--with-tmpdir=/sdcard
note: on android emulator, android-14 platform was also tested and works.
It is not clear what this platform nr redly is.

for x86
CPPFLAGS="--sysroot=$NDKROOT/platforms/android-9/arch-x86" \
CFLAGS="--sysroot=3NDK ROOT/platforms/androi d-9/arch-x86 -fno-pic" \
Jconfigure --prefix=/data/local/Inst \
--host=i1686-android-linux --target=i686-android-linux \
--with-tmpdir=/sdcard

#for MIPS32

CPPFLAGS="--sysroot=$NDKROOT/platforms/android- 18/arch-mips" \
CFLAGS="--sysroot=3NDKROQT/platforms/android-18/arch-mips" \
Jconfigure --prefix=/data/local/Inst \
--host=mipsel -linux-android --target=mipsel-linux-android \
--with-tmpdir=/sdcard

for ARM64 (AArch64)
CPPFLAGS="--sysroot=$NDKROOT/platforms/android-21/arch-arm64" \
CFLAGS="--sysroot=3NDKROOT/platforms/android-21/arch-arm64" \
Jconfigure --prefix=/data/local/Inst \
--host=aarch64-unknown-linux --target=aarch64-unknown-linux \
--with-tmpdir=/sdcard

At the end of the configure run, afew lines of details

are printed. Make sure that you see these two lines:

#

For ARM:

Platform variant: android

Primary -DVGPV string: -DVGPV_arm_linux_android=1

#

For x86:

Platform variant: android

Primary -DVGPV string: -DVGPV_x86_linux_android=1

#

For mips32:

Platform variant: android

Primary -DVGPV string: -DVGPV_mips32_linux_android=1
#

For ARM64 (AArch64):

Platform variant: android

Primary -DVGPV string: -DVGPV_arm64_linux_android=1
#

If you see anything else at this point, something is wrong, and
either the build will fail, or will succeed but you'll get something
which won't work.

148

README.android

Build, and park the install tree in “pwd’/Inst
#

make -j4

make -j4 install DESTDIR="pwd'/Inst

To get the install tree onto the device:

(1 don't know why it's not "adb push Inst /data/local”, but this
formulation does appear to put the result in /data/local/Inst.)
#

adb push Inst /

To run (on the device). There are two things you need to consider:

#

(1) if you are running on the Android emulator, Valgrind may crash

at startup. Thisisbecause the emulator (for ARM) may not be

simulating ahardware TLS register. To get around this, run

Vagrind with;

--kernel-variant=android-no-hw-tls

#

(2) if you are running areal device, you need to tell Valgrind

what GPU it has, so Valgrind knows how to handle custom GPU

ioctls. Y ou can choose one of the following:
--kernel-variant=android-gpu-sgx5xx # PowerVR SGX 5XX series
--kernel-variant=android-gpu-adreno3xx # Qualcomm Adreno 3XX series

If you don't choose one, the program will still run, but Memcheck

may report false errors after the program performs GPU-specific ioctls.

HHHHHHH

Anyway: to run on the device:
#
/datallocal/Inst/bin/valgrind [kernel variant args] [the usual args etc]

Once you're up and running, a handy modify-V -rebuild-reinstall

command line (on the host, of course) is

#

mg -j2 && mq -j2 install DESTDIR="pwd'/Inst && adb push Inst /
#

where'mq' isan alias for 'make --quiet'.

One common cause of runs failing at startup is the inability of
Valgrind to find a suitable temporary directory. On the device,
there doesn't seem to be any one location which we always have
permission to write to. The instructions above use /sdcard. If

that doesn't work for you, and you're Valgrinding one specific
application which is already installed, you could try using its

temporary directory, in /data/data, for example

/datal/data/org.mozilla.firefox_beta.

#

Using /system/bin/logcat on the deviceis helpful for diagnosing
these kinds of problems.

149

README.android

150

10. README.android _emulator

How to install and run an android emulator.

mkdir android # or any other place you prefer
cd android

download java JDK

http://www.oracle.com/technetwork/javaljavase/downl oads/index.html
download android SDK

http://devel oper.android.com/sdk/index.html

download android NDK

http://devel oper.android.com/sdk/ndk/index.html

versions | used:

jdk-7ud-linux-i586.tar.gz

android-ndk-r8-linux-x86.tar.bz2
android-sdk_r18-linux.tgz

#instal jdk
tar xzf jdk-7ud-linux-i586.tar.gz

#install sdk
tar xzf android-sdk_r18-linux.tgz

#install ndk
tar xjf android-ndk-r8-linux-x86.tar.bz2

setup PATH to use the installed software:

export SDKROOT=$HOM E/android/androi d-sdk-linux

export PATH=3$PATH:$SDKROQOT/tool s:$SDKROOT/platform-tools
export NDKROOT=$HOM E/android/android-ndk-r8

#install android platforms you want by starting:
android
(from $SDKROQT/tools)

select the platforms you need

| selected and installed:

Android 4.0.3 (APl 15)

Upgraded then to the newer version available:
Android sdk 20

Android platform tools 12

then define avirtual device:

Tools-> Manage AVDs...

| define an AVD Name with 64 Mb SD Card, (4.0.3, api 15)
#rest is default

151

README.android_emulator

compile and make install Valgrind, following README.android

Start your android emulator (it takes some time).

