Chaco Documentation
Release 3.0.1

Enthought

January 03, 2009

CONTENTS

Quickstart 3
1.1 Installation OVErview ot e e e e e e e e e e e e e e e e e 3
1.2 Running Some Examples e 3
1.3 CreatingaPlot e e e e e e e 8
1.4 Further Reading e e e e 9
Installing and Building Chaco 11
2.1 Imstalling via EPD L e e e e e e e e 11
2.2 ceasy_install L e e e e e e e e 11
2.3 Building from Source L e 11
Tutorials 13
3.1 Imteractive Plotting with Chaco e 13
3.2 Modeling Van der Waal’s Equation With Chaco and Traits 38
3.3 Creating an interactive Hyetograph with Chaco and Traits 44
34 WX-based Tutorial e e e e e e e e e e e 52
3.5 Exploring Chaco with IPython e 52
Architecture Overview 55
4.1 Coreldeas i e e e e e e e e 55
4.2 The Relationship Between Chaco, Enable,and Kiva 55
Commonly Used Modules and Classes 59
5.1 Base Classes v v vt i i e e e e e 59
5.2 DataObjectS o v v e e e e e e e e e e e e e e e e 59
5.3 ContaiNers v v v v it e e e e e e e e e e e e e e e e e e 60
54 Renderers e e e e e e e e 61
5.5 T0o0IS . . . e e e e e e e e 61
56 Overlays e e 62
5.7 Miscellaneous e e e e e 62
How Do I...? 63
6.1 BasiCS e e e e e e e e e e e 63
6.2 Layoutand Rendering i i e e e e e 64
6.3 Writing COMPONENLS . . .« v v v v v e et e 65
6.4 Advanced L L e 65
Frequently Asked Questions 67
7.1 Where does the name “Chaco” come from? 67
7.2 Why was Chaco named “Chaco2” forawhile? 67

7.3 What are the pros and cons of Chaco vs. matplotlib? 67

Programmer’s Reference 71
8.1 Data SOUICES . . . v v v vt i e 72
82 DataRanges e e e e e e e e 72
8.3 MAPPEIS . . v e e e e e e e e e e e e e e 72
84 Containers o v v i e e e e e e e e e e e e e e e 72
Annotated Examples 73
0.1 DAr_PLOL . DY v v o v e e e e e e e e e e e e e e e 73
0.2 DIigdata.Py « v v v v e 74
9.3 cursor_tool _demMO.PV « « v v v vt e e e e e e e e e e e e e e e e 75
0.4 data_labelS.PV « v v v vt e e e e e e 76
0.5 data_VIeW.DY v v v o it e e e e e e e e e e e e 77
9.6 edit_lin€.PV v v v v v it e e e e e 78
9.7 financial_ _pPlot.PY . . v i i i i e e e e e e e e e 79
9.8 financial_ plot_dates.py . . . o v v i i v i i e e e e e e e 80
9.9 mMuUltiaxis.PY .« ¢ v i i e e e 81
9.10 multiaxis_UsSing_Plot.Py . . v v v v i i it e e e e e e e e 82
9.11 noninteraCtivVe.PY .« . v v v i v it e e e e e e e e e e e e e 83
9.12 range_selection_demO.PV . .« v v v v v v v i i e e e e e e e e e e e e e e 84
9.13 SCales_LeSL . PV « v v v o e e e e e e e e e e e e e e e e 85
9.14 SimpPle_liNe.PV « v v v v v i it e e e e e e e e e e e e e e 86
0.15 tornado.PV « ¢ v v v o e e e e e e e e e e 87
0.16 tWO_PLOLS . DY v v v o e e e e e e e e e e e e 88
9.17 vertical PloL.DPY .« v v v it e e e e e e e e e e e e e e 89
9.18 data_CUbE.DY v v v v v i e e e e e e e e e e e e e e e e e 90
0.19 data_stream.DV « . v v v v v i i e e e e e e e e e e e e e e e 91
9.20 scalar_image_function_inspector.py . . « v v v v v v i i i e e 92
0.21 SPECLTUM.DY + v v v o e e e e e e e e e e e e e s 93
0.22 cmap_image_Plot . PV « v v v v o e e e e e e e e e e e e e e e e e 94
90.23 cmap_image_SeleCh .V « v v v v v v e e e e e e e e e e e e e e e e e e e 95
0.24 cmap_SCatter. PV . v v v v i i e e e e e e e e e e e e e e e e e e 96
9.25 contoUur_Cmap_PLloL .PV « ¢ v v v v v e e e e e e e e e e e e e e e 97
0.26 contoUr_PLloL.PY « v v i it e e e e e e e e e e e 98
0.27 grid_container.PV . . v v i v it e e e e e e e e e e e e e 99
9.28 grid_container_aspect_ratio i e e 100
9.29 dimage_from_file.py v i i i it e e e e e e e 101
930 ImMage_insSPeCLOT DY v v v v v v vt e e e e e e e e e e e e e e e e e e 102
931 dimage_Plot.Py . o v i v i e e e e e 103
0.32 Inset_Plot. Py v v v v v i e e e e e e e e e e 104
9.33 1ine_drawiNg.PV .« « v v v v v v et e e e e e e e e e e e e e e e 105
934 1ine_Plotl.PV v v v v v i e e e e e e e e e e e e e e e e e 106
9.35 1ine_plot_hold.DY « v v v v it it e e e e e e e e e e 107
036 109 PLOL DY + v o i e e e e e e 108
9.37 Nans_Plot.PY v v v i i e e e e e e e 108
9.38 pPOlygon_Plot . PV v v v v v ot e e e e e e e e e e e e e e 109
9.39 POLYGON_MOVE .Y v v v v v e 110
940 regreSSioNn.PV . v v v v i v i e e e e e e e e e e e e 111
041 SCALLET . DY v v v o v e e e e e e e e e e e e e e e 112
042 scatter INSPEeCLOr.PY « ¢ v v v v v ot e e e e e e e e e e e 113
043 scatter_seleCht.PY v . v i v i i i e e e 114
944 SCTrOllbhaAr.PV v v v o e e e e e e e e e e e e e e e e 115
945 tabbed PloLS.PY v v v v v i e 116

9.46 traits_editor.py

9.47 zoomable_COlOoTrDar.PV . . v v v v v et e e e e e e e e e e e e e e e

9.48 zoomed_plot

10 Tech Notes

10.1 About the Chaco Scales package i i e e

Chaco Documentation, Release 3.0.1

Chaco is a Python toolkit for building interactive 2-D visualizations. It includes renderers for many popular plot types,
built-in implementations of common interactions with those plots, and a framework for extending and customizing
plots and interactions. Chaco can also render graphics in a non-interactive fashion to images, in either raster or vector
formats, and it has a subpackage for doing command-line plotting or simple scripting.

Chaco is built on three other Enthought packages:

e Traits, as an event notification framework
* Kiva, for rendering 2-D graphics to a variety of backends across platforms

* Enable, as a framework for writing interactive visual components, and for abstracting away GUI-toolkit-specific
details of mouse and keyboard handling

Currently, Chaco requires either wxPython or PyQt to display interactive plots, but a cross-platform OpenGL backend
(using Pyglet) is in the works, and it will not require WX or Qt.

CONTENTS 1

http://code.enthought.com/projects/traits

Chaco Documentation, Release 3.0.1

2 CONTENTS

CHAPTER
ONE

QUICKSTART

This section is meant to help users on well-supported platforms and common Python environments get started using
Chaco as quickly as possible. If your platform is not listed here, or your Python installation has some quirks, then
some of the following instructions might not work for you. If you encounter any problems in the steps below, please
refer to the Installing and Building Chaco section for more detailed instructions.

1.1

Installation Overview

There are several different ways to get Chaco:

Install the Enthought Python Distribution. Chaco and the rest of the Enthought Tool Suite are bundled with it.
Go to the main Enthought Python Distribution (EPD) web site and download the appropriate version for your
platform. After running the installer, you will have a working version of Chaco.

Available platforms:
— Windows 32-bit
— Mac OS X 10.4 and 10.5
— RedHat Enterprise Linux 3 (32-bit and 64-bit)

Note: Enthought Python Distribution is free for academic and personal use, and fee-based for commercial and
government use.

(Windows, Mac) Install from PyPI using easy_install (part of setuptools) from the command line:

easy_install Chaco

(Linux) Install distribution-specific eggs from Enthought’s repository. See the ETS wiki for instructions for
installing pre-built binary eggs for your specific distribution of Linux.

(Linux) Install via the distribution’s packaging mechanism. We provide .debs for Debian and Ubuntu and .rpms
for Redhat. (TODO)

Download source as tarballs or from Subversion and build. See the /nstalling and Building Chaco section.

Chaco requires Python version 2.5.

1.2

Running Some Examples

Depending on how you installed Chaco, you may or may not have the examples already.

If you installed Chaco as part of EPD, the location of the examples depends on your platform:

http://www.enthought.com/epd
https://svn.enthought.com/enthought/wiki/Install#UsingEnthoughtsEggRepo

Chaco Documentation, Release 3.0.1

* On Windows, they are in the Examples\ subdirectory of your installation location. This is typically
C:\Python25\Examples.

* On Linux, they are in the Examples/ subdirectory of your installation location.

* On Mac OS X, they are in the /Applications/<EPD Version>/Examples/ directory.

If you downloaded and installed Chaco from source (via the PyPI tar.gz file, or from an SVN checkout), the exam-
ples are located in the examples/ subdirectory inside the root of the Chaco source tree, next to docs/ and the
enthought / directories.

If you installed Chaco as a binary egg from PyPI for your platform, or if you happen to be on a machine with Chaco
installed, but you don’t know the exact installation mechanism, then you will need to download the examples separately
using Subversion:

¢ ETS 3.0 or Chaco 3.0:
svn co https://svn.enthought.com/svn/enthought/Chaco/tags/3.0.0/examples

* ETS 2.8 or Chaco 2.0.x:
svn co https://svn.enthought.com/svn/enthought/Chaco/tags/enthought.chaco2_2.0.5/examples

Almost all of the Chaco examples are stand-alone files that can be run individually, from any location.

All of the following instructions that involve the command line assume that you are in the same directory as the
examples.

1.2.1 Command line

Run the simple_1line example:
python simple_line.py

This opens a plot of several Bessel functions and a legend.

4 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

800 Simple line plot
Bessel functions
14+ O Bessel] 0
ﬁ = Begsel] 1
o 0O O Besselj 2
0.75 4 o g — Bessel | 3
o 0O B Besselj 4
o5 - o — Hessel] 5
’ O O O Bessel] 6
Bessel | 7
0.25 T O Besselj &
3 — Bessel j 9
01 [m]
O O
O] (]
-0.25 o
0.5
-0.75 T | ; ; : :
T T T T T
10 5] 5 10 15 20
A

You can interact with the plot in several ways:

¢ To pan the plot, hold down the left mouse button inside the plot area (but not on the legend) and drag the mouse.

* To zoom the plot:

Mouse wheel: scroll up to zoom in, and scroll down to zoom out.

[T

Zoom box: Press “z”, and then draw a box region to zoom in on. (There is no box-based zoom out.) Press
Ctrl-Left and Ctrl-Right to go back and forward in your zoom box history.

Drag: hold down the right mouse button and drag the mouse up or down. Up zooms in, and down zooms
out.

For any of the above, press Escape to resets the zoom to the original view.

* To move the legend, hold down the right mouse button inside the legend and drag it around. Note that you can
move the legend outside of the plot area.

¢ To exit the plot, click the “close window” button on the window frame (Windows, Linux) or choose the Quit
option on the Python menu (on Mac). Alternatively, can you press Ctrl-C in the terminal.

You can run most of the examples in the top-level examples directory, the examples/basic/ directory, and the
examples/shell/ directory. The examples/advanced/ directory has some examples that may or may not
work on your system:

1.2. Running Some Examples 5

Chaco Documentation, Release 3.0.1

* spectrum.py requires that you have PyAudio installed and a working microphone.

* data_cube.py needs to download about 7.3mb of data from the Internet the first time it is executed, so you
must have a working Internet connection. Once the data is downloaded, you can save it so you can run the
example offline in the future.

For detailed information about each built-in example, see the Annotated Examples section.

1.2.2 IPython

While all of the Chaco examples can be launched from the command line using the standard Python interpreter, if you
have IPython installed, you can poke around them in a more interactive fashion.

Chaco provides a subpackage, currently named the “Chaco Shell”, for doing command-line plotting like Matlab
or Matplotlib. The examples in the examples/shell/ directory use this subpackage, and they are particularly
amenable to exploration with IPython.

The first example we’ll look at is the 1ines . py example. First, we’ll run it using the standard Python interpreter:
python lines.py

This shows two overlapping line plots.

1.0

0,75

0.5

0.25

0.0

-0.25

-0.5

Q.75

6 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

You can interact with the plot in the following ways:

* To pan the plot, hold down the left mouse button inside the plot area and dragging the mouse.
* To zoom the plot:

— Mouse wheel: scroll up zooms in, and scroll down zooms out.

— Zoom box: hold down the right mouse button, and then draw a box region to zoom in on. (There is no
box-based zoom out.) Press Ctrl-Left and Ctrl-Right to go back and forward in your zoom box history.

— For either of the above, press Escape to reset the zoom to the original view.
Now exit the plot, and start [Python with the -wthread option:
ipython -wthread

This tells IPython to start a wxPython mainloop in a background thread. Now run the previous example again:

In [1]: run lines.py

This displays the plot window, but gives you another IPython prompt. You can now use various commands from the
chaco.shell package to interact with the plot.

