Set of homomorphisms between two schemes

sage.schemes.generic.homset.SchemeHomset(R, S, category=None, check=True)
class sage.schemes.generic.homset.SchemeHomsetModule_abelian_variety_coordinates_field(X, S, category=None, check=True)

Bases: sage.schemes.generic.homset.SchemeHomset_projective_coordinates_field

base_extend(R)
class sage.schemes.generic.homset.SchemeHomset_affine_coordinates(X, S)

Bases: sage.schemes.generic.homset.SchemeHomset_coordinates

Set of points on X defined over the base ring of X, and given by explicit tuples.

points(B=0)
class sage.schemes.generic.homset.SchemeHomset_coordinates(X, S)

Bases: sage.schemes.generic.homset.SchemeHomset_generic

Set of points on X defined over the base ring of X, and given by explicit tuples.

value_ring()

Returns S for a homset X(T) where T = Spec(S).

class sage.schemes.generic.homset.SchemeHomset_generic(X, Y, category=None, check=True, base=Integer Ring)

Bases: sage.structure.parent_old.Parent, sage.categories.homset.HomsetWithBase

has_coerce_map_from_impl(S)
natural_map()
class sage.schemes.generic.homset.SchemeHomset_projective_coordinates_field(X, S)

Bases: sage.schemes.generic.homset.SchemeHomset_coordinates

Set of points on X defined over the base ring of X, and given by explicit tuples.

points(B=0)
class sage.schemes.generic.homset.SchemeHomset_projective_coordinates_ring(X, S)

Bases: sage.schemes.generic.homset.SchemeHomset_coordinates

Set of points on X defined over the base ring of X, and given by explicit tuples.

points(B=0)
class sage.schemes.generic.homset.SchemeHomset_spec(X, Y, category=None, check=True, base=Integer Ring)

Bases: sage.schemes.generic.homset.SchemeHomset_generic

class sage.schemes.generic.homset.SchemeHomset_toric_coordinates_field(X, S)

Bases: sage.schemes.generic.homset.SchemeHomset_coordinates

Construct the Hom-space of morphisms given on coordinates.

Warning

You should not create objects of this class directly.

INPUT:

OUPUT:

TESTS:

sage: fan = FaceFan(lattice_polytope.octahedron(2))
sage: P1xP1 = ToricVariety(fan)
sage: import sage.schemes.generic.homset as HOM
sage: HOM.SchemeHomset_toric_coordinates_field(P1xP1, QQ)
Set of Rational Points of 2-d toric variety
covered by 4 affine patches

A better way to construct the same Hom-space as above:

sage: P1xP1(QQ)
Set of Rational Points of 2-d toric variety
covered by 4 affine patches
sage.schemes.generic.homset.is_SchemeHomset(H)

Previous topic

Hypersurfaces in affine and projective space

Next topic

Scheme morphism

This Page