Y ou can use adb shell to get a shell on the device
and see it isworking. Note that | usually get

one or two time out from adb shell before it works
adb shell

Once the emulator is ready, push your Valgrind to the emulator:
adb push Inst /

IMPORTANT: when running Valgrind, you may need give it the flag
#

--kernel-variant=android-no-hw-tls

#

since otherwise it may crash at startup.

See README.android for details.

#if you need to debug:

Y ou have on the android side a gdbserver
on the device side:

gdbserver :1234 your_exe

on the host side:

adb forward tcp:1234 tcp:1234

$HOM E/android/androi d-ndk-r8/tool chai ns/arm-linux-androi deabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-gdb your_exe
target remote :1234

152

11. README.mips

Supported platforms

- MIPS32 and M1PS64 platforms are currently supported.
- Both little-endian and big-endian cores are supported.

- MIPS DSP ASE on MIPS32 platforms is supported.

Building V for MIPS

- Native build isavailable for al supported platforms. The build system

expects that native GCC is configured correctly and optimized for the platform.
Y et, this may not be the case with some Debian distributions which configure
GCC to compile to "mipsl" by default. Depending on atarget platform, using
CFLAGS="-mips32r2", CFLAGS="-mips32" or CFLAGS="-mips64" or
CFLAGS="-mips64 -mabi=64" will do the trick and compile Valgrind correctly.

- Use of cross-toolchain is supported as well.
- Example of configure line and additional configure options:

$./configure --host=mipsel-linux-gnu --prefix=<path_to_install_directory>

* --host=mips-linux-gnu is necessary only if Valgrind is built on platform
other then MIPS, tools for building MIPS application have to bein PATH.

* --host=mips-linux-gnu is necessary if you compile it with cross toolchain
compiler for big endian platform.

* --host=mipseal-linux-musl is necessary if you compile it with cross toolchain
compiler for little endian platform.

* --host=nanomipseb-linux-gnu is necessary if you compile it with cross toolchain
compiler for nanoMIPS big endian platform.

* --host=nanomips-linux-gnu is necessary if you compile it with cross toolchain
compiler for nanoMIPS little endian platform.

* --build=mips-linux is needed if you want to build it for MIPS32 on 64-bit
MIPS system.

* |f you are compiling Valgrind for mips32 with gcc version older then
gcc (GCC) 4.5.1, you must specify CFLAGS="-mips32r2 -mplt", e.g.

Jconfigure --prefix=<path_to_install_directory>
CFLAGS="-mips32r2 -mplt"

Limitations

153

README.mips

- Some gdb tests will fail when gdb (GDB) older than 7.5isused and gdb is
not compiled with '--with-expat=yes.

- You can not compile tests for DSP ASE if you are using gcc (GCC) older
then 4.6.1 due to abug in the toolchain.

- Older GCC may have issues with some inline assembly blocks. Get atoolchain
based on newer GCC versions, if possible.

- Systems with a mips64 cpu having only 032 libraries will misconfigure in case
no appropriate architecture flag is specified during configure time.
Be sure to set either mips32 or mips32r2 as the target architecture in that
case.

- Some tests can not be compiled for nanoMIPS due to limitationsin
preliminary GCC for nanoMIPS. Y ou can use '-i' switch for building tests.

154

12. README.solaris

Reguirements

- You need arecent Solaris-like OS to compile this port. Solaris 11 or
any illumos-based distribution should work, Solaris 10 is not supported.
Running “uname -r" hasto print '5.11".

- Recent GCC tools are required, GCC 3 will probably not work. GCC version
4.5 (or higher) is recommended.

- Solaris|d hasto be thefirst linker in the PATH. GNU Id cannot be used.
Thereis currently no linker check in the configure script but the linking
phase failsif GNU Id is used. Recent Solaris/illumos distributions are ok.

- A working combination of autotoolsisrequired: aclocal, autoheader,
automake and autoconf have to be found in the PATH. Y ou should be able to
install pkg:/devel oper/build/automake and pkg:/devel oper/buil d/autoconf
packages to fulfil this requirement.

- System header files are required. On Solaris, these can be installed with:

pkg install system/header

- GNU makeis also required. On Solaris, this can be quickly achieved with:

$ PATH=/usr/gnu/bin:$PATH; export PATH

- For remote debugging support, working GDB is required (see below).

- For running regression tests, GNU sed, grep, awk, diff are required.

This can be quickly achieved on Solaris by prepending /usr/gnu/bin to PATH.

Compilation
Please follow the generic instructions in the README file,
in the section 'Building and installing it'.

The configure script detects a canonical host to determine which version of
Valgrind should be built. If the system compiler by default produces 32-bit
binaries then only a 32-bit version of Valgrind will be built. To enable
compilation of both 64-bit and 32-bit versions on such a system, issue the
configure script as follows:

Jconfigure CC="gcc -m64' CXX="g++ -m64'

Oracle Solaris and illumos support

One of the main goal of this port isto support both Oracle Solaris and
illumos kernels. Thisisavery hard task because Solaris kernel traditionally
does not provide a stable syscall interface and because Valgrind contains
several partsthat are closely tied to the underlying kernel. For these
reasons, the port needs to detect which syscall interfaces are present. This
detection cannot be done easily at run time and is currently implemented as
aset of configure tests. This means that a binary version of this port can be
executed only on akernel that is compatible with a kernel that was used
during the configure and compilation time.