* Import the shell commands:

In [2]: from enthought.chaco.shell import =

¢ Set the X-axis title:

In [3]: xtitle ("X data")

* Toggle the legend:

In [4]: legend()

After running these commands, your plot looks like this:

1.2. Running Some Examples 7

Chaco Documentation, Release 3.0.1

0.75

0.5 7

0.25

0.0

=0.25

-0.5

-0.75

The chaco_commands () function display a list of commands with brief descriptions.

You can explore the Chaco object hierarchy, as well. The chaco.shell commands are just convenience functions
that wrap a rich object hierarchy that comprise the actual plot. See the Exploring Chaco with IPython section for
information on more complex and interesting things you can do with Chaco from within IPython.

1.2.3 Start Menu (MS Windows)

If you installed the Enthought Python Distribution (EPD), you have shortcuts installed in your Start Menu for many of
the Chaco examples. You can run them by just clicking the shortcut. (This just invokes python.exe on the example file
itself.)

1.3 Creating a Plot

(TODO)

8 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

1.4 Further Reading

Once you have Chaco installed, you can either visit the Tuzorials to learn how to use the package, or you can run the
examples (see the Annotated Examples section).

1.4.1 Presentations
There have been several presentations on Chaco at previous PyCon and SciPy conferences. Slides and demos from
these are described below.

Currently, the examples and the scipy 2006 tutorial are the best ways to get going quickly. (See
http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html)

Some tutorial examples were recently added into the examples/tutorials/scipy2008/ directory on the trunk. These
examples are numbered and introduce concepts one at a time, going from a simple line plot to building a custom
overlay with its own trait editor and reusing an existing tool from the built-in set of tools. You can browse them on our
SVN server at: https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/tutorials/scipy2008

1.4.2 API Docs

The API docs for Chaco 3.0 (in ETS 3.0) are at: http://code.enthought.com/projects/files/ETS3_API/enthought.chaco.html
The API docs for Chaco2 (in ETS 2.7.1) are at: http://code.enthought.com/projects/files/ets_api/enthought.chaco2.html

1.4. Further Reading 9

http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html
https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/tutorials/scipy2008
http://code.enthought.com/projects/files/ETS3_API/enthought.chaco.html
http://code.enthought.com/projects/files/ets_api/enthought.chaco2.html

Chaco Documentation, Release 3.0.1

10 Chapter 1. Quickstart

CHAPTER
TWO

INSTALLING AND BUILDING CHACO

Note: (8/28/08) This section is still incomplete. For the time being, the most up-to-date information can be found on
the ETS Wiki, and, more specifically, the Install pages.

Chaco is one of the packages in the Enthought Tool Suite. It can be installed as part of ETS or as a separate package.
Even when it is installed as a standalone package, it depends on a few other packages.

2.1 Installing via EPD

Chaco and the rest of ETS are installed as part of the Enthought Python Distribution (EPD). If you have installed EPD,
then you already have Chaco!

Note: Enthought Python Distribution is free for academic and personal use, and fee-based for commercial and
government use.

2.2 easy install

Chaco and its dependencies are available as binary eggs for Windows and Mac OS X from the Python Package Index.

Chaco depends on Numpy and either wxPython or Qt. These packages are not installed by the default installation
command. If you do not have these packages installed, use the following command to install Chaco:

easy_install Chaco[nonets]

If you do have Numpy and either wxPython or Qt installed, you can use a simpler command to install Chaco:
easy_install Chaco

Because eggs do not distinguish between various distributions of Linux, Enthought hosts its own egg repository for

Linux eggs. See the ETS wiki page on our egg repo for instructions for installing pre-built binary eggs for your specific
distribution of Linux.

For systems that don’t have binary eggs, it is also possible to build Chaco from source, since PyPI hosts the source
tarballs for all dependencies.

2.3 Building from Source

Chaco itself is not very hard to build from source; there are only a few C extensions and they build with most modern
compilers. Frequently the more difficult to build piece is actually the Enable package on which Chaco depends.

11

http://svn.enthought.com/enthought/
https://svn.enthought.com/enthought/wiki/Install
http://www.enthought.com/epd
http://pypi.python.org/pypi
https://svn.enthought.com/enthought/wiki/Install#UsingEnthoughtsEggRepo

Chaco Documentation, Release 3.0.1

On most platforms, in order to build Enable, you need Swig > 1.3.30 and wxPython > 2.8. If you are on OS X, you
also need a recent Pyrex.

2.3.1 Obtaining the source

You can get Chaco and its dependencies from PyPI as source tarballs, or you can download the source directly from
Enthought’s Subversion server. The URL is:

https://svn.enthought.com/svn/enthought/Chaco/trunk

Note: This build instructions section is currently under construction. Please see the ETS Install From Source wiki
page for more information on building Chaco and the rest of ETS on your platform.

12 Chapter 2. Installing and Building Chaco

https://svn.enthought.com/svn/enthought/Chaco/trunk
https://svn.enthought.com/enthought/wiki/Build

CHAPTER
THREE

TUTORIALS

Note: (8/28/08) This section is currently being updated to unify the information from several past presentations and
tutorials. Until it is complete, here are links to some of those. The HTML versions are built using S5, which uses
Javascript heavily. You can navigate the slide deck by using left and right arrows, as well as a drop-down box in the
lower right-hand corner.

e SciPy 2006 Tutorial (Also available in pdf)
* Pycon 2007 presentation slides

* SciPy 2008 Tutorial slides (pdf): These slides are currently being converted into the Interactive Plotting with
Chaco tutorial.

3.1 Interactive Plotting with Chaco

3.1.1 Overview

This tutorial is an introduction to Chaco. We’re going to build several mini-applications of increasing capability and
complexity. Chaco was designed to be used primarily by scientific programmers, and this tutorial requires only basic
familiarity with Python.

Knowledge of NumPy can be helpful for certain parts of the tutorial. Knowledge of GUI programming concepts such
as widgets, windows, and events are helpful for the last portion of the tutorial, but it is not required.

This tutorial demonstrates using Chaco with Traits UI, so knowledge of the Traits framework is also helpful. We don’t
use very many sophisticated aspects of Traits or Traits U, and it is entirely possible to pick it up as you go through
the tutorial. This tutorial applies to Enthought Tool Suite version 3.x.

It’s also worth pointing out that you don’t have to use Traits Ul in order to use Chaco — you can integrate Chaco
directly with Qt or wxPython — but for this tutorial, we use Traits UI to make things easier.

13

http://meyerweb.com/eric/tools/s5/
http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html
http://code.enthought.com/projects/files/Data_Exploration_with_Chaco.pdf
http://code.enthought.com/projects/files/chaco_pycon07/index.html
https://svn.enthought.com/svn/enthought/Chaco/trunk/docs/scipy08_tutorial.pdf

Chaco Documentation, Release 3.0.1

Contents

* Interactive Plotting with Chaco

Overview
— Goals

Introduction

Script-oriented Plotting

Application-oriented Plotting

Understanding the First Plot
Scatter Plots

Image Plot
A Slight Modification

Container Overview

Using a Container
Editing Plot Traits

3.1.2 Goals

By the end of this tutorial, you will have learned how to:

* create Chaco plots of various types

* arrange plots of data items in various layouts

* configure and interact with your plots using Traits Ul
* create a custom plot overlay

e create a custom tool that interacts with the mouse

3.1.3 Introduction

Chaco is a plotting application toolkit. This means that it can build both static plots and dynamic data visualizations
that let you interactively explore your data. Here are four basic examples of Chaco plots:

14 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

var| 1 — war |
varh - —varh
varg - - varg
. art T - wvart
g
=]
g vare T - vare
=
]
vard - — vard
varc - — varc
varb - - varb
vara - - vara
2460000 2480000 2500000 2520000 25340000 2560000

A

This plot shows a static “tornado plot” with a categorical Y axis and continuous X axis. The plot is resizable, but the

user cannot interact or explore the data in any way.

3.1. Interactive Plotting with Chaco

15

Chaco Documentation, Release 3.0.1

00 Simple line plot
Bessel functions

O Bessel] 0

T — Bessel 1

O Besselj 2

m— Bossel | 3

0.75 T+ O Besselj 4

— Bessel | 5

O Bessel] &

0.5 T Bessel | 7

O Bessel| 8

m— Bossel | 9
0.25 +
o+
025

e
0.5 T+
075 T
1 1 l 1 1
T T T T T
10 5] 5 10 15 z0
A

This is an overlaid composition of line and scatter plots with a legend. Unlike the previous plot, the user can pan and
zoom this plot, exploring the relationship between data curves in areas that appear densely overlapping. Furthermore,
the user can move the legend to an arbitrary position on the plot, and as they resize the plot, the legend maintains the
same screen-space separation relative to its closest corner.

16 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

AdaO0n Regression Selection
L}
] o L |
|
| |
|
" .. u n |
8] "= i
-
[| | "
-
-
i u e
] u mE-
06T m Ey m B .
’.r —-
-
. F 'ﬂ
. . . - - e .
] >
u _, -7 [] |
04 | m o g
- " g .
P - 4 | [
(.__ - // .. .
g
) - - -
-~ 'm | o
02 -~ | - '.‘- , u [|
m.- - . H B |
-7 Egm u =
i |
g 0.71x + 0.06 -
= : : -
0.2 04 0.6 0.8
e

This example starts to demonstrate interacting with the dataset in an exploratory way. Whereas interactivity in the
previous example was limited to basic pan and zoom (which are fairly common in most plotting libraries), this is an
example of a more advanced interaction that allows a level of data exploration beyond the standard view manipuations.

With this example, the user can select a region of data space, and a simple line fit is applied to the selected points. The
equation of the line is then displayed in a text label.

The lasso selection tool and regression overlay are both built in to Chaco, but they serve an additional purpose of

demonstrating how one can build complex data-centric interactions and displays on top of the Chaco framework.

3.1. Interactive Plotting with Chaco

17

Chaco Documentation, Release 3.0.1

-0.750.5-0.25 0 0.250.50.75

07s | -

0.5 1

0.25 + Ng-deot .
0T &

025

05+

0.75

-0.5

-0.75

This is a much more complex demonstration of Chaco’s capabilities. The user can view the cross sections of a 2-D
scalar-valued function. The cross sections update in real time as the user moves the mouse, and the “bubble” on each
line plot represents the location of the cursor along that dimension. By using drop-down menus (not show here), the
user can change plot attributes like the colormap and the number of contour levels used in the center plot, as well as
the actual function being plotted.

3.1.4 Script-oriented Plotting

We distinguish between “static” plots and “interactive visualizations” because these different applications of a library
affect the structure of how the library is written, as well as the code you write to use the library.

Here is a simple example of the “script-oriented” approach for creating a static plot. This is probably familiar to

anyone who has used Gnuplot, MATLAB, or Matplotlib:

from numpy import =«
from enthought.chaco.shell import =«

x = linspace(-2+pi, 2xpi, 100)
y = sin (x)

plot(x, y, "r-")

18 Chapter 3. Tutorials

8

9

10

Chaco Documentation, Release 3.0.1

title("First plot")
ytitle("sin(x)")
show ()

First plot

5in(x)

07s T
s T
.25
0o T
025 T
05 T
075 T
| | l
T T | T
2.5 0.0 2.5 5.0

l
|
5.0 =2,

/
- ——

The basic structure of this example is that we generate some data, then we call functions to plot the data and configure
the plot. There is a global concept of “the active plot”, and the functions do high-level manipulations on it. The
generated plot is then usually saved to disk for inclusion in a journal article or presentation slides.

Now, as it so happens, this particular example uses the chaco.shell script plotting package, so when you run this script,
the plot that Chaco opens does have some basic interactivity. You can pan and zoom, and even move forwards and
backwards through your zoom history. But ultimately it’s a pretty static view into the data.

3.1.5 Application-oriented Plotting

The second approach to plotting can be thought of as “application-oriented”, for lack of a better term. There is
definitely a bit more code, and the plot initially doesn’t look much different, but it sets us up to do more interesting
things, as you’ll see later on:

from enthought.traits.api import HasTraits, Instance
from enthought.traits.ui.api import View, Item

3.1. Interactive Plotting with Chaco 19

20
21
22
23

24

Chaco Documentation, Release 3.0.1

from enthought.chaco.api import Plot,

ArrayPlotData

from enthought.enable.component_editor import ComponentEditor

from numpy import linspace, sin
class LinePlot (HasTraits) :
plot = Instance(Plot)
traits_view = View(
Item(’'plot’,editor=ComponentEditor (),
width=500, height=500, resizable=True,

def _ init_ (self):
super (LinePlot,
x = linspace(-14,
y = sin(x) * x**3
plotdata = ArrayPlotData (x=x,
plot = Plot (plotdata)
plot.plot (("x" "y,
plot.title = "sin(x)
self.plot = plot

self).__init__ ()
14, 100)

y=Y)

type="1line",

* x~3"

if name == "_ _main_ ":

LinePlot () .configure_traits()

show_label=False),
title="Chaco Plot")

color="blue™)

This produces a plot similar to the previous script-oriented code snippet:

20

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

sin(x) * x"3

2000

1000 T

-1000

So, this is our first “real” Chaco plot. We’ll walk through this code and look at what each bit does. This example
serves as the basis for many of the later examples.

3.1.6 Understanding the First Plot

Let’s start with the basics. First, we declare a class to represent our plot, called LinePlot:

class LinePlot (HasTraits):
plot = Instance(Plot)

This class uses the Enthought Traits package, and all of our objects subclass from HasTraits.

