Examples of embedding Sage in ETEX with
Sage TEX

Dan Drake and others

March 25, 2010

1 Inline Sage, code blocks

This is an example 2+2 = 4. If you raise the current year mod 100 (which equals
10) to the power of the current day (25), you get 10000000000000000000000000.
Also, 2010 modulo 42 is 36.

Code block which uses a variable s to store the solutions:

1+1

var(’a,b,c’)

eqn = [atb*c==1, b-axc==0, a+b==5]
s = solve(equn, a,b,c)

Solutions of eqn = [bc+a=1,—ac+ b= 0,a+ b =5]:
251) V79 + 25 5I) V7945
la—(() VT9+25) | ((5) VIO +5) —(1101>\/E+110

O RN

4,«%”)V7§—25)b;,(@f)vﬁ§—5) (11>Vﬁg+1
10 10

(6D VT30 IV -11) O

Now we evaluate the following block:

E = EllipticCurve("37a")

You can’t do assignment inside \sage macros, since Sage doesn’t know how to
typeset the output of such a thing. So you have to use a code block. The elliptic
curve E given by y? +y = 23 — z has discriminant 37.

You can do anything in a code block that you can do in Sage and/or Python.

Here we save an elliptic curve into a file.

try:
E = 1load(’E2’)
except IOError:
E = EllipticCurve([1,2,3,4,5])
E.anlist (100000)
E.save(’E2’)

The 9999th Fourier coefficient of % 4+ xy + 3y = x> + 222 + 4 + 5 is —27.
The following code block doesn’t appear in the typeset file...but we can
refer to whatever we did in that code block: e = 7.

var(’x’)
f(x) = log(sin(x)/x)

6 1 .4 1

The Taylor Series of f begins: x — L__ 10 L g8 —

1
~ 167775 ~ 37800 w4 " 107 "6t
2 Plotting
Here’s a plot of the elliptic curve F.
5 -
-1 1 2 3
5+
.10 -

You can use variables to hold plot objects and do stuff with them.
p = plot(f, x, -5, 5)

Here’s a small plot of f from —5 to 5, which I've centered:

On second thought, use the default size of 3/4 the \textwidth and don’t
use axes:

Remember, you're using Sage, and can therefore call upon any of the software
packages Sage is built out of.

f = maxima(’sin(x) "2*exp(x)’)
f.integrate(’x’)

Plot g(x), but don’t typeset it.

You can specify a file format and options for includegraphics. The default
is for EPS and PDF files, which are the best choice in almost all situations.
(Although see the section on 3D plotting.)

If you use regular latex to make a DVI file, you’ll see a box, because DVI
files can’t include PNG files. If you use pdflatex that will work. See the
documentation for details.

When using \sageplot, you can pass in just about anything that Sage can
call .save() on to produce a graphics file:

200F (

150

100

50

3456

To fiddle with aspect ratio, first save the plot object:

p = plot(x, 0, 1) + circle((0,0), 1)
p-set_aspect_ratio(1)

Now plot it and see the circular circle and nice 45 degree angle:

05 0.5

0.5k

Indentation and so on works fine.

s =7
s2 = 27s
P.<x> = GF(2)[]

M matrix(parent(x),s2)
for i in range(s2):
p = (1+x)7i
pc = p.coeffs()
a pc.count (1)
for j in range(a):
idx = pc.index(1)
M[i,idx+j] = pc.pop(idx)

matrixprogram = matrix_plot(M,cmap=’Greys’)

And here’s the picture:

40 60 80 100 120

Reset x in Sage so that it’s not a generator for the polynomial ring: x

2.1 Plotting (combinatorial) graphs with TikZ

Sage now includes some nice support for plotting graphs using TikZ. Here, we
mean things with vertices and edges, not graphs of a function of one or two
variables.

First define our graph:

g = graphs.PetersenGraph()
g.set_latex_options(tkz_style=’Art’)

Now just do \sage{} on it to plot it. You'll need to use the tkz-berge
package for this to work; that package in turn depends on tkz-graph and TikZ.
See “IATEX Options for Graphs” in the Sage reference manual for more details.

http://www.texample.net/tikz/
http://altermundus.com/pages/graphtheory.html
http://altermundus.com/pages/graph.html
http://sagemath.org/doc/reference/sage/graphs/graph_latex.html

o @

The above command just outputs a tikzpicture environment, and you
can control that environment using anything supported by TikZ—although the
output of \sage{g} explicitly hard-codes a lot of things and cannot be flexibly
controlled in its current form.

9 9

G4 = DiGraph({1:[2,2,3,5], 2:[3,4]1, 3:[4], 4:[5,7]1, 5:[6]1},\
multiedges=True)
G4plot = G4.plot(layout=’circular’)

@—06

2.2 3D plotting

3D plotting right now (Sage version 4.3.4) is problematic because there’s no
convenient way to produce vector graphics. We can make PNGs, though, so
if you pass sageplot a graphics object that cannot be saved to EPS or PDF
format, we will automatically save to a PNG file, which can be used when
typesetting a PDF file, but not when creating a DVI file. However, you can
specify the “imagemagick” option, which will use the Imagemagick convert
utility to make EPS files. See the documentation for details.