Main currently-known incompatibilities:

155

README.solaris

- Solaris 11 (released in November 2011) removed alarge set of syscalls where
*at variant of the syscall was also present, for example, open() versus
openat(AT_FDCWD) [1]

- syscall number for unlinkat() is 76 on Solaris 11, but 65 on illumos[2]

- illumos (in April 2013) changed interface of the accept() and pipe()
syscals[3]

- posix_spawn() functionality is backed up by true spawn() syscall on Solaris 11.4
whereas illumos and Solaris 11.3 leverage vfork()

- illumos and older Solaris use utimesys() syscall whereas newer Solaris
uses utimensat()

[1] http://docs.oracle.com/cd/E26502_01/html/E28556/gkzIf.html#gkzip
[2] https.//www.illumos.org/issues/521
[3] https://github.com/illumos/illumos-gate/commit/5dbfd19ad5f cc2b779f 40f 80f a05¢1bd28f dObde

Limitations

- The port is Work-In-Progress, many things may not work or they can be subtly
broken.

- Coredumps produced by Valgrind do not contain all information available,
especially microstate accounting and processor bindings.

- Accessing contents of /proc/self/psinfo is not thread-safe. That is because
Valgrind emulates this file on behalf of the client programs. Entire
open() - read() - close() sequence on this file needs to be performed
atomically.

- Fork limitations: vfork() istrandated to fork(), forkall() is not
supported.

- Valgrind does not track definedness of some eflags (OF, SF, ZF, AF, CF, PF)
individually for each flag. After a syscal isfinished, when a carry flag
is set and defined, all other mentioned flags will be also defined even
though they might be undefined before making the syscall.

- System call "execve" with afile descriptor which points to a hardlink
is currently not supported. That is because from the opened file descriptor
itself it is not possible to reverse map the intended pathname.

Examples are fexecve(3C) and isaexec(3C).

- Program headers PT_SUNW_SYSSTAT and PT_SUNW_SYSSTAT_ZONE are not supported.
That is, programs linked with mapfile directive RESERVE_SEGMENT and attribute
TYPE equal to SYSSTAT or SYSSTAT_ZONE will cause Valgrind exit. It is not
possible for Valgrind to arrange mapping of akernel shared page at the
address specified in the mapfile for the guest application. Thereis currently
no such mechanism in Solaris. Hacky workarounds are possible, though.

- When athread has no stack then all system callswill result in Valgrind
crash, even though such system calls use just parameters passed in registers.

This should happen only in pathological situations when athread is created
with custom mmap'ed stack and this stack is then unmap'ed during thread
execution.

Remote debugging support

Solaris port of GDB has amajor flaw which prevents remote debugging from
working correctly. Fortunately this flaw has an easy fix [4]. Unfortunately
it is not present in the current GDB 7.6.2. This boils down to several

156

README.solaris

options:
- Use GDB shipped with Solaris 11.2 which has this flaw fixed.
- Wait until GDB 7.7 becomes available (there won't be other 7.6.x releases).
- Build GDB 7.6.2 with the fix by yourself using the following steps:
pkg install developer/gnu-binutils
$ wget http://ftp.gnu.org/gnu/gdb/gdb-7.6.2.tar.gz
$ gzip -dc gdb-7.6.2.tar.gz | tar xf -
$cd gdb-7.6.2
$ patch -p1 -i /path/to/val grind-sol aris/sol aris/gdb-sol -thread. patch
$ export LIBS="-Incurses"
$ export CC="gcc -m64"
$./configure --with-x=no --with-curses --with-libexpat-prefix=/ust/lib
$ gmake & & gmake install

[4] https.//sourceware.org/ml/gdb-patches/2013-12/msg00573.html

TODO list

- Fix few remaining failing tests.

- Add more Solaris-specific tests (especially for the door and spawn
syscalls).

- Provide better error reporting for various subsyscalls.

- Implement storing of extraregister statein signal frame.

- Performance comparison against other platforms.

- Prevent SIGPIPE when writing to a socket (coregrind/m_libcfile.c).

- Implement ticket locking for fair scheduling (--fair-sched=yes).

- Implement support in DRD and Helgrind tools for thr_join() with thread == 0.

- Add support for accessing thread-local variables via gdb (auxprogs/getoff.c).
Requires research oninternal libc TL S representation.

- VEX supports AV X, BMI and AV X2. Investigate if they can be enabled on
Solarig/illumos.

- Investigate support for more flagsin AT_SUN_AUXFLAGS.

- Fix Valgrind crash when athread has no stack and syswrap-main.c accesses
all possible syscall parameters. Enable helgrind/tests/stackteardown.c
to seethisin effect. Would require awareness of syscall parameter semantics.

- Correctly print arguments of DW_CFA_ORCL _arg_loc in show_CF _instruction() when
it isimplemented in libdwarf.