Next, we declare a Traits UI View for this class:

3.1. Interactive Plotting with Chaco 21

Chaco Documentation, Release 3.0.1

traits_view = View (
Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

Inside this view, we are placing a reference to the plot trait and telling Traits Ul to use the ComponentEditor
(imported from enthought .enable.component_editor) to display it. If the trait were an Int or Str or Float,
Traits could automatically pick an appropriate GUI element to display it. Since Traits UI doesn’t natively know how
to display Chaco components, we explicitly tell it what kind of editor to use.

The other parameters in the View constructor are pretty self-explanatory, and the Traits UI User’s Guide documents
all the various properties you can set here. For our purposes, this Traits View is sort of boilerplate. It gets us a nice
little window that we can resize. We’ll be using something like this View in most of the examples in the rest of the
tutorial.

Now, let’s look at the constructor, where the real work gets done:

def _ init__ (self):

super (LinePlot, self).__init__ ()
x = linspace(-14, 14, 100)
y = sin(x) * x**3

plotdata = ArrayPlotData (x=x, y=y)

The first thing we do here is call the super-class’s __init__ () method, which ensures that all the Traits machinery
is properly set up, even though the __init__ () method is overridden. Then we create some mock data, just like
in the script-oriented approach. But rather than directly calling some sort of plotting function to throw up a plot, we
create this ArrayPlotData object and stick the data in there. The ArrayPlotData object is a simple structure that
associates a name with a NumPy array.

In a script-oriented approach to plotting, whenever you have to update the data or tweak any part of the plot, you
basically re-run the entire script. Chaco’s model is based on having objects representing each of the little pieces of a
plot, and they all use Traits events to notify one another that some attribute has changed. So, the ArrayPlotData is an
object that interfaces your data with the rest of the objects in the plot. In a later example we’ll see how we can use the
ArrayPlotData to quickly swap data items in and out, without affecting the rest of the plot.

The next line creates an actual P 1ot object, and gives it the ArrayPlotData instance we created previously:

plot = Plot (plotdata)

Chaco’s Plot object serves two roles: it is both a container of renderers, which are the objects that do the actual task of
transforming data into lines and markers and colors on the screen, and it is a factory for instantiating renderers. Once
you get more familiar with Chaco, you can choose to not use the Plot object, and instead directly create renderers and
containers manually. Nonetheless, the Plot object does a lot of nice housekeeping that is useful in a large majority of
use cases.

Next, we call the plot () method on the Plot object we just created:
plot.plot (("x", "y"), type="line", color="blue")

[T}

This creates a blue line plot of the data items named “x” and “y”. Note that we are not passing in an actual array here;
we are passing in the names of arrays in the ArrayPlotData we created previously.

This method call creates a new renderer — in this case a line renderer — and adds it to the Plot.

This may seem kind of redundant or roundabout to folks who are used to passing in a pile of NumPy arrays to a plot
function, but consider this: ArrayPlotData objects can be shared between multiple Plots. If you want several different
plots of the same data, you don’t have to externally keep track of which plots are holding on to identical copies of

22 Chapter 3. Tutorials

http://code.enthought.com/projects/traits/docs/html/TUIUG/index.html

20
21
22
23

24

Chaco Documentation, Release 3.0.1

what data, and then remember to shove in new data into every single one of those plots. The ArrayPlotData object acts
almost like a symlink between consumers of data and the actual data itself.

Next, we set a title on the plot:

plot.title = "sin(x) = x"3"

And then we set our plot trait to the new plot:

self.plot = plot

The last thing we do in this script is set up some code to run when the script is executed:

if name == "__main__ ":

LinePlot () .configure_traits()

This one-liner instantiates a LinePlot object and calls its configure_traits () method. This brings up a dialog
with a traits editor for the object, built up according to the View we created earlier. In our case, the editor just displays
our plot attribute using the ComponentEditor.

3.1.7 Scatter Plots

We can use the same pattern to build a scatter plot:

from enthought.traits.api import HasTraits, Instance

from enthought.traits.ui.api import View, Item

from enthought.chaco.api import Plot, ArrayPlotData

from enthought.enable.component_editor import ComponentEditor
from numpy import linspace, sin

class ScatterPlot (HasTraits):
plot = Instance(Plot)
traits_view = View(
Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

def _ init_ (self):

super (ScatterPlot, self)._ _init__ ()

x = linspace(-14, 14, 100)

y = sin(x) * x**3

plotdata = ArrayPlotData(x = x, y = Vy)

plot = Plot (plotdata)

plot.plot (("x", "y"), type="scatter", color="blue")

plot.title = "sin(x) % x"3"

self.plot = plot
if _ name_ == "_ _main_ ":
ScatterPlot () .configure_traits()

Note that we have only changed the fype argument to the plot .plot () call and the name of the class from LinePlot
to ScatterPlot. This produces the following:

3.1. Interactive Plotting with Chaco 23

Chaco Documentation, Release 3.0.1

[] .|
m n
2000 T
u m
u u
1000 T
u m
) u
N u
1l m u
0 []
u u
u u
u u
m B H g
-1000 - -
o Ty
f i i i f
=10 =5 1] 5 10
]

3.1.8 Image Plot

Image plots can be created in a similar fashion:

from
from
from
from
from

enthought.
enthought.
enthought.
enthought.

numpy import exp,

traits.api import HasTraits, Instance
traits.ui.api import View, Item

chaco.api import Plot, ArrayPlotData, jet
enable.component_editor import ComponentEditor
linspace, meshgrid

class ImagePlot (HasTraits):

plot
traits_view

Instance (Plot)

View (

24

Chapter 3. Tutorials

20

21

22

23

24

25

Chaco Documentation, Release 3.0.1

Item(’'plot’, editor=ComponentEditor(),

width=500, height=500, resizable=True,
def _ init__ (self):

super (ImagePlot, self).__init__ ()

x = linspace (0, 10, 50)

linspace (0, 5, 50)
meshgrid(x, V)

y =
xgrid, ygrid =
7 =
plotdata =
plot = Plot (plotdata)
plot.img_plot ("imagedata",
self.plot = plot

xbounds=x,

if name == "_ _main_ ":

ImagePlot () .configure_traits()

exp (- (xgridxxgrid+ygrid+ygrid) /100)
ArrayPlotData (imagedata = z)

ybounds=y,

show_label=False),
title="Chaco Plot")

colormap=jet)

There are a few more steps to create the input Z data, and we also call a different method on the Plot object —
img_plot () instead of plot (). The details of the method parameters are not that important right now; this is just
to demonstrate how we can apply the same basic pattern from the “first plot” example above to do other kinds of plots.

3.1. Interactive Plotting with Chaco

25

Chaco Documentation, Release 3.0.1

3.1.9 A Slight Modification

Earlier we said that the Plot object is both a container of renderers and a factory (or generator) of renderers. This
modification of the previous example illustrates this point. We only create a single instance of Plot, but we call its
plot () method twice. Each call creates a new renderer and adds it to the Plot object’s list of renderers. Also notice
that we are reusing the x array from the ArrayPlotData:

from
from
from
from
from

enthought .traits.api import HasTraits, Instance
enthought .traits.ui.api import View, Item
enthought.chaco.api import Plot, ArrayPlotData

enthought .enable.component_editor import ComponentEditor
numpy import cos, linspace, sin

26

Chapter 3. Tutorials

20

21

22

23

Chaco Documentation, Release 3.0.1

class OverlappingPlot (HasTraits):
plot = Instance (Plot)
traits_view = View(

Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

def _ init_ (self):

super (OverlappingPlot) .__init__ ()
x = linspace(-14, 14, 100)

y = x/2 % sin(x)

y2 = cos(x)

plotdata = ArrayPlotData (x=x, y=y, y2=y2)
plot = Plot (plotdata)
plot.plot (("x", "y"), type="scatter", color="blue")
plot.plot (("x", "y2"), type="line", color="red")
self.plot = plot
if _ name_ == "_ _main_
OverlappingPlot () .configure_traits/()

LU

3.1. Interactive Plotting with Chaco

27

Chaco Documentation, Release 3.0.1

3.1.10 Container Overview

So far we’ve only seen single plots, but frequently we need to plot data side by side. Chaco uses various subclasses of
Container to do layout. Horizontal containers (HP 1ot Container) place components horizontally:

28 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

More Bessels
T I
s [}
el
2 1
v LY
v
- A
A Y
4 &
A Y
1
Y
ALY
~
.
=
~
Ay
.
A
1 1
: *
r Ay
L Al
#
» A
g \
p
’ 1
r 1
r ’
1 r
’
b ,
ALY
hd ’
E
Al ”
LY
1]
i L]
Il A3
7 A\
Al
’ 3
f A
,
s A
i 1
1 1
" r
\ '
5 ¢
f
3 '
\)
i [}
4

Vertical containers (VP lotContainer) array component vertically:

3.1. Interactive Plotting with Chaco 29

Chaco Documentation, Release 3.0.1

Grid container (GridPlotContainer) lays plots out in a grid:

More Bessels
------ _
- - .
- - -
-h-"'-.. ‘-". ﬂﬂﬂﬂﬂﬂ -
--"-..——"-'
.4-— ‘.‘ -
- R
- T a" - e="T - il
‘_‘-' s‘\ ‘.r Rl T _A__-_
- _,"
"---’
)

30

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Overlay containers (OverlayPlotContainer) just overlay plots on top of each other:

3.1. Interactive Plotting with Chaco 31

Chaco Documentation, Release 3.0.1

00 Simple line plot
Bessel functions

O Bessel] 0

T — Bessel 1

O Besselj 2

m— Bossel | 3

0.75 T+ O Besselj 4

— Bessel | 5

O Bessel] &

0.5 T Bessel | 7

O Bessel| 8

m— Bossel | 9
0.25 +
o+
025

e
0.5 T+
075 T
1 1 l 1 1
T T T T T
10 5] 5 10 15 z0
A

You've actually already seen OverlayPlotContainer — the Plot class is actually a special subclass of OverlayPlotCon-
tainer. All of the plots inside this container appear to share the same X- and Y-axis, but this is not a requirement of the
container. For instance, the following plot shows plots sharing only the X-axis:

32 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Multi-Y Plot
1
Bessel |0
= Bessel j_1
08 + Besselj 2 | L 5,
— Bessel | 3
ns—F\
= D2
0.4 T+
T0
0.2 +
- -0.2
0+
02 1 B
0.4 f f f f f f f
5 25] 25 5 7.5 10 125 15

3.1.11 Using a Container

Containers can have any Chaco component added to them. The following code creates a separate Plot instance for the
scatter plot and the line plot, and adds them both to the HPlotContainer object:

from
from
from
from
from

enthought.traits.api import HasTraits,
enthought.traits.ui.api import View,
enthought.chaco.api import HPlotContainer,
enthought .enable.component_editor import ComponentEditor

numpy import linspace,

Item

sin

class ContainerExample (HasTraits) :

plot =
traits_view = View(Item(’'plot’,

Instance (HPlotContainer)

width=1000, height=600,

def _ init_ (self):

super (ContainerExample, self).__init__ ()
x = linspace(-14, 14, 100)

y = sin(x)
plotdata = ArrayPlotData (x=x,
scatter = Plot (plotdata)

* X**x3

y=y)

Instance

ArrayPlotData,

editor=ComponentEditor (),
resizable=True,

Plot

show_label=False),
title="Chaco Plot")

3.1. Interactive Plotting with Chaco

33

20

21

22

23

24

Chaco Documentation, Release 3.0.1

scatter.plot (("x", "y"), type="scatter", color="blue")
line = Plot (plotdata)
line.plot (("x", "y"), type="line", color="blue")
container = HPlotContainer (scatter, line)
self.plot = container
if _ name_ == "_ _main_ ":
ContainerExample () .configure_traits/()

This produces the following plot:

S\ 00 Chaco Plot
2000 2000
L] |
| |
1000 -+ 1000 -+
]]
]]
o+ B g s B a4
| |
|]
| |
m N L |
-1000 1 -1000 +
" el
L= : : : {ln : : : : :
10 -5 1] a 10 10 5 o a o
Wi

There are many parameters you can configure on a container, like background color, border thickness, spacing, and
padding. We insert some more lines between lines 20 and 21 of the previous example to make the two plots touch in
the middle:

container = HPlotContainer (scatter, line)
container.spacing = 0
scatter.padding_right = 0
line.padding_left = 0
line.y_axis.orientation = "right"
self.plot = container

Something to note here is that all Chaco components have both bounds and padding (or margin). In order to make our
plots touch, we need to zero out the padding on the appropriate side of each plot. We also move the Y-axis for the line
plot (which is on the right hand side) to the right side.

This produces the following:

34 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

2000 T - 2000
]]
]]

1000 T 1000
]]

| | [|
4 | [| €
1] u] a
	[
m B g		
-1000 T m = - -1000		
=		
: : : : : : : : : :
10 5 1] 5 o 10 5 a 5 i

3.1.12 Editing Plot Traits

So far, the stuff you’ve seen is pretty standard: building up a plot of some sort and doing some layout on them. Now
we start taking advantage of the underlying framework.

Chaco is written using Traits. This means that all the graphical bits you see — and many of the bits you don’t see —
are all objects with various traits, generating events, and capable of responding to events.