Here’s a 3D plot whose format we do not specify; it will automatically get
saved as a PNG file and won’t work when using latex to make a DVI file.

Here’s the (perhaps-not-so-) famous Sage cube graph in 3D.

G = graphs.CubeGraph(5)

3 Pausing SageTEX

Sometimes you want to “pause” for a bit while writing your document if you
have embedded a long calculation or just want to concentrate on the ITEX and
ignore any Sage stuff. You can use the \sagetexpause and \sagetexunpause
macros to do that.

A calculation: (SageTEX is paused) and a code environment that simulates
a time-consuming calculation. While paused, this will get skipped over.

import time
time.sleep(15)

Graphics are also skipped: | SageTEX is paused; no graphic

4 Make Sage write your ETEX for you

With SageTgX, you can not only have Sage do your math for you, it can write
parts of your N TEX document for you! For example, I hate writing tabular envi-
ronments; there’s too many fiddly little bits of punctuation and whatnot. .. and
what if you want to add a column? It’s a pain—or rather, it was a pain. Just
write a Sage/Python function that outputs a string of ITEX code, and use
\sagestr. Here’s how to make Pascal’s triangle.

def pascals_triangle(n):
start of the table
s = [r"\begin{tabular}{cc|" + "r" * (n+1) + "}"]
s.append(r" & & k: & \\")
second row, with k values:
s.append(r" & ")
for k in [0..n]:
s.append("& {0} ".format(k))
s.append (r"\\")
the n = 0 row:
s.append(r"\hline" + "\n" + r"n: & 0 & 1 & \\")
now the rest of the rows
for r in [1..n]:
s.append(" & {0} ".format(r))
for k in [0..r]:
s.append ("& {0} ".format(binomial(r, k)))
s.append (r"\\")
add the last line and return
s.append(r"\end{tabular}")

11

return ’’.join(s)

how big should the table be?
n=238

Okay, now here’s the table. To change the size, edit n above. If you have
several tables, you can use this to get them all the same size, while changing
only one thing.

10 10 5 1

15 20 15 6 1

21 35 35 21 7 1
28 56 70 56 28 8 1

k:

o1 2 3 4 5 6 7 8
n: 1

1

1 1

1 3 1

1 6 4 1

1

1

1

1

0O Tt W~ O
0O ~J O UL W N+

5 Include doctest-like examples in your docu-
ment
Here are some examples of using the sageexample environment:

sage: 1+1

sage: factor(x™2 + 2*x + 1)
(z+1)°

If you want to see the plain-text output as well as the typeset output, renew
the sageexampleincludetextoutput command to True:

\renewcommand{\sageexampleincludetextoutput}{True}

This can be useful to check that the two outputs are consistent.

When this environment is near the bottom of the page, it may look like the
page number is the output of a command, when in fact the real output is on the
next page. If the output of a command below looks like 12, don’t worry, that’s
just the page number.

sage: 1+1
2

12

sage: factor(x"2 + 2*x + 1)
(x + 1)72

(z+1)°

Multiline statements are supported, as are triple-quoted strings delimited by
single quotes:

sage: def f(a):
>?’This function is really quite nice,
although perhaps not very useful.’’’
print "f called with a =", a
y = integrate(SR(cyclotomic_polynomial(10)) + a, x)
return y + 1

sage: f(x)

1. 1, 1.4
-z’ — - - z+1
5 4 + 3 +
Note that the “f called with...” stuff doesn’t get typeset, since when running
Sage on example.sage, that gets printed to the terminal.
When typesetting your document, the validity of the outputs is not checked.
In fact, the provided outputs are completely ignored:

sage: is_prime(57)
toothpaste

False

However, typesetting your document produces a file named example_doctest.sage
containing all the doctest-like examples, and you can have Sage check them for
you with:

$ sage -t example_doctest.sage

You should get one doctest failure from the “toothpaste” line above.

Please look into this file for the original line numbers.

Beware that sage -t does not handle well file names with special charac-
ters in them, particularly dashes, dots, and spaces—this ultimately comes from
the way Python interprets import statements. Also, running doctests on files
outside the main Sage library does not always work, so contact sage-support
if you run into troubles.

Some more examples. This environment is implemented a little bit differently
than the other environments, so it’s good to make sure that definitions are
preserved across multiple uses. This will correctly define a, but not print its
output because the statement is made up of a sequence of expressions.

13

sage: 1; 2; a=4; 3; a

After that, Sage should remember that a = 4 and be able to use that in
future sageexample blocks:

sage: f(a)

14

	Inline Sage, code blocks
	Plotting
	Plotting (combinatorial) graphs with TikZ
	3D plotting

	Pausing SageTeX
	Make Sage write your LaTeX for you
	Include doctest-like examples in your document