- Handle a situation when guest program sets SC_CANCEL_FL G in schedctl and
Valgrind needs to invoke a syscall on its own.

Summary of Solaris 11 Kernel Interfaces Used

Valgrind uses directly the following kernel interfaces (not exhaustive list).
Then, of course, it has very intimate knowledge of all syscalls, many ioctls
and some door calls because it has wrappers around them.
- Syscdlls:

. clock_gettime

. close

. connect

. execve

. exit

. faccessat

157

README.solaris

. fentl

. forksys

. fstatat

. getcwd

. getdents

. geteuid

. getgid

. getgroups

. getpeername

. getpid

. getrlimit

. getsockname

. getsockopt

. gettimeofday

kill

. Iseek

. lwp_create

. lwp_exit

. lwp_sdlf

. lwp_sigqueue

. mknodat

. mmap

. mprotect

. munmap

. openat

. pipe

. pollsys

. pread

- prgpsys

. pwrite

. read

. readlinkat

. renameat

. rt_sigprocmask

. send

. setrlimit

. setsockopt

. sigaction

. sigreturn

. sigtimedwait

. S0_socket

. spawn

. uname

. unlinkat

. waitsys

. write
- Signal frames. Valgrind decomposes and synthetizes signal frames.
- Flag sc_sigblock flag in the schedctl structure by replacing

function block_all_signals() from libc. The replacement emulates Iwp_sigmask

syscall. More details in coregrind/vg_preloaded.c.
- Initial stack layout for the main thread is synthetized.
- procfs agent thread and other procfs commands for manipulating the process.
- mmapobj syscall is emulated because it gets in the way of the address space

manager's control.

158

README.solaris

Contacts

Please send bug reports and any questions about the port to:
Ivo Raisr <ivosh@ivosh.net>

Petr Pavlu <setup@dagobah.cz>

159

13. README.freebsd

Installing from ports or via pkg

If you are using FreeBSD 11.3 or later, then you should be able to install
Valgrind using either

pkg install devel/valgrind
or aternatively from ports (if installed)

cd /usr/ports/devel/valgrind & & make install clean

Building Valgrind

Install ports for autoconf, automake, libtool and gmake.

$ sh autogen.sh

$./configure --prefix=/where/ever
$ gmake

$ gmake install

Known Limitations (June 2022)

0. Be aware that if you use awrapper script and run VValgrind on the wrapper
script Valgrind may hit restrictionsif the wrapper script runs any
Capsicum enabled applications. Examples of Capsicum enabled applications
are echo, basename, tee, unig and wc. It is recommended that you either
avoid these applications or that you run Valgrind directly on your test
application.

1. There are some limitations when running Valgrind on code that was compiled
with clang. Theseissues are not present with code compiled with GCC.
a) There may be missing source information concerning variables due

to DWARF extensions ised by GCC.

b) Code that uses OpenM P will generate spurious errors.

2. vgdb invoker, which uses ptrace, may cause system calls to be
interrupted.

Notes for Developers

See README_DEVELOPERS, README_MISSING_SYSCALL_OR_IOCTL and docs/*
for more general information for developers.

0. Adding syscalls.

When adding syscalls, you need to look at the manpage and also syscalls.master
(online at

160

README freebsd

https://github.com/freebsd/freebsd/bl ob/master/sys/kern/syscalls.master
and for 32bit
https://github.com/freebsd/freebsd/bl ob/master/sys/compat/freebsd32/syscalls.master

and if you installed the src package there should also be

lusr/src/sys/kern/syscalls.master
and
Jusr/src/sys/compat/freebsd32/syscalls.master)

syscalls.master is particularly useful for seeing quickly whether parameters
are inputs or outputs.

The syscall wrappers can vary from trivial to difficult. Fortunately, many are
either trivial (no arguments) or easy (Valgrind just needs to know what memory
isbeing read or written). Some syscalls, such as those involving process

creation and termination, signals and memory mapping require deeper interaction
with Valgrind.

When you add syscalls you will need to modify severa files

a) include/vki/vki-scnums-freebsd.h
Thisfile contains one #define for each syscall. The_ NR_ prefix (Linux
style) is used rather than SYS_for compatibility with the rest of the
Valgrind source.

b) coregrind/m_syswrap/priv_syswrap-freebsd.h
This uses the DECL_TEMPLATE macro to generate declarations for the syscall
before and after wrappers.

¢) coregrind/m_syswrap/syswrap-freebsd.c
Thisiswhere the bulk of the code resides. Toward the end of thefile
the BSDX_/BSDXY macros are used to generate entries in the table of
syscalls. BSDX _isused for wrappers that only have a'before’, BSDXY
if both wrappers are required. In general, syscalls that have no arguments
or only input arguments just need aBSDX__ macro (before only). Syscalls
with output arguments need a BSDXY macro (before and after).

d) If the syscall uses 64bit arguments (long long) then instead of putting
the wrapper definitions in syswrap-freebsd.c there will be one definition
for each platform amd64 and x86 in syswrap-x86-freebsd.c and
syswrap-amd64-freebsd.c.

Each long long needs to be split into two ARGs in the x86 version.