We’re going to modify our previous ScatterPlot example to demonstrate some of these capabilities. Here is the full
listing of the modified code:

from enthought.traits.api import HasTraits, Instance, Int

from enthought.traits.ui.api import View, Group, Item

from enthought.enable.api import ColorTrait

from enthought.enable.component_editor import ComponentEditor
from enthought.chaco.api import marker_trait, Plot, ArrayPlotData
from numpy import linspace, sin

class ScatterPlotTraits (HasTraits):

plot = Instance (Plot)
color = ColorTrait ("blue™)
marker = marker_trait
marker_size = Int (4)

traits_view = View(
Group (Item(’color’, label="Color", style="custom"),
Item('marker’, label="Marker"),
Item('marker_size’, label="Size"),

3.1. Interactive Plotting with Chaco 35

20

21

23

24

25

26

27

28

29

40

41

42

43

Chaco Documentation, Release 3.0.1

Item('plot’, editor=ComponentEditor (), show_label=False),
orientation = "vertical"),
width=800, height=600, resizable=True, title="Chaco Plot")

def _ init_ (self):

super (ScatterPlotTraits, self).__init__ ()
x = linspace(-14, 14, 100)
y = sin(x) * x**3

plotdata = ArrayPlotData(x = x, y = Vy)
plot = Plot (plotdata)

self.renderer = plot.plot (("x", "y"), type="scatter", color="blue") [0]
self.plot = plot

def _color_changed(self):
self.renderer.color = self.color

def _marker_changed(self):
self.renderer.marker = self.marker

def _marker_size_changed(self):

self.renderer.marker_size = self.marker_size
if _ name_ == "__main_ ":
ScatterPlotTraits () .configure_traits/()

Let’s step through the changes.

First, we add traits for color, marker type, and marker size:

class ScatterPlotTraits (HasTraits):
plot = Instance(Plot)
color = ColorTrait ("blue™)
marker = marker_trait
marker_size = Int (4)

We also change our Traits UI View to include references to these new traits. We put them in a Traits Ul Group so that
we can control the layout in the dialog a little better — here, we’re setting the layout orientation of the elements in the
dialog to “vertical”.

traits_view = View (
Group (
Item(’color’, label="Color", style="custom"),

Item('marker_size’, label="Size"),

Item(’'plot’, editor=ComponentEditor (), show_label=False),
orientation = "vertical"),

width=500, height=500, resizable=True,

title="Chaco Plot")

(

Item('marker’, label="Marker"),
(
(

Now we have to do something with those traits. We modify the constructor so that we grab a handle to the renderer
that is created by the call to plot ():

self.renderer = plot.plot (("x", "y"), type="scatter", color="blue") [0]

Recall that a Plot is a container for renderers and a factory for them. When called, its plot () method returns a list of
the renderers that the call created. In previous examples we’ve been just ignoring or discarding the return value, since

36 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

we had no use for it. In this case, however, we grab a reference to that renderer so that we can modify its attributes in
later methods.

The plot () method returns a list of renderers because for some values of the fype argument, it will create multiple
renderers. In our case here, we are just doing a scatter plot, and this creates just a single renderer.

Next, we define some Traits event handlers. These are specially-named methods that are called whenever the value of
a particular trait changes. Here is the handler for color trait:

def _color_changed(self):
self.renderer.color = self.color

This event handler is called whenever the value of self.color changes, whether due to user interaction with a GUI,
or due to code elsewhere. (The Traits framework automatically calls this method because its name follows the name
template of ‘°_traitname_changed’.) Since this method is called after the new value has already been updated,
we can read out the new value just by accessing self.color. We just copy the color to the scatter renderer. You
can see why we needed to hold on to the renderer in the constructor.

Now we do the same thing for the marker type and marker size traits:

def _marker_changed(self):
self.renderer.marker = self.marker

def _marker_size_changed(self):
self.renderer.marker_size = self.marker_size

Running the code produces an app that looks like this:

3.1. Interactive Plotting with Chaco 37

Chaco Documentation, Release 3.0.1

800 Chaco Plot

Color:

Marker: (square H
Size: 4

2000
| |
|]
1000
[[
| - -]
0T | |
[[|
] |
| |
]]
-1000 + u |
m " ey
=B : : : ——
=10 =5 a 5 10

Depending on your platform, the color editor/swatch at the top may look different. This is how it looks on Mac OS X.
All of the controls here are “live”. If you modify them, the plot updates.

3.2 Modeling Van der Waal’s Equation With Chaco and Traits

3.2.1 Overview

This tutorial walks through the creation of an example program that plots a scientific equation. In particular, we will
model Van Der Waal’s Equation, which is a modification to the ideal gas law that takes into account the nonzero size
of molecules and the attraction to each other that they experience.

3.2.2 Development Setup

In review, Traits is a manifest typing and reactive programming package for Python. It also provides Ul features that
will be used to create a simple GUI. The Traits and Traits UI user manuals are good resources for learning about the
packages and can be found on the Traits Wiki. The wiki includes features, technical notes, cookbooks, FAQ and more.

You must have Chaco and its dependencies installed:

e Traits

38 Chapter 3. Tutorials

http://en.wikipedia.org/wiki/Van_der_Waals_equation
https://svn.enthought.com/enthought/wiki/Traits

Chaco Documentation, Release 3.0.1

¢ TraitsGUI

e Enable

3.2.3 Writing the Program

First, define a Traits class and the elements necessary need to model the task. The following Traits class is made
for the Van Der Waal equation, whose variables can be viewed on this wiki page. The volume and pressure
attributes hold lists of our X- and Y-coordinates, respectively, and are defined as arrays. The attributes attraction
and totVolume are input parameters specified by the user. The type of the variables dictates their appearance in the
GUI. For example, attraction and totVolume are defined as Ranges, so they show up as slider bars. Likewise,
plot_type is shown as a drop-down list, since it is defined as an Enum.

We’ll also import a few things to be used later.
from enthought.traits.api \
import HasTraits, Array, Range, Float, Enum, on_trait_change, Property
from enthought.traits.ui.api import View, Item
from enthought.chaco.chaco_plot_editor import ChacoPlotItem
from numpy import arange

class Data (HasTraits) :
volume = Array
pressure = Array
attraction = Range (low=-50.0,high=50.0,value=0.0)
totVolume = Range (low=.01l,high=100.0,value=0.01)
temperature = Range (low=-50.0,high=50.0,value=50.0)
r_constant= Float (8.314472)
plot_type = Enum("line", "scatter")

3.2.4 Creating the View

The main GUI window is created by defining a Traits View instance. This View contains all of the GUI elements,
including the plot. To link a variable with a widget element on the GUI, we create a Traits Item instance with the
same name as the variable and pass it as an argument of the Traits View instance declaration. The Traits UI User
Guide discusses the View and Item objects in depth. In order to embed a Chaco plot into a Traits View, you need
to import the ChacoPlotItem class, which can be passed as a parameter to View just like the Item objects. The
first two arguments to ChacoPlotltem are the lists of X- and Y-coordinates for the graph. The attributes volume and
pressure hold the lists of X- and Y-coordinates, and therefore are the first two arguments to Chaco2Plotltem. Other
parameters have been provided to the plot for additional customization:

class Data (HasTraits):

traits_view = View(ChacoPlotItem("volume", "pressure",
type_trait="plot_type",
resizable=True,
x_label="Volume",
y_label="Pressure",
x_bounds=(-10,120),
x_auto=False,
y_bounds=(-2000,4000),
y_auto=False,

3.2. Modeling Van der Waal’s Equation With Chaco and Traits 39

http://en.wikipedia.org/wiki/Van_der_Waals_equation
https://svn.enthought.com/svn/enthought/Traits/tags/enthought.traits_2.0.1b1/docs/Traits%20UI%20User%20Guide.pdf
https://svn.enthought.com/svn/enthought/Traits/tags/enthought.traits_2.0.1b1/docs/Traits%20UI%20User%20Guide.pdf

20

21

22

23

24

25

26

27

28

Chaco Documentation, Release 3.0.1

color="blue",
bgcolor="white",
border_visible=True,
border_width=1,
title='Pressure vs. Volume’,
padding_bg_color="lightgray"),
Item (name="attraction’),
Item (name='"totVolume’),
Item (name='temperature’),
Item(name='r_constant’, style=’readonly’),
Item (name="plot_type’),
resizable = True,
buttons = ["OK"],
title=’'Van der Waal Equation’,
width=900, height=800)

3.2.5 Updating the Plot

The power of Traits and Chaco enables the plot to update itself whenever the X- or Y-arrays are changed. So, we need
a function to re-calculate the X- and Y-coordinate lists whenever the input parameters are changed by the user moving
the sliders in the GUIL.

The volume attribute is the independent variable and pressure is the dependent variable. The relationship between
pressure and volume, as derived from the equation found on the wiki page, is:

r_constant x Temperature attraction
Pressure = -—-——7—————""-----————— - e
Volume - totVolume Volumex 2

Next, there are two programing tasks to complete:

1. Define trait listener methods for your input parameters. These methods are automatically called whenever the
parameters are changed, since it will be time to recalculate the pressure array.

2. Write a calculation method that updates your lists of X- and Y-coordinates for your plot.

The following is the code for these two needs:

Re-calculate when attraction, totVolume, or temperature are changed.
@on_trait_change (' attraction, totVolume, temperature’)
def calc(self):

"rr Update the data based on the numbers specified by the user.

mon

self.volume = arange (.1, 100)
self.pressure = ((self.r_constantxself.temperature)
/(self.volume - self.totVolume)

—(self.attraction/ (self.volumexself.volume)))
return

The calc () function computes the pressure array using the current values of the independent variables. Mean-
while, the @on_trait_change () decorator (provided by Traits) tells Python to call calc () whenever any of the
attributes attraction, totVolume, or temperature changes.

40 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

3.2.6 Testing your Program

The application is complete, and can be tested by instantiating a copy of the class and then creating the view by calling
the configure_traits () method on the class. For a simple test, run these lines from an interpreter or a separate
module:

from vanderwaals import Data
viewer = Data()
viewer.calc ()
viewer.configure_traits/()

Must calculate the initial (x,y) lists

Clicking and dragging on the sliders in the GUI dynamically updates the pressure data array, and causes the plot to
update, showing the new values.

3.2.7 Screenshots

Here is what the program looks like:

[Presisune vs_ Voluma
4000
000
2000 -
Ht‘.n‘l::i 1000
£
o |
<00 o
2000 t t t . +
L] = 50 75 100
T
Attraction: -50.0) =50.0 -37.58
Tot volume: 0.01 100.0 77.3222
Temperature: -50.0 - G - —50.0 40.4
R constant: 8.314472
Plat type: ! lime

3.2. Modeling Van der Waal’s Equation With Chaco and Traits

41

1

)

Chaco Documentation, Release 3.0.1

3.2.8 But it could be better....

It seems inconvenient to have to call a calculation function manually before we call configure_traits (). Also,
the pressure equation depends on the values of other variables. It would be nice to make the relationship between the
dependant and independent variables clearer. There is another way we could define our variables that is easier for the
user to understand, and provides better source documentation.

Since our X-values remain constant in this example, it is wasteful to keep recreating the volume array. The Y-
array, pressure, is the single array that needs to be updated when the independent variables change. So, instead of
defining pressure as an Array, we define it as a Property. Property is a Traits type that allows you to define
a variable whose value is recalculated whenever it is requested. In addition, when the depends_on argument of a
Property constructor is set to list of traits in your HasTraits class, the property’s trait events fire whenever any of
the dependent trait’s change events fire. This means that the pressure attribute fires a trait change whenever our
depends_on traits are changed. Meanwhile, the Chaco plot is automatically listening to the pressure attribute, so
the plot display gets the new value of pressure whenever someone changes the input parameters!

When the value of a Property trait is requested, the °_get_trait_name’ method is called to calculate and return
its current value. So we define use the _get_pressure () method as our new calculation method. It is important
to note that this implementation does have a weakness. Since we are calculating new pressures each time someone
changes the value of the input variables, this could slow down the program if the calculation is long. When the user
drags a slider widget, each stopping point along the slider requests a recompute.

For the new implementation, these are the necessary changes:

1. Define the Y-coordinate array variable as a Property instead of an Array.

2. Perform the calculations in the ‘_get_trait_name’ method for the Y-coordinate array variable, which is
_get_pressure () in this example.

3. Define the ‘_trait_default’ method to set the initial value of the X-coordinate array, so
_get_pressure () does not have to keep recalculating it.

4. Remove the previous @on_trait_change () decorator and calculation method.
The new pieces of code to add to the Data class are:
class Data (HasTraits):
é;éssure = Property (Array, depends_on=['temperature’,

"attraction’,
"totVolume’])

def _volume_default (self):
return arange (.1, 100)

Pressure 1s recalculated whenever one of the elements the property
depends on changes. No need to use (@on_trait_change.
def _get_pressure(self):
return ((self.r_constantxself.temperature)
/ (self.volume - self.totVolume)
—(self.attraction/ (self.volumexself.volume)))

You now no longer have to call an inconvenient calculation function before the first call to configure_traits()!