The PRE (before) wrapper

Each PRE wrapper always contains the following two macro calls

PRINT. This outputs the syscall name and argument values when Valgrind is
executed with
--trace-syscalls=yes

PRE_READ_REGX. This macro lets Valgrind know about the number and types of the
syscall arguments which allows Valgrind to check that they are initialized.

X isthe number of arguments. It is best that the argument names match

the man page, but the must match the types and number of argumentsin
syscalls.master.

161

README freebsd

Occasionally there are differences between the two.

If the syscall takes pointers to memory there will be one of the following for
each pointer argument.

PRE_MEM_RASCIIZ for NULL terminated ascii strings.
PRE_MEM_READ for pointers to structures or arrays that are read.
PRE_MEM_WRITE for pointersto structures or arrays that are written.
Asarule, the definitions of structures are copied into vki-freebsd.h
with the vki- prefix. [vki - Valgrind kernel interface; this was done
historically to protect against discrepancies between user include

structure definitions and kernel definitions on Linux].

The POST (after) wrapper

These are much easier.
They just contain aPOST_MEM_WRITE macro for each output argument.
1. Running regression tests

In order to run all of the regression tests you will need to install
the following packages

gdb

gsed

In addition to running "make" you will need to run
"make check" to build the regression test exectutables
and "make regtest”. Again, more details can be seenin
README_DEVELOPERS.

If you want to run the 'nightly’ script (see nightly/README.txt)
you will need to install coreutils and modify the
nightly/conf/freebsd.* files. The default configuration

sends an e-mail to the valgrind-testresults mailing list.

If you find any problems please create a bugzilla report at
https://bugs.kde.org using the Valgrind product.

Alternatively you can use the FreeBSD bugilla
https://bugs.freebsd.org

Credits

Valgrind was originally ported to FreeBSD by Doug Rabson
in 2004.

162

README freebsd

Paul Floyd (that's me), started looking at this project in late 2018,
took along pause and then continued in earnest in January 2020.

A big thanks to Nick Briggs for helping with the x86 version.

Kyle Evans and Ed Maste for contributing patches and helping with the
integration with FreeBSD ports.

Prior to 2018 many others have also contributed.

Dimitry Andric
Simon Barner
Roman Bogorodskiy
Rebecca Cran
Bryan Drewery
Brian Fundakowski Feldman
Denis Generalov
Mikolg Golub
Eugene Kilachkoff
XinLl

Phil Longstaff

Pav Lucistnik
Conrad Meyer
Julien Nadeau
Frerich Raabe
Doug Rabson
Craig Rodrigues
Tom Russo
Stephen Sanders
Stanislav Sedov
Andrei V. Shetuhin
Niklas Sorensson
Ryan Stone

Jerry Toung

Y uri

163

GNU Licenses

GNU Licenses

Table of Contents

1. The GNU GENEal PUDIIC LICENSE . ..oeeiiti ettt et e e e et e et e e e e et e e et e eenes 1
2. The GNU Free DOCUMENALION LICENSE ... cuuiiitie ittt ettt e et e e et e e e e s e et e e et e e et e e e e e e aens 8

clxv

1. The GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and changeit. By contrast, the GNU General Public
Licenseisintended to guarantee your freedom to share and change free
software--to make sure the software isfree for all itsusers. This
General Public License appliesto most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public Licenseinstead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our Genera Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions trand ate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for afee, you must give the recipients al the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for thisfree
software. If the software is modified by someone el se and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors reputations.

The GNU Genera Public License

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
anotice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program”
means either the Program or any derivative work under copyright law:
that isto say, awork containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, trandlation isincluded without limitation in
the term "modification".) Each licenseeis addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

Y ou may charge afee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for afee.

2. Y ou may modify your copy or copies of the Program or any portion
of it, thus forming awork based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet al of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) Y ou must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as awhole at no charge to all third
parties under the terms of this License.

¢) If the modified program normally reads commands interactively

The GNU Genera Public License

when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
awarranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception:; if the Program itself isinteractive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work asawhole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate worksin
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of awhole which isawork based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wroteit.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with awork based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or awork based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with awritten offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received asto the offer
to distribute corresponding source code. (Thisalternativeis
alowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for awork means the preferred form of the work for
making modificationstoit. For an executable work, complete source
code means al the source code for all modulesit contains, plus any

The GNU Genera Public License

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, asa
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. Y ou may not copy, modify, sublicense, or distribute the Program
except as expressy provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
partiesremain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all itsterms and conditions for copying, distributing or modifying
the Program or works based onit.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives alicense from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. Y ou may not impose any further
restrictions on the recipients' exercise of the rights granted herein.

Y ou are not responsible for enforcing compliance by third partiesto
this License.

7. If, as a consequence of acourt judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consegquence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copiesdirectly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section isintended to

The GNU Genera Public License

apply and the section as awholeis intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or sheiswilling

to distribute software through any other system and a licensee cannot
impose that choice.

This section isintended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program isrestricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation asif written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from timeto time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies aversion number of this License which appliestoit and "any

later version™, you have the option of following the terms and conditions
either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

The GNU Genera Public License

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HASBEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Termsto Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve thisisto make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at |east
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’'s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Seethe
GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it startsin an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY: ; for details type “show w'.
Thisis free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The GNU Genera Public License

The hypothetical commands “show w' and “show ¢' should show the appropriate
parts of the General Public License. Of course, the commands you use may

be called something other than “show w' and “show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

Y ou should also get your employer (if you work as a programmer) or your
schoal, if any, to sign a"copyright disclaimer” for the program, if
necessary. Hereisasample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If thisiswhat you want to do, use the GNU Lesser General

Public License instead of this License.

2. The GNU Free Documentation
License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License isto make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercialy.
Secondarily, this License preserves for the author and publisher away
to get credit for their work, while not being considered responsible

for modifications made by others.

This Licenseisakind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU Genera Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: afree
program should come with manuals providing the same freedoms that the
software does. But this Licenseis not limited to software manuals;

it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purposeisinstruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such anotice grantsa
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document”, below,
refersto any such manual or work. Any member of the publicisa
licensee, and is addressed as "you". Y ou accept the license if you
copy, modify or distribute the work in away requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the

The GNU Free Documentation License

Document or a portion of it, either copied verbatim, or with
modifications and/or trandlated into another language.

A "Secondary Section" is a named appendix or afront-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document isin part a

textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or palitical position regarding

them.

The "Invariant Sections' are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice

that says that the Document is released under this License. If a

section does not fit the above definition of Secondary theniit is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The"Cover Texts' are certain short passages of text that are listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document isreleased under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy,
represented in aformat whose specification is available to the

genera public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readersis not Transparent.
Animage format is not Transparent if used for any substantial amount
of text. A copy that isnot "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using apublicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For worksin

The GNU Free Documentation License

formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose
title either is precisely XY Z or contains XY Z in parentheses following
text that translates XY Z in another language. (Here XY Z stands for a
specific section name mentioned below, such as "Acknowledgements”,
"Dedications’, "Endorsements”, or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a
section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License appliesto the Document. These Warranty
Disclaimers are considered to be included by referencein this

License, but only as regards disclaiming warranties; any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright natices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of thisLicense. Y ou may not use
technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute alarge enough
number of copies you must also follow the conditions in section 3.

Y ou may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copiesin coversthat carry, clearly and legibly, al these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Textson
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and

visible. You may add other material on the coversin addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminousto fit

legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent

10

The GNU Free Documentation License

pages.

If you publish or distribute Opague copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opague copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
acomplete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opague copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It isrequested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these thingsin the Modified Version:

A. Useinthe Title Page (and on the covers, if any) atitle distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, alicense notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preservein that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserveits Title, and add
toit anitem stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one

11

The GNU Free Documentation License

stating thetitle, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

Y ou may omit anetwork location for awork that was published at
least four years before the Document itself, or if the original
publisher of the version it refersto gives permission.

K. For any section Entitled "Acknowledgements' or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve dl the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements®. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections asinvariant. To do this, add their titlesto the

list of Invariant Sectionsin the Modified Version's license notice.

These titles must be distinct from any other section titles.

Y ou may add a section Entitled "Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of thelist

of Cover Textsin the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this

12

The GNU Free Documentation License

License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work inits
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with asingle
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or €lse a unique number.
Make the same adjustment to the section titlesin the list of

Invariant Sectionsin the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements”,
and any sections Entitled "Dedications’. You must delete all sections
Entitled "Endorsements”.

6. COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this

License in the various documents with a single copy that isincluded in

the collection, provided that you follow the rules of this License for

verbatim copying of each of the documentsin all other respects.

Y ou may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this Licensein all

other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on avolume of a storage or
distribution medium, is called an "aggregate” if the copyright

resulting from the compilation is not used to limit the legal rights

of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of coversif the Document isin electronic form.
Otherwise they must appear on printed covers that bracket the whole

aggregate.

13

The GNU Free Documentation License

8. TRANSLATION

Trandation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
trandations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
trandlation of this License, and all the license noticesin the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the trandation and the original version of this License or anotice

or disclaimer, the original version will prevail.

If asection in the Document is Entitled " Acknowledgements”,
"Dedications’, or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to

copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such
partiesremain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from timeto time. Such new
versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this
License "or any later version” appliesto it, you have the option of
following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify aversion
number of this License, you may choose any version ever published (not
as adraft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

14

The GNU Free Documentation License

To usethis License in adocument you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of thelicenseisincluded in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

15

	Valgrind Documentation
	Table of Contents
	The Valgrind Quick Start Guide
	The Valgrind Quick Start Guide
	1. Introduction
	2. Preparing your program
	3. Running your program under Memcheck
	4. Interpreting Memcheck's output
	5. Caveats
	6. More information

	Valgrind User Manual
	1. Introduction
	1.1. An Overview of Valgrind
	1.2. How to navigate this manual

	2. Using and understanding the Valgrind core
	2.1. What Valgrind does with your program
	2.2. Getting started
	2.3. The Commentary
	2.4. Reporting of errors
	2.5. Suppressing errors
	2.6. Debuginfod
	2.7. Core Command-line Options
	2.7.1. Tool-selection Option
	2.7.2. Basic Options
	2.7.3. Error-related Options
	2.7.4. malloc-related Options
	2.7.5. Uncommon Options
	2.7.6. Debugging Options
	2.7.7. Setting Default Options
	2.7.8. Dynamically Changing Options