3.2.9 Source Code

The final version on the program, vanderwaals.py

42 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

from enthought.traits.api \
import HasTraits, Array, Range, Float, Enum, on_trait_change, Property
from enthought.traits.ui.api import View, Item
from enthought.chaco.chaco_plot_editor import ChacoPlotItem
from numpy import arange

class Data (HasTraits) :

volume = Array

pressure = Property(Array, depends_on=[’temperature’, ’attraction’,
"totVolume’])

attraction = Range (low=-50.0,high=50.0,value=0.0)

totVolume = Range (low=.01,high=100.0,value=0.01)

temperature = Range (low=-50.0,high=50.0,value=50.0)

r_constant= Float (8.314472)

plot_type = Enum("line", "scatter")

traits_view = View(ChacoPlotItem("volume", "pressure",
type_trait="plot_type",
resizable=True,
x_label="Volume",
y_label="Pressure",
X_bounds=(-10,120),
x_auto=False,
y_bounds=(-2000,4000),
y_auto=False,
color="blue",
bgcolor="white",
border_visible=True,
border_width=1,
title='Pressure vs. Volume’,
padding_bg_color="1lightgray"),

Item (name='attraction’),

Item (name='"totVolume’),

Item(name='temperature’),

Item (name='r_constant’, style=’readonly’),

Item(name="plot_type’),

resizable = True,

buttons = ["OK"],

title=’'Van der Waal Equation’,

width=900, height=800)

def _volume_default (self):
""" Default handler for volume Trait Array.

nnn

return arange (.1, 100)

def _get_pressure(self):
"""Recalculate when one a trait the property depends on changes.
return ((self.r_constantxself.temperature)
/ (self.volume - self.totVolume)
—(self.attraction/ (self.volumexself.volume)))

nwn

if name == '__main_ ’:

viewer = Data/()
viewer.configure_traits()

3.2. Modeling Van der Waal’s Equation With Chaco and Traits 43

Chaco Documentation, Release 3.0.1

3.3 Creating an interactive Hyetograph with Chaco and Traits

3.3.1 Overview

The perfect rainstorm (not to be confused with The Perfect Storm) has a rainfall pattern that can be mathematically
modelled. The rain starts light, progressively gets heavier until halfway though the storm, gets lighter again, and
eventually stops. Plots of the rainfall intensity in relation to time are called hyetographs.

This tutorial builds a small application that takes a tiny database of coefficients, and along with user selected values,
displays hyetographs. The user provides the duration of the storm, the year of the storm, and one of four counties
in Texas. Then using a slider specifying the Curve Number (determined based on the permeability of the soil) a plot
shows the intensity vs. time hyetograph plots.

3.3.2 Development Setup

To run this demo you must have Chaco and its dependencies installed,

e Traits
e TraitsGUI
¢ Enable

3.3.3 Why use Traits for this application?

1. Event notification Every time that a trait is changed it sends out notification to all listening functions. This
means when a trait is changed in places such as the UI the program will then notify other traits or functions
automatically.

2. Typing Within traits you are allowed to define trats as certain types. Say you have a trait named Name, you can
then define it to be a string. Then when you visualize it using the UI, it will interprit the data as a string.

3. Ul-Generation After setting up your traits and performing all the calculations, the Trait’s will automatically
generate a GUI view without needing any additional programming.

3.3.4 Importing the necessary functions

In This tutorial we will be using numpy, traits, traitsui, and chaco. In calling your function you want to specify
where the function is and then import it. The following code snippet imports all the names that will be used for our
application.

from enthought.traits.api \

import HasTraits, Int, Range, Array, Enum, on_trait_change
from enthought.traits.ui.api import View, Item
from enthought.chaco.chaco_plot_editor import ChacoPlotItem

3.3.5 Trait Definitions

This application only requires one class that will contain the Traits and mathematical calculations together. Classes
that contain Traits must inherit from the HasTraits function. Python’s multiple inheritance allows for mixing HasTraits
objects with other class hierarchies if needed.

44 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Within this class we define all the class variables using Traits types which will later be used in the UI. These traits are
set to equal their type similar to many typed languages.

class Hyetograph (HasTraits) :
"rr Creates a simple hyetograph demo. """
timeline = Array
intensity = Array

nrcs = Array

duration = Int (12, desc=’In Hours’)

year_storm = Enum(2, 10, 25, 100)

county = Enum(’Brazos’, ’'Dallas’, ’"El Paso’, ’'Harris’)

curve_number = Range (70, 100)
plot_type = Enum(’line’, ’scatter’)

The above code snippet shows a number of Traits features,

1. The naming convention with traits is that types are capitalized.

2. An Array is an array, an Int is an integer, an Enum is a single value from a list of options, and a Range is a value
between two numbers.

3. All traits get a default value, such as whats done in the Arrays, or they can be assigned an initial value as is done
in the duration trait.

4. Descriptions can be added to traits, such as is done in duration. This description is not visible except when
viewing the trait in a TraitsUI view, and then the description is seen when the mouse hovers over the variable.

5. Traits are always contained within the class definition, and each instance of the class will have a unique copy of
the traits.

The Traits API Reference contains more information about the standard Trait types; see the trait_types module
in the Traits API Reference.

3.3.6 Setting up the User Interface (Ul)

HasTraits classes will automatically generate a view that contains an editable entry for each trait within the class. But
a user-defined view usually looks better, so we’ll use View and Items to change the default class view. Changing the
default Ul is done by creating a trait on the class that is of the View type. Multiple View traits can be defined and used,
with the one named traits_view being used as the default.

Continuing with our application, here is the View definition.
class Hyetograph (HasTraits) :
<... snip ...>

viewl = View(Item(’plot_type’),
ChacoPlotItem(’timeline’, ’intensity’,

type_trait='plot_type’,
resizable=True,
x_label=’'Time (hr)’,
y_label=’'Intensity (in/hr)’,
color='blue’,
bgcolor="white’,
border_visible=True,
border_width=1,
padding_bg_color=’'lightgray’),

3.3. Creating an interactive Hyetograph with Chaco and Traits 45

http://code.enthought.com/projects/files/ETS3_API/enthought.traits.trait_types.html

Chaco Documentation, Release 3.0.1

Item (name='duration’),
Item(name=’'year_storm’),
Item (name=’'county’),

After infiltration using the nrcs curve number method.

ChacoPlotItem(’timeline’, ’nrcs’,
type_trait="plot_type’,
resizable=True,
x_label='Time’,
y_label='"Intensity’,
color='blue’,
bgcolor="white’,
border_visible=True,
border_width=1,
padding_bg_color=’lightgray’),

Item (' curve_number’),

resizable = True,

width=800, height=800)

Views generally contain Item objects and named parameters. Views can also contain Groups of Items as well as many
other types of layout features not covered here. By default, Item objects take a string of the trait to edit. For example,
the ITtem (name=’' county’) will create a pull-down menu in the UI showing the four valid counties that the user
can select from.

There are three important observations to be seen in the above view definition. First, there are two Chaco plot items
embedded in the view. The top plot is the intensity versus time and the bottom is nrcs versus time. Second, default
window will be sized at 800 by 800 pixels, but the option resizable = True will allow the user to change the
size of the window. And third, the traits are split up so 3 of them are displayed below the first plot and only 1 is
displayed below the second. Here is a snapshot of what our application will display. The plots are empty because we
have yet to populate the data traits

46 Chapter 3. Tutorials

o - NV R S PO S

Chaco Documentation, Release 3.0.1

Piot type | b -+

Ihempy § ety

Tera 1oy
Duratige: 12
Yuar seore: | 2 -H
Cority. | Brrod s |
et Bana
Floe:
Tima
Eunmrmmbu:?ﬁfﬂ 100 7o

3.3.7 Performing the Hyetograph Calculations

The UI for the application is complete, however there is no data. Changing the traits within the GUI by moving the
sliders and typing in numbers does nothing because they’re hooked up to nothing and there are no listeners on the trait
event notifications. So , next we’ll add some hyetograph calculations that modify the intensity and nrcs Array traits.

def calculate_intensity(self):
""" The Hyetograph calculations. """
Assigning A, B, and C values based on year, storm, and county

counties = {’Brazos’: 0, ’'Dallas’: 3, 'El Paso’: 6, 'Harris’: 9}
years = {
2 : [65, 8, .806, 54, 8.3, .791, 24, 9.5, .797, 68, 7.9, .800],
10: [80, 8.5, .763, 78, 8.7, .777, 42, 12., .795,81, 7.7, .753],
25: [89, 8.5, .754, %0, 8.7, .774, 60, 12.,.843, 81, 7.7, .7241,

100: [96, 8., .730, 106, 8.3, .762, 65, 9.5, .825, 91, 7.9, .706]

3.3. Creating an interactive Hyetograph with Chaco and Traits 47

20

21

22

23

24

25

26

27

28

29

40

41

o)

43

44

45

46

47

48

49

50

Chaco Documentation, Release 3.0.1

year = years[self.year_storm]
value = counties[self.county]
a, b, ¢ = year[value], year[value+l], year([value+2]

self.timeline=range (2, self.duration + 1, 2)
intensity=a / (self.timeline * 60 + Db)x*=*cC
cumdepth=intensity * self.timeline

temp=cumdepth[0]

result=[]

for i in cumdepth[l:]:
result.append (i-temp)
temp=1i

result.insert (0, cumdepth([0])

Alternating block method implementation.
result.reverse ()
switch = True
o, e =[], []
for i in result:
if switch:
o.append (1)
else:
e.append (i)
switch = not switch
e.reverse ()
result = o + e
self.intensity = result

def calculate_runoff (self):
"rro NRCS method to get run-off based on permeability of ground. """

s = (1000 / self.curve_number) - 10
a = self.intensity - (.2 *x s)
vr = a*xx2 / (self.intensity + (.8 x s))

There’s no such thing as negative run-off.
for i in range(0, len(a)):

if a[i] <= O0:

vr[i] = 0

self.nrcs = vr
In the calculation functions, the traits are treated just like normal class attributes. Behind the scenes, Traits will
automatically cast compatible types such as ints to Floats, but will raise an exception if the user tries to pass a string
to an Dict trait.

3.3.8 Recalculating when event notification occurs

Calling the calculation functions will update the data, but nothing is going to change in the GUI. The next step is to
link the data to the GUI using a Traits static handler. Static handlers are declared either with a decorator or through a
function name that follows a specific convention. Alternatively, a dynamic handler is set up by calling a function at
runtime, providing for on-the-fly event processing. Below is a function that calls the two calculation functions. The
interesting line is the decorator, @on_trait_change that tells Traits to call the function whenever any of the values
within the list of traits change.

@on_trait_change (' duration, year_storm, county, curve_number’)
def _perform_calculations(self):

48 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

self.calculate_intensity ()
self.calculate_runoff ()

So now when the application is run, when the duration trait is changed or any of the four listed traits change,
the calculation functions are automatically called and the data changes. And these traits will automatically
change when the user adjusts the widgets in the UI. So when the user changes the duration in the UI from 12
hours to 24 hours this will automatically effect both of the plots since the listeners force a recalculation of both
of the functions.

3.3.9 Showing the Display

In order to start the GUI application an instance of the class must be instantiated, and then a configure_traits() call
is done. However we must first call the data calculation functions from within the class to initialize the data arrays.
Here’s the last piece of the program.

def start (self):
self. perform_calculations()
self.configure_traits()

f=Hyetograph ()
f.start ()

start() performs the calculations needed for the Arrays used to plot, and then triggers the UI. The application is
complete, and if you now run the program, you should get a running application that resembles the following image,

3.3. Creating an interactive Hyetograph with Chaco and Traits 49

Chaco Documentation, Release 3.0.1

Congratulations!

3.3.10 Source Code

The final version of the program, hyetograph.py.

from enthought.traits.api \

import HasTraits, Int, Range, Array, Enum, on_trait_change
from enthought.traits.ui.api import View, Item
from enthought.chaco.chaco_plot_editor import ChacoPlotItem

class Hyetograph (HasTraits) :
""" Creates a simple hyetograph demo. """
timeline = Array
intensity = Array

50

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

nrcs = Array

duration = Int (12, desc=’'In Hours’)

year_storm = Enum(2, 10, 25, 100)

county = Enum(’Brazos’, ’'Dallas’, ’'El Paso’, ’'Harris’)
curve_number = Range (70, 100)

plot_type = Enum(’line’, ’'scatter’)

viewl = View(Item(’plot_type’),

ChacoPlotItem(’timeline’,
type_trait="plot_type’,
resizable=True,
x_label=’Time (hr)’,
y_label='Intensity
color='blue’,
bgcolor="white’,
border_visible=True,
border_width=1,

"intensity’,

(in/hr)’,

padding_bg_color=’'lightgray’),

Item (name='duration’),
Item(name='year_storm’),
Item (name='county’),

After infiltration using the nrcs curve number method.