	2.8. Support for Threads
	2.8.1. Scheduling and Multi-Thread Performance

	2.9. Handling of Signals
	2.10. Execution Trees
	2.11. Building and Installing Valgrind
	2.12. If You Have Problems
	2.13. Limitations
	2.14. An Example Run
	2.15. Warning Messages You Might See

	3. Using and understanding the Valgrind core: Advanced Topics
	3.1. The Client Request mechanism
	3.2. Debugging your program using Valgrind gdbserver and GDB
	3.2.1. Quick Start: debugging in 3 steps
	3.2.2. Valgrind gdbserver overall organisation
	3.2.3. Connecting GDB to a Valgrind gdbserver
	3.2.4. Connecting to an Android gdbserver
	3.2.5. Monitor command handling by the Valgrind gdbserver
	3.2.6. Valgrind gdbserver thread information
	3.2.7. Examining and modifying Valgrind shadow registers
	3.2.8. Limitations of the Valgrind gdbserver
	3.2.9. vgdb command line options
	3.2.10. Valgrind monitor commands

	3.3. Function wrapping
	3.3.1. A Simple Example
	3.3.2. Wrapping Specifications
	3.3.3. Wrapping Semantics
	3.3.4. Debugging
	3.3.5. Limitations - control flow
	3.3.6. Limitations - original function signatures
	3.3.7. Examples

	4. Memcheck: a memory error detector
	4.1. Overview
	4.2. Explanation of error messages from Memcheck
	4.2.1. Illegal read / Illegal write errors
	4.2.2. Use of uninitialised values
	4.2.3. Use of uninitialised or unaddressable values in system calls
	4.2.4. Illegal frees
	4.2.5. When a heap block is freed with an inappropriate deallocation function
	4.2.6. Overlapping source and destination blocks
	4.2.7. Fishy argument values
	4.2.8. Memory leak detection

	4.3. Memcheck Command-Line Options
	4.4. Writing suppression files
	4.5. Details of Memcheck's checking machinery
	4.5.1. Valid-value (V) bits
	4.5.2. Valid-address (A) bits
	4.5.3. Putting it all together

	4.6. Memcheck Monitor Commands
	4.7. Client Requests
	4.8. Memory Pools: describing and working with custom allocators
	4.9. Debugging MPI Parallel Programs with Valgrind
	4.9.1. Building and installing the wrappers
	4.9.2. Getting started
	4.9.3. Controlling the wrapper library
	4.9.4. Functions
	4.9.5. Types
	4.9.6. Writing new wrappers
	4.9.7. What to expect when using the wrappers

	5. Cachegrind: a cache and branch-prediction profiler
	5.1. Overview
	5.2. Using Cachegrind, cg_annotate and cg_merge
	5.2.1. Running Cachegrind
	5.2.2. Output File
	5.2.3. Running cg_annotate
	5.2.4. The Output Preamble
	5.2.5. The Global and Function-level Counts
	5.2.6. Line-by-line Counts
	5.2.7. Annotating Assembly Code Programs
	5.2.8. Forking Programs
	5.2.9. cg_annotate Warnings
	5.2.10. Unusual Annotation Cases
	5.2.11. Merging Profiles with cg_merge
	5.2.12. Differencing Profiles with cg_diff

	5.3. Cachegrind Command-line Options
	5.4. cg_annotate Command-line Options
	5.5. cg_merge Command-line Options
	5.6. cg_diff Command-line Options
	5.7. Acting on Cachegrind's Information
	5.8. Simulation Details
	5.8.1. Cache Simulation Specifics
	5.8.2. Branch Simulation Specifics
	5.8.3. Accuracy

	5.9. Implementation Details
	5.9.1. How Cachegrind Works
	5.9.2. Cachegrind Output File Format

	6. Callgrind: a call-graph generating cache and branch prediction profiler
	6.1. Overview
	6.1.1. Functionality
	6.1.2. Basic Usage

	6.2. Advanced Usage
	6.2.1. Multiple profiling dumps from one program run
	6.2.2. Limiting the range of collected events
	6.2.3. Counting global bus events
	6.2.4. Avoiding cycles
	6.2.5. Forking Programs

	6.3. Callgrind Command-line Options
	6.3.1. Dump creation options
	6.3.2. Activity options
	6.3.3. Data collection options
	6.3.4. Cost entity separation options
	6.3.5. Simulation options
	6.3.6. Cache simulation options

	6.4. Callgrind Monitor Commands
	6.5. Callgrind specific client requests
	6.6. callgrind_annotate Command-line Options
	6.7. callgrind_control Command-line Options

	7. Helgrind: a thread error detector
	7.1. Overview
	7.2. Detected errors: Misuses of the POSIX pthreads API
	7.3. Detected errors: Inconsistent Lock Orderings
	7.4. Detected errors: Data Races
	7.4.1. A Simple Data Race
	7.4.2. Helgrind's Race Detection Algorithm
	7.4.3. Interpreting Race Error Messages