ChacoPlotItem(’timeline’, ’nrcs’,
type_trait="plot_type’,
resizable=True,
x_label='Time’,
y_label=’Intensity’,
color='blue’,
bgcolor="white’,
border_visible=True,
border_width=1,

padding_bg_color=’lightgray’),

Item (' curve_number’),
resizable True,
width=800, height=800)

def calculate_intensity(self):
""" The Hyetograph calculations.

nwn

Assigning A, B, and C values based on year, storm, and county

counties = {’Brazos’: 0, ’'Dallas’: 3, ’"El Paso’: 6, ’'Harris’: 9}

years = {
2 : [65, 8, .806, 54, 8.3, .791, 24, 9.5, .797, 68, 7.9, .800],
10: [80, 8.5, .763, 78, 8.7, .777, 42, 12., .795,81, 7.7, .7531,
25: [89, 8.5, .754, 90, 8.7, .774, 60, 12.,.843, 81, 7.7, .724],
100: [96, 8., .730, 106, 8.3, .762, 65, 9.5, .825, 91, 7.9, .706]

}

year = years|[self.year_storm]

value = counties[self.county]

a, b, ¢ = year[value], year[value+l], year[value+2]

self.timeline=range (2, self.duration + 1, 2)
intensity=a / (self.timeline * 60 + Db)x*cC

cumdepth=intensity *» self.timeline

temp=cumdepth[0]
result=1[]

3.3. Creating an interactive Hyetograph with Chaco and Traits

51

Chaco Documentation, Release 3.0.1

for i in cumdepth[1l:]:
result.append (i-temp)
temp=1i

result.insert (0, cumdepth[0])

Alternating block method implementation.
result.reverse ()
switch = True
o, e = [1, []
for i in result:
if switch:
o.append (i)
else:
e.append (i)
switch = not switch
e.reverse ()
result = o + e
self.intensity = result

def calculate_runoff (self):

""" NRCS method to get run-off based on permeability of ground. """

s = (1000 / self.curve_number) - 10
= self.intensity - (.2 *x s)
vr = a**x2 / (self.intensity + (.8 * s))

There’s no such thing as negative run-off.
for i in range (0, len(a)):
if af[i] <= 0:
vr[i] = 0
self.nrcs = vr

@on_trait_change ('duration, year_storm, county, curve_number’)

def _perform_calculations(self):
self.calculate_intensity ()
self.calculate_runoff ()

def start (self):
self._perform_calculations()
self.configure_traits/()

f=Hyetograph ()
f.start ()

3.4 WX-based Tutorial

3.5 Exploring Chaco with IPython

There are several tutorials for Chaco, each covering slightly different aspects:

1. Tutorial 1, Interactive Plotting with Chaco, introduces some basic concepts of how to use Chaco and Traits UI

to do basic plots, customize layout, and add interactivity.

52

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Although Traits Ul is not required to use Chaco, it is the by far the most common usage of Chaco. It is a good
approach for those who are relatively new to developing GUI applications. Using Chaco with Traits UI allows
the scientist or novice programmer to easily develop plotting applications, but it also provides them room to
grow as their requirements change and increase in complexity.

Traits Ul can also be used by a more experienced developer to build more involved applications, and Chaco can
be used to embed visualizations or to leverage interactive graphs as controllers for an application.

2. Tutorial 2, Modeling Van der Waal’s Equation With Chaco and Traits, is another example of creating a data
model and then using Traits and Chaco to rapidly create interactive plot GUIs.

3. Creating an interactive Hyetograph with Chaco and Traits introduces the on_trait_1listener decorator
and uses Chaco, simple Traits views, and live GUI interaction.

4. WX-based Tutorial: Creating a stand-alone wxPython application, or embedding a Chaco plot within an existing
Wx application.

This tutorial is suited for those who are familiar with programming using wxPython or Qt and prefer to write
directly to those toolkits. It shows how to embed Chaco components directly into an enclosing widget, panel, or
dialog. It also demonstrates more advanced usages like using a wxPython Timer to display live, updating data
streams.

5. Using the Chaco Shell command-line plotting interface to build plots, in a Matlab or gnuplot-like style. Although
this approach doesn’t lend itself to building more reusable utilities or applications, it can be a quick way to get
plots on the screen and build one-off visualizations. See Exploring Chaco with IPython.

3.5. Exploring Chaco with IPython 53

Chaco Documentation, Release 3.0.1

54 Chapter 3. Tutorials

CHAPTER
FOUR

ARCHITECTURE OVERVIEW

Note: At this time, this is an overview of not just Chaco, but also Kiva and Enable.

4.1 Core ldeas

The Chaco toolkit is defined by a few core architectural ideas:

* Plots are compositions of visual components

Everything you see in a plot is some sort of graphical widget, with position, shape, and appearance attributes,
and with an opportunity to respond to events.

* Separation between data and screen space

Although everything in a plot eventually ends up rendering into a common visual area, there are aspects of
the plot which are intrinsically screen-space, and some which are fundamentally data-space. Preserving the
distinction between these two domains allows us to think about visualizations in a structured way.

* Modular design and extensible classes

Chaco is meant to be used for writing tools and applications, and code reuse and good class design are important.
We use the math behind the data and visualizations to give us architectural direction and conceptual modularity.
The Traits framework allows us to use events to couple disjoint components at another level of modularity.

Also, rather than building super-flexible core objects with myriad configuration attributes, Chaco’s classes are
written with subclassing in mind. While they are certainly configurable, the classes themselves are written in a
modular way so that subclasses can easily customize particular aspects of a visual component’s appearance or a
tool’s behavior.

4.2 The Relationship Between Chaco, Enable, and Kiva

Chaco, Enable, and Kiva are three packages in the Enthought Tool Suite. They have been there for a long time now,
since almost the beginning of Enthought as a company. Enthought has delivered many applications using these toolkits.
The Kiva and Enable packages are bundled together in the “Enable” project.

4.2.1 Kiva

Kiva is a 2-D vector drawing library for Python. It serves a purpose similar to Cairo. It allows us to compose
vector graphics for display on the screen or for saving to a variety of vector and image file formats. To use Kiva,
a program instantiates a Kiva GraphicsContext object of an appropriate type, and then makes drawing calls on
it like gc.draw_image (), gc.line_to (), and gc.show_text (). Kiva integrates with windowing toolkits

55

http://cairographics.org/

Chaco Documentation, Release 3.0.1

like wxWindows and Qt, and it has an OpenGL backend as well. For wxPython and Qt, Kiva actually performs a high-
quality, fast software rasterization using the Anti-Grain Geometry (AGG) library. For OpenGL, Kiva has a python
extension that makes native OpenGL calls from C++.

Kiva provides a GraphicsContext for drawing onto the screen or saving out to disk, but it provides no mechanism for
user input and control. For this “control” layer, it would be convenient to have to write only one set of event callbacks
or handlers for all the platforms we support, and all the toolkits on each platform. The Enable package provides
this layer. It insulates all the rendering and event handling code in Chaco from the minutiae of each GUI toolkit.
Additionally, and to some extent more importantly, Enable defines the concept of “components” and “containers” that
form the foundation of Chaco’s architecture. In the Enable model, the top-most Window object is responsible for
dispatching events and drawing a single component. Usually, this component is a container with other containers and
components inside it. The container can perform layout on its internal components, and it controls how events are
subsequently dispatched to its set of components.

4.2.2 Enable

Almost every graphical component in Chaco is an instance of an Enable component or container. We're currently
trying to push more of the layout system (implemented as the various different kinds of Chaco plot containers) down
into Enable, but as things currently stand, you have to use Chaco containers if you want to get layout. The general
trend has been that we implement some nifty new thing in Chaco, and then realize that it is a more general tool or
overlay that will be useful for other non-plotting visual applications. We then move it into Enable, and if there are
plotting-specific aspects of it, we will create an appropriate subclass in Chaco to encapsulate that behavior.

The sorts of applications that can and should be done at the Enable level include things like a visual programming
canvas or a vector drawing tool. There is nothing at the Enable level that understands the concept of mapping between
a data space to screen space and vice versa. Although there has been some debate about the incorporating rudimentary
mapping into Enable, for the time being, if you want some kind of canvas-like thing to model more than just pixel
space on the screen, implement it using the mechanisms in Chaco.

The way that Enable hooks up to the underlying GUI toolkit system is via an enable.Window object. Each toolkit
has its own implementation of this object, and they all subclass from enable.AbstractWindow. They usually
contain an instance of the GUI toolkit’s specific window object, whether it’s a wx .Window or Qt .QWidget or
pyglet.window.Window. This instance is created upon initialization of the enable.Window and stored as the
control attribute on the Enable window. From the perspective of the GUI toolkit, an opaque widget gets created
and stuck inside a parent control (or dialog or frame or window). This instance serves as a proxy between the GUI
toolkit and the world of Enable. When the user clicks inside the widget area, the control widget calls a method
on the enable.Window object, which then in turn can dispatch the event down the stack of Enable containers and
components. When the system tells the widget to draw itself (e.g., as the result of a PAINT or EXPOSE event from the
0S), the enable.Window is responsible for creating an appropriate Kiva GraphicsContext (GC), then passing it down
through the object hierarchy so that everyone gets a chance to draw. After all the components have drawn onto the
GC, for the AGG-based bitmap backends, the enable.Window object is responsible for blitting the rastered off-screen
buffer of the GC into the actual widget’s space on the screen. (For Kiva’s OpenGL backend, there is no final blit, since
calls to the GC render in immediate mode in the window’s active OpenGL context, but the idea is the same, and the
enable.Window object does perform initialization on the GL GraphicsContext.)

Some of the advantages to using Enable are that it makes mouse and key events from disparate windowing systems all
share the same kind of signature, and be accessible via the same name. So, if you write bare wxPython and handle a
key_pressed event in wx, this might generate a value of wx . WXK_BACK. Using Enable, you would just get a “key”
back and its value would be the string “Backspace”, and this would hold true on Qt4 and Pyglet. Almost all of the
event handling and rendering code in Chaco is identical under all of the backends; there are very few backend-specific
changes that need to be handled at the Chaco level.

The enable.Window object has a reference to a single top-level graphical component (which includes containers,
since they are subclasses of component). Whenever it gets user input events, it recursively dispatches all the way
down the potentially-nested stack of components. Whenever a components wants to signal that it needs to be redrawn,
it calls self.request_redraw(), which ultimately reaches the enable.Window, which can then make sure it schedules a

56 Chapter 4. Architecture Overview

Chaco Documentation, Release 3.0.1

PAINT event with the OS. The nice thing about having the enable.Window object between the GUI toolkits and our
apps, and sitting at the very top of event dispatch, is that we can easily interject new kinds of events; this is precisely
what we did to enable all of our tools to work with Multitouch.

The basic things to remember about Enable are that:

* Any place that your GUI toolkit allows you stick a generic widget, you can stick an Enable component (and
this extends to Chaco components, as well). Dave Morrill had a neat demonstration of this by embedding small
Chaco plots as cells in a wx Table control.

* If you have some new GUI toolkit, and you want to provide an Enable backend for it, all you have to do is
implement a new Window class for that backend. You also need to make sure that Kiva can actually create a
GraphicsContext for that toolkit. Once the kiva_gl branch is committed to the trunk, Kiva will be able to render
into any GL context. So if your newfangled unsupported GUI toolkit has a GLWindow type of thing, then you
will be able to use Kiva, Enable, and Chaco inside it. This is a pretty major improvement to interoperability, if
only because users now don’t have to download and install wxPython just to play with Chaco.

4.2.3 Chaco

At the highest level, Chaco consists of:

* Visual components that render to screen or an output device (e.g., LinePlot, ScatterPlot, PlotGrid,
PlotAxis, Legend)

 Data handling classes that wrap input data, interface with application-specific data sources, and transform coor-
dinates between data and screen space (e.g., ArrayDataSource, GridDataSource, LinearMapper)

* Tools that handle keyboard or mouse events and modify other components (e.g., PanTool, ZoomTool,
ScatterInspector)

4.2. The Relationship Between Chaco, Enable, and Kiva 57

Chaco Documentation, Release 3.0.1

58 Chapter 4. Architecture Overview

CHAPTER
FIVE

COMMONLY USED MODULES AND
CLASSES

5.1 Base Classes

Plot Component

All visual components in Chaco subclass from PlotComponent. It defines all of the common visual attributes
like background color, border styles and color, and whether the component is visible. (Actually, most of these visual
attributes are inherited from the Enable drawing framework.) More importantly, it provides the base behaviors for
participating in layout, handling event dispatch to tools and overlays, and drawing various layers in the correct order.
Subclasses almost never need to override or customize these base behaviors, but if they do, there are several easy
extension points.

PlotComponent is a subclass of Enable Component. It has its own default drawing order. It redefines the inherited
traits draw_order and draw_1layer, but it doesn’t define any new traits. Therefore, you may need to refer to the
API documentation for Enable Component, even when you have subclassed Chaco PlotComponent.

If you subclass PlotComponent, you need to implement do_layout (), if you want to size the component correctly.

5.2 Data Objects

5.2.1 Data Source

A data source is a wrapper object for the actual data that it will be handling. It provides methods for retrieving
data, estimating a size of the dataset, indications about the dimensionality of the data, a place for metadata (such as
selections and annotations), and events that fire when the data gets changed. There are two primary reasons for a data
source class:

* It provides a way for different plotting objects to reference the same data.

e It defines the interface for embedding Chaco into an existing application. In most cases, the standard Array-
DataSource will suffice.

Interface: AbstractDataSource

Subclasses: ArrayDataSource, MultiArrayDataSource, PointDataSource,
GridDataSource, ImageData

59

Chaco Documentation, Release 3.0.1

5.2.2 Data Range

A data range expresses bounds on data space of some dimensionality. The simplest data range is just a set of two
scalars representing (low, high) bounds in 1-D. One of the important aspects of data ranges is that their bounds can be
set to auto, which means that they automatically scale to fit their associated datasources. (Each data source can be
associated with multiple ranges, and each data range can be associated with multiple data sources.)

Interface: AbstractDataRange
Subclasses: BaseDataRange, DataRangelD, DataRange2D

5.2.3 Data Source

A data source is an object that supplies data to Chaco. For the most part, a data source looks like an array of values,
with an optional mask and metadata.

Interface: :class:AbstractDataSource*

Subclasses: ArrayDataSource, DataContextDataSource, GridDataSource, ImageData,
MultiArrayDataSource, PointDataSource

The metadata trait attribute is a dictionary where you can stick stuff for other tools to find, without inserting it in
the actual data.

Events that are fired on data sources are:

e data_changed
* bounds_changed

* metadata_changed

5.2.4 Mapper

Mappers perform the job of mapping a data space region to screen space, and vice versa. Bounds on mappers are set
by data range objects.