	7.5. Hints and Tips for Effective Use of Helgrind
	7.6. Helgrind Command-line Options
	7.7. Helgrind Monitor Commands
	7.8. Helgrind Client Requests
	7.9. A To-Do List for Helgrind

	8. DRD: a thread error detector
	8.1. Overview
	8.1.1. Multithreaded Programming Paradigms
	8.1.2. POSIX Threads Programming Model
	8.1.3. Multithreaded Programming Problems
	8.1.4. Data Race Detection

	8.2. Using DRD
	8.2.1. DRD Command-line Options
	8.2.2. Detected Errors: Data Races
	8.2.3. Detected Errors: Lock Contention
	8.2.4. Detected Errors: Misuse of the POSIX threads API
	8.2.5. Client Requests
	8.2.6. Debugging C++11 Programs
	8.2.7. Debugging GNOME Programs
	8.2.8. Debugging Boost.Thread Programs
	8.2.9. Debugging OpenMP Programs
	8.2.10. DRD and Custom Memory Allocators
	8.2.11. DRD Versus Memcheck
	8.2.12. Resource Requirements
	8.2.13. Hints and Tips for Effective Use of DRD

	8.3. Using the POSIX Threads API Effectively
	8.3.1. Mutex types
	8.3.2. Condition variables
	8.3.3. pthread_cond_timedwait and timeouts

	8.4. Limitations
	8.5. Feedback

	9. Massif: a heap profiler
	9.1. Overview
	9.2. Using Massif and ms_print
	9.2.1. An Example Program
	9.2.2. Running Massif
	9.2.3. Running ms_print
	9.2.4. The Output Preamble
	9.2.5. The Output Graph
	9.2.6. The Snapshot Details
	9.2.7. Forking Programs
	9.2.8. Measuring All Memory in a Process
	9.2.9. Acting on Massif's Information

	9.3. Using massif-visualizer
	9.4. Massif Command-line Options
	9.5. Massif Monitor Commands
	9.6. Massif Client Requests
	9.7. ms_print Command-line Options
	9.8. Massif's Output File Format

	10. DHAT: a dynamic heap analysis tool
	10.1. Overview
	10.2. Using DHAT
	10.2.1. Running DHAT
	10.2.2. Output File

	10.3. DHAT's Viewer
	10.3.1. The Output Header
	10.3.2. The PP Tree
	10.3.2.1. Structure
	10.3.2.2. The Root Node
	10.3.2.3. Interior Nodes
	10.3.2.4. Leaf Nodes
	10.3.2.5. Access Counts
	10.3.2.6. Aggregate Nodes

	10.3.3. The Output Footer
	10.3.4. Sort Metrics

	10.4. Treatment of realloc
	10.5. Copy profiling
	10.6. Ad hoc profiling
	10.7. DHAT Command-line Options

	11. Lackey: an example tool
	11.1. Overview
	11.2. Lackey Command-line Options

	12. Nulgrind: the minimal Valgrind tool
	12.1. Overview

	13. BBV: an experimental basic block vector generation tool
	13.1. Overview
	13.2. Using Basic Block Vectors to create SimPoints
	13.3. BBV Command-line Options
	13.4. Basic Block Vector File Format
	13.5. Implementation
	13.6. Threaded Executable Support
	13.7. Validation
	13.8. Performance

	Valgrind FAQ
	Valgrind Frequently Asked Questions

	Valgrind Technical Documentation
	1. The Design and Implementation of Valgrind
	2. Writing a New Valgrind Tool
	2.1. Introduction
	2.2. Basics
	2.2.1. How tools work
	2.2.2. Getting the code
	2.2.3. Getting started
	2.2.4. Writing the code
	2.2.5. Initialisation
	2.2.6. Instrumentation
	2.2.7. Finalisation
	2.2.8. Other Important Information

	2.3. Advanced Topics
	2.3.1. Debugging Tips
	2.3.2. Suppressions
	2.3.3. Documentation
	2.3.4. Regression Tests
	2.3.5. Profiling
	2.3.6. Other Makefile Hackery
	2.3.7. The Core/tool Interface

	2.4. Final Words

	3. Callgrind Format Specification
	3.1. Overview
	3.1.1. Basic Structure
	3.1.2. Simple Example
	3.1.3. Associations
	3.1.4. Extended Example
	3.1.5. Name Compression
	3.1.6. Subposition Compression
	3.1.7. Miscellaneous
	3.1.7.1. Cost Summary Information
	3.1.7.2. Long Names for Event Types and inherited Types

	3.2. Reference
	3.2.1. Grammar
	3.2.2. Description of Header Lines
	3.2.3. Description of Body Lines

	Valgrind Distribution Documents
	1. AUTHORS
	2. NEWS
	3. OLDER NEWS
	4. README
	5. README_MISSING_SYSCALL_OR_IOCTL
	6. README_DEVELOPERS
	7. README_PACKAGERS
	8. README.S390
	9. README.android
	10. README.android_emulator
	11. README.mips
	12. README.solaris
	13. README.freebsd

	GNU Licenses
	1. The GNU General Public License
	2. The GNU Free Documentation License