Interface: AbstractMapper
Subclasses: BaselDMapper, LinearMapper, LogMapper, GridMapper, PolarMapper

5.3 Containers

5.3.1 PlotContainer

PlotContainer is Chaco’s way of handling layout. Because it logically partitions the screen space, it also serves
as a way for efficient event dispatch. It is very similar to sizers or layout grids in GUI toolkits like WX. Containers are
subclasses of PlotComponent, thus allowing them to be nested. BasePlotContainer implements the logic to cor-
rectly render and dispatch events to sub-components, while its subclasses implement the different layout calculations.

A container gets the preferred size from its components, and tries to allocate space for them. Non-resizeable compo-
nents get their required size; whatever is left over is divided among the resizeable components.

Chaco currently has three types of containers, described in the following sections.

60 Chapter 5. Commonly Used Modules and Classes

Chaco Documentation, Release 3.0.1

Interface: BasePlotContainer

Subclasses: OverlayPlotContainer, HPlotContainer, VPlotContainer,
GridPlotContainer

The listed subclasses are defined in the module enthought .chaco.plot_containers.

5.4 Renderers

Plot renderers are the classes that actually draw a type of plot.

Interface: AbstractPlotRenderer Subclasses:

* BarPlot
* Base2DPlot
— ContourLinePlot
— ContourPolyPlot
— ImagePlot: displays an image file, or color-maps scalar data to make an image *
CMapImagePlot

* BaseXYPlot: This class is often emulated by writers of other plot renderers, but ren-
derers don’t need to be structured this way. By convention, many have a hittest ()
method. They do need to implement map_screen (), map_data (), and map_index () from
AbstractPlotRenderer.

— LinePlot
% ErrorBarPlot

PolygonPlot

#* FilledLinePlot
ScatterPlot

* ColormappedScatterPlot

ColorBar

PolarLineRenderer: NOTE: doesn’t play well with others

You can use these classes to compose more interesting plots.

The module enthought.chaco.plot_factory contains various convenience functions for creating plots,
which simplify the set-up.

The enthought .chaco.plot.Plot class (called “capital P Plot” when speaking) represents what the user usu-
ally thinks of as a “plot”: a set of data, renderers, and axes in a single screen region. It is a subclass of DataView.

5.5 Tools

Tools attach to a component, which gives events to the tool.

BaseTool is an Enable Interactor.

Do not try to make tools that draw: use an overlay for that.

Some tool subclasses exist in both Enable and Chaco, because they were created first in Chaco, and then moved into

Enable.

Interface: BaseTool Subclasses:

5.4. Renderers 61

Chaco Documentation, Release 3.0.1

* BroadcasterTool: Keeps a list of other tools, and broadcasts events it receives to all those tools.
* DataPrinter: Prints the data-space position of the point under the cursor.
* enthought.enable.tools.api.DragTool: Enable base class for tools that do dragging.

— MoveTool
— ResizeTool
— ViewportPanTool

e enthought.chaco.tools.api.DragTool: Chaco base class for tools that do dragging.

— BaseCursorTool
* CursorToollD
* CursorTool2D

— DatalLabelTool

— DragZoom

— LegendTool

— MoveTool
* DrawPointsTool
e HighlightTool
* HoverTool
¢ ImageInspectorTool
e LineInspector
* PanTool
— TrackingPanTool
e PointMarker
¢ SaveTool
* SelectTool

— ScatterInspector
— SelectableLegend

e enthought.enable.tools.api.TraitsTool

* enthought.chaco.tools.api.TraitsTool

DragTool is a base class for tools that do dragging.

Other tools do things like panning, moving, highlighting, line segments, range selection, drag zoom, move data labels,
scatter inspection, Traits Ul

5.6 Overlays

5.7 Miscellaneous

62 Chapter 5. Commonly Used Modules and Classes

CHAPTER
SIX

Note:

6.1

HOW DO I...?

This section is currently under active development.

Basics

How do I...

render data to an image file?

def save_plot (plot, filename, width, height):
plot.outer_bounds = [width, height]
plot.do_layout (force=True)
gc = PlotGraphicsContext ((width, height), dpi=72)
gc.render_component (plot)
gc.save (filename)

L]

L]

L]
impo
from
from

from
from

clas

render data to screen?
integrate a Chaco plot into my WX app?
integrate a Chaco plot into my Traits UI?
rt numpy
enthought.chaco.api import Plot, ArrayPlotData
enthought .enable.enable_component import EnableComponent

enthought .traits.api import HasTraits, Instance
enthought.traits.ui.api import Item, View

s MyPlot (HasTraits) :

plot = Instance(Plot)

traits_view = View(Item(’plot’, editor=ComponentEditor()))

def _ init_ (self, index, data_series, *kw):
super (MyPlot, self).__init__ (xxkw)

plot_data = ArrayPlotData (index=index)

plot_data.set_data(’data_series’, data_series)
self.plot = Plot (plot_data)
self.plot.plot ((’index’, ’'data_series’))

63

20

21

22

23

24

19

20

21

22

23

Chaco Documentation, Release 3.0.1

index = numpy.array([1,2,3,4,5])
data_series = indexxx2

my_plot = MyPlot (index, data_series)
my_plot.configure_traits()

* make an application to render many streams of data?

def plot_several_series(index, series_list):
plot_data = ArrayPlotData (index=index)
plot = Plot (plot_data)

for i, data_series in enumerate (series_list):
series_name = "series_%d" % 1
plot_data.set_data(series_name, data_series)

plot.plot ((’index’, series_name))

* make a plot the right size?

def resize_plot (plot, width, height):
plot.outer_bounds = [width, height]

* copy a plot the the clipboard?

def copy_to_clipboard(plot):
WX specific, though QT implementation is similar using
OImage and QClipboard
import wx

width, height = plot.outer_bounds

gc = PlotGraphicsContext ((width, height), dpi=72)
gc.render_component (plot_component)

Create a bitmap the same size as the plot
and copy the plot data to it

bitmap = wx.BitmapFromBufferRGBA (width+1, height+1,
gc.bmp_array.flatten())

data = wx.BitmapDataObject ()

data.SetBitmap (bitmap)

if wx.TheClipboard.Open() :
wx.TheClipboard. SetData (data)
wx.TheClipboard.Close ()
else:
wx .MessageBox ("Unable to open the clipboard.", "Error")

6.2 Layout and Rendering

How do I...

64 Chapter 6. How Do I...?

Chaco Documentation, Release 3.0.1

* put multiple plots in a single window?

* change the background color?

def make_black_plot (index, data_series):
plot_data = ArrayPlotData (index=index)
plot_data.set_data(’data_series’, data_series)
plot = Plot (plot_data, bgcolor='black’)
plot.plot ((’index’, ’'data_series’))

def change_bgcolor (plot) :
plot.bgcolor = ’"black’

¢ turn off borders?

def make_borderless_plot (index, data_series):
plot_data = ArrayPlotData (index=index)
plot_data.set_data(’data_series’, data_series)
plot = Plot (plot_data, border_visible=False)
plot.plot ((’index’, ’'data_series’))

def change_to_borderless_plot (plot):
plot.border_visible = False

6.3 Writing Components

How do I...

* compose multiple renderers?

* write a custom renderer?

 write a custom overlay/underlay?
* write a custom tool?

e write a new container?

6.4 Advanced

How do I...

» properly change/override draw dispatch?
* modify event dispatch?
* customize backbuffering?

» embed custom/native WX widgets on the plot?

6.3. Writing Components

65

Chaco Documentation, Release 3.0.1

66 Chapter 6. How Do I...?

CHAPTER
SEVEN

FREQUENTLY ASKED QUESTIONS

7.1 Where does the name “Chaco” come from?

It is named after Chaco Canyon, which had astronomical markings that served as an observatory for Native Americans.
The original version of Chaco was built as part of a project for the Space Telescope Science Institute. This is also the
origin of the name “Kiva” for our vector graphics layer that Chaco uses for rendering.

7.2 Why was Chaco named “Chaco2” for a while?

Starting in January of 2006, we refactored and reimplemented much of the core Chaco API. The effort has been named
“chaco2”, and lives in the enthought . chaco2 namespace. During that time, the original Chaco package (“Chaco
Classic”) was in maintenance-only mode, but there was still code that needed features from both Chaco Classic and
Chaco2. That code has finally been either shelved or refactored, and the latest versions of Chaco (3.0 and up) are back
to residing in the enthought . chaco namespace. We still have compatibility modules in enthought . chaco2,
but they just proxy for the real code in enthought . chaco.

The same applies to the enthought .enable and enthought .enable?2 packages.

7.3 What are the pros and cons of Chaco vs. matplotlib?

This question comes up quite a bit. The bottom line is that the two projects initially set out to do different things,
and although each project has grown a lot of overlapping features, the different original charters are reflected in the
capabilities and feature sets of the two projects.

Here is an excerpt from a thread about this question on the enthought-dev mailing list.

Gael Varoquaux’s response:

On Fri, May 11, 2007 at 10:03:21PM +0900, Bill Baxter wrote:

> Just curious. What are the pros and cons of chaco vs matplotlib?

To me it seem the big pro of chaco is that it is much easier to use in a
"programatic way" (I have no clue this means something in English). It is
fully traited and rely quite a lot on inversion of control (sorry, I love
this concept, so it has become my new buzz-word). You can make very nice

object oriented interactive code.

Another nice aspect is that it is much faster than MPL.

67

http://www.nps.gov/chcu/
http://www.stsci.edu/resources/
https://mail.enthought.com/pipermail/enthought-dev/2007-May/005363.html

Chaco Documentation, Release 3.0.1

The cons are that it is not as fully featured as MPL, that it does not
has an as nice interactively useable functional interface (ie chaco.shell
vs pylab) and that it is not as well documented and does not have the
same huge community.

I would say that the codebase of chaco is nicer, but than if you are not
developping interactive application, it is MPL is currently an option

that is lickely to get you where you want to go quicker. Not that I

wouldn’t like to see chaco building up a bit more and becoming **xthexx reference.

Developers, if you want chaco to pick up momentum, give it a pylab-like
interface (as close as you can to pylab) !

My 2 cents,
Gael

Peter Wang’s response (excerpt):
On May 11, 2007, at 8:03 AM, Bill Baxter wrote:
> Just curious. What are the pros and cons of chaco vs matplotlib?

You had to go and ask, didn’t you? :) There are many more folks here
who have used MPL more extensively than myself, so I’1ll defer the
comparisons to them. (Gael, as always, thanks for your comments and
feedback!) I can comment, however, on the key goals of Chaco.

Chaco is a plotting toolkit targeted towards developers for building
interactive visualizations. You hook up pieces to build a plot that
is then easy to inspect, interact with, add configuration UIs for
(using Traits UI), etc. The layout of plot areas, the multiplicity
and types of renderers within those windows, the appearance and
locations of axes, etc. are all completely configurable since these
are all first-class objects participating in a visual canvas. They
can all receive mouse and keyboard events, and it’s easy to subclass
them (or attach tools to them) to achieve new kinds of behavior.
We’ve tried to make all the plot renderers adhere to a standard
interface, so that tools and interactors can easily inspect data and
map between screen space and data space. Once these are all hooked
up, you can swap out or update the data independently of the plots.

One of the downsides we had a for a while was that this rich set of
objects required the programmer to put several different classes
together just to make a basic plot. To solve this problem, we’ve
assembled some higher-level classes that have the most common
behaviors built-in by default, but which can still be easily
customized or extended. It’s clear to me that this is a good general
approach to preserving flexibility while reducing verbosity.

At this point, Chaco is definitely capable of handling a large number
of different plotting tasks, and a lot of them don’t require too much
typing or hacking skills. (Folks will probably require more
documentation, however, but I’m working on that. :) I linked to the
source for all of the screenshots in the gallery to demonstrate that
you can do a lot of things with Chaco in a few dozen lines of code.
(For instance, the audio spectrogram at the bottom of the gallery is
just a little over 100 lines.)

68 Chapter 7. Frequently Asked Questions

Chaco Documentation, Release 3.0.1

Fundamentally, I like the Chaco model of plots as compositions of
interactive components. This really helps me think about
visualization apps in a modular way, and it "fits my head". (Of
course, the fact that I wrote much of it might have something to do
with that as well. ;) The goal is to have data-related operations
clearly happen in one set of objects, the view layout and
configuration happen in another, and the interaction controls fit
neatly into a third. IMHO a good toolkit should help me design/
architect my application better, and we definitely aspire to make
Chaco meet that criterion.

Finally, one major perk is that since Chaco is built completely on
top of traits and its event-based component model, you can call

edit_traits() on any visual component from within your app (or
ipython) and get a live GUI that lets you tweak all of its various
parameters in realtime. This applies to the axis, grid, renderers,

etc. This seems so natural to me that I sometimes forget what an
awesome feature it 1is.)

7.3. What are the pros and cons of Chaco vs. matplotlib?

69

Chaco Documentation, Release 3.0.1

70 Chapter 7. Frequently Asked Questions

71

Chaco Documentation, Release 3.0.1

CHAPTER
EIGHT

PROGRAMMER’S REFERENCE

8.1 Data Sources

8.1.1 AbstractDataSource

8.1.2 ArrayDataSource

8.1.3 MultiArrayDataSource

8.1.4 PointDataSource
8.1.5 GridDataSource

8.1.6 ImageData

8.2 Data Ranges

8.2.1 AbstractDataRange
8.2.2 BaseDataRange
8.2.3 DataRangelD

8.2.4 DataRange2D
8.3 Mappers

8.3.1 AbstractMapper
8.3.2 BaselDMapper
8.3.3 LinearMapper
8.3.4 LogMapper

8.3.5 GridMapper

&4 Containers

8.4.1 BasePlotContainer

Chapter 8. Programmer’s Reference

CHAPTER
NINE

ANNOTATED EXAMPLES

This section describes each of the examples provided with Chaco. Each example is designed to be a stand-alone
demonstration of some of Chaco’s features. Though they are simple, many of the examples have capabilities that are
difficult to find in other plotting packages.

Extensibility is a core design goal of Chaco, and many people have used the examples as starting points for their own
applications.

9.1 bar_plot.py

An example showing Chaco’s BarPlot class.

source: bar_plot.py

73

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/bar_plot.py

Chaco Documentation, Release 3.0.1

a b [d [:] 1 g n |
Categories

9.2 bigdata.py

Demonstrates chaco performance with large datasets.

There are 10 plots with 100,000 points each. Right-click and drag to create a range selection region. The region can
be moved around and resized (drag the edges). These interactions are very fast because of the backbuffering built into
chaco.

Zooming with the mousewheel and the zoombox (as described in simple_line.py) is also available, but panning is not.

source: bigdata.py

74 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/bigdata.py

Chaco Documentation, Release 3.0.1

1
0E T
0e T iy
L Y
i i
i v -
D4 + ' p-oo A t. -
r i', LI % ~ -
N i i v how ==
% I ’ v i 4 1}- - - N
Fi rd F L N
3] |_ ’ L3 - ‘-_, { L - \\ -
02 1 'y . 4 ; e rw 4 e
I r] #] . ' * N \) - ¢
L ' ’ s A 't Y VA Yo Y
' I ! - 4 . \ L o "‘{.‘ ¥
' 1 Pl - L= 4/ Y s b fooad r
D———_-l--:,---!-i_----I-—--_T—-"". v b FI‘ i . "ln)
- =] . - ; * i i LW "“ i % b1 F }\" % F
A ’ P ' i » A ST T
FE | Fs i ' Y A A\ ' ¥ A
i i ’ I A X 4N ¥ o
0.2 -, v] L] N LR, T S
K ' \ ’ # h A =TT
Y/ ! _ - =
¢ ' Y)
o % r b -
v
=04 T _ ‘.r i .fi
'
% F’
I“.I = ¥ | | | | | |
T 1 T T 1 T T
=5 =25 o 2.5 5 .5 10 12.5 15
9.3 cursor_ tool_demo.py
A Demonstration of the CursorTool functionality
Left-button drag to move the cursors round. Right-drag to pan the plots. ‘z’-key to Zoom
source: cursor_tool_demo.py
9.3. cursor_tool_demo.py 75

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/cursor_tool_demo.py

76

Chaco Documentation, Release 3.0.1

075 1 ,'I \ |'I '{ \I 4

0_2-5 _* / \|| I|J \I\ /l 1\I :

| W
.75 T l\ J‘II I,' \lll f -4]
VALY : \j — | |
=10 =75 =5 =25 a 258 5 7.5 10 -2 a 2 4

-4

Cursorlpos: (0.019569471624265589, 0.0195682225802% Cursor2pos: (0.95959595959595934, 1.46464646464646¢

9.4 data_labels.py

Draws a line plot with several points labelled. Demonstrates how to annotate plots.
source: data_labels.py

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/data_labels.py

Chaco Documentation, Release 3.0.1

*
{~1.000000, 0.765138)

0 T
04 T

02—

{3.000000, -0.260052)

0z \.

(11.000000. -0.171180)

0.4 I I I I I I I
5 25 (] 25 5 75 10 125 15
9.5 data_view.py
Example of how to use a DataView and bare renderers to create plots.
source: data_view.py
9.5. data_view.py 77

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/data_view.py

Chaco Documentation, Release 3.0.1

075 T
05 T
0.25 T
o+
=0.25 -
05 T
=075 T

] Il Il K Il

T T T T

=5 2.5 L1} 25 5 75 10
i

9.6 edit_line.py

Allows editing of a line plot.

source: edit_line.py

78 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/edit_line.py

Chaco Documentation, Release 3.0.1

Line Editor

0E T

04 1

[

0.2 7

9.7 financial_plot.py

Implementation of a standard financial plot visualization using Chaco renderers and scales. Right-clicking and select-

ing an area in the top window zooms in the corresponding area in the lower window.

source: financial plot.py

9.7. financial_plot.py

79

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/financial_plot.py

Chaco Documentation, Release 3.0.1

faO0 Financial plot example

Financial Plot

120000 -

100000 + rﬂ‘
f

B0000 T

60000 T I}ﬂll

40000 f(J
20000 1 /

BDOD
TOD
G000
SO0
4000
3000
2000
1000

9.8 financial_plot_dates.py

Implementation of a standard financial plot visualization using Chaco renderers and scales. Right-clicking and se-
lecting an area in the top window zooms in the corresopnding area in the lower window. This differs from the finan-
cial_plot.py example in that it uses a date-oriented axis.

source: financial_plot_dates.py

80 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/financial_plot_dates.py

Chaco Documentation, Release 3.0.1

800

Financial plot example

Financial Plot with Date Axis

E0000 T

a0000 T

40000 T

30000 T

20000

10000 T

7500

Octog Janio

000

2500

9.9 multiaxis.py

Draws several overlapping line plots like simple_line.py, but uses a separate Y range for each plot. Also has a second
Y-axis on the right hand side. Demonstrates use of the BroadcasterTool.

source: multiaxis.py

9.9. multiaxis.py

81

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/multiaxis.py

Chaco Documentation, Release 3.0.1

Bessel functions
:
Bessel j 0
— Bessel | 1
Besselj_2
0E 4 m— Bessel | 3 || Tl
0.6 —\
T 02
04
To
0z 1
T 0.2
o4
oz T 04
04 f f f f f f f
5 2.5 (] 25 5 75 10 12.5 15
P

9.10 multiaxis_using Plot.py

Draws some x-y line and scatter plots. On the left hand plot: ¢ Left-drag pans the plot.

* Mousewheel up and down zooms the plot in and out.

69

* Pressing “z” opens the Zoom Box, and you can click-drag a rectangular region to zoom. If you use a
sequence of zoom boxes, pressing alt-left-arrow and alt-right-arrow moves you forwards and backwards
through the “zoom history”.

source: multiaxis_using_Plot.py

82 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/multiaxis_using_Plot.py

Chaco Documentation, Release 3.0.1

9.11 noninteractive.py

This demonstrates how to create a plot offscreen and save it to an image file on disk. The image is what is saved.

source: noninteractive.py

9.11. noninteractive.py 83

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/noninteractive.py

Chaco Documentation, Release 3.0.1

9.12 range_selection_demo.py

Demo of the RangeSelection on a line plot. Left-click and drag creates a horizontal range selection; this selection can
then be dragged around, or resized by dragging its edges.

source: range_selection_demo.py

84 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/range_selection_demo.py

Chaco Documentation, Release 3.0.1

9.13 scales_test.py

Draws several overlapping line plots.

Double-clicking on line or scatter plots opens a Traits editor for the plot.

source: scales_test.py

9.13. scales_test.py

85

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/scales_test.py

Chaco Documentation, Release 3.0.1

000 Simple line plo

Bessel functions

0.75 O

05

0.25

0o

05

O Besselj 0
— Bessel | 1
O Besselj 2
m— Bessel | 3
O Besselj 4
— Bessel | 5
O Besselj 6
= Bessel | 7
O Bessel] 8

9.14 simple_line.py

Draws several overlapping line plots.
Double-clicking on line or scatter plots opens a Traits editor for the plot.

source: simple_line.py

86

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/simple_line.py

Chaco Documentation, Release 3.0.1

000 Simple line plo

9.15 tornado.py

Tornado plot example from Brennan Williams.

source: tornado.py

Bessel functions
14+ O Bessel] 0
ﬁ‘ = Begsel] 1
o 0O O Besselj 2
0.75 4 o g — Bessel | 3
@@ O Besselj 4
o - - —— Bessel | 5
: O O O Bessel] 6
e Hegsel | T
0.25 T O Besselj &
= Hegsel] 9
01 [m]
O O
O] (]
-0.25 ||
0.5
075 T | | | | |
T T T T T
=10 -5] 5 10 15 20
A

9.15. tornado.py

87

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/tornado.py

Chaco Documentation, Release 3.0.1

varl - - var|
varh - - varh
varg - - varg
vart -+ - vart

w

i)

=

L=l

T ovare -+ war e

=

(&1
vard - ward
varc - - varc
varb T T wvarb
vara T T vara

f
2460000 2480000 2500000 2520000 2540000 2560000

9.16 two_plots.py

Demonstrates plots sharing datasources, ranges, etc...

source: two_plots.py

88 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/two_plots.py

Chaco Documentation, Release 3.0.1

125

o8 1T
0
06 1T
7.5 1
04 1T
= J
s * o8
02 1T
2.5

5o -
=
Py
»
fa

9.17 vertical_plot.py

Draws a static plot of bessel functions, oriented vertically, side-by-side.

You can experiment with using different containers (uncomment lines 32-33) or different orientations on the plots

(comment out line 43 and uncomment 44).

source: vertical_plot.py

9.17. vertical_plot.py

89

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/vertical_plot.py

Chaco Documentation, Release 3.0.1

T T T
1 ' v
i L}
7 \ |
1
! 1
L]
i
A
A"
&
v
LY
A}
1 1
U \
’ ! !
1
£ 1 '
1 ! 1
i ! \
' i 1 |
1 ! i)
\ ! 1 1
1Y i 1
L " \
i I‘ ' 1 |
1 X] i i
L f 1 V
]]
i \ A ! 1
I i
! !] |
\ ! i i
i " : ' :
: 1 ! ' '
i ! ! !
! '
' |I i A
1
r{ ' ' 1
L1 . i 1]
! i
/.
e —

9.18 data_cube.py

Allows isometric viewing of a 3-D data cube (downloads the necessary data, about 7.8 MB)
source: data_cube.py

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/advanced/data_cube.py

Chaco Documentation, Release 3.0.1

faO0 Cube analyzer

9.19 data_stream.py

This demo shows how Chaco and Traits can be used to easily build a data acquisition and visualization system.

Two frames are opened: one has the plot and allows configuration of various plot properties, and one which simulates
controls for the hardware device from which the data is being acquired; in this case, it is a mockup random number
generator whose mean and standard deviation .. TODO: Sentence incomplete?

source: data_stream.py

9.19. data_stream.py 91

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/advanced/data_stream.py

Chaco Documentation, Release 3.0.1

O00 Edit properties : .
& O O Edit properties
LT Distribution type: w
2 | 3 Mean: 0.0

Stddev: 1.0

Max num points: 100

[: O-I()C Cancel)

s

BOD 100 120 140 160
Time

Plot type: line ca

9.20 scalar_image_function_inspector.py

Renders a colormapped image of a scalar value field, and a cross section chosen by a line interactor.

source: scalar_image_function_inspector.py

92 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/advanced/scalar_image_function_inspector.py

Chaco Documentation, Release 3.0.1

0.75

0.5

0.25

-2 =

-0.750.5-0.25 0 0.250.50.75

9.21 spectrum.py

This plot displays the audio spectrum from the microphone.

source: spectrum.py

9.21. spectrum.py

93

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/advanced/spectrum.py

Chaco Documentation, Release 3.0.1

a0 Audio Spectrum
Spectrum Time Spectrogram
5 0.2
5000
015
44
01 T
4000
005 T
34
g 3
3000
= ES i
= = o HWAMAMAANANA
< <
2 N
005 T 2000
01 T
b 1000
J Jﬁ 015 T
e 0z : : : : 0
0 1000 2000 3000 4000 5000 0 00z 004 006 008 0 2 4 [8
Frequency (hz) Time {seconds)

9.22 cmap_image_plot.py

Draws a colormapped image plot.

source: cmap_image_plot.py

94 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/cmap_image_plot.py

Chaco Documentation, Release 3.0.1

My First Image Plot

9.23 cmap_image_select.py

Draws a colormapped image plot. Selecting colors in the spectrum on the right highlights the corresponding colors in

the color map.

source: cmap_image_select.py

9.23. cmap_image_select.py

95

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/cmap_image_select.py

Chaco Documentation, Release 3.0.1

800

Colormapped Image Plot

Selectable Image Plot

75

25 -

-2.5 =

e

9.24 cmap_scatter.py

Draws a colormapped scatterplot of some random data. Selection works the same as in cmap_image_select.py.

source: cmap_scatter.py

96

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/cmap_scatter.py

Chaco Documentation, Release 3.0.1

9.25 contour_ cmap_plot.py

Renders some contoured and colormapped images of a scalar value field.

source: countour_cmap_plot.py

9.25. contour_cmap_plot.py

97

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/contour_cmap_plot.py

Chaco Documentation, Release 3.0.1

800 Some contour plots

9.26 contour_plot.py

Draws an contour polygon plot with a contour line plot on top.

source: countour_plot.py

98 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/contour_plot.py

Chaco Documentation, Release 3.0.1

My First Contour Plot

9.27 grid_container.py

Draws several overlapping line plots.

source: grid_container.py

9.27. grid_container.py

99

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/grid_container.py

Chaco Documentation, Release 3.0.1

Vertically resizable 0.4 DT

0.2
0.4

&b coo
AR
TN
Tt
e
@
Ly
T 17T
o
o
L
T

02T

5 25 0 25 5 75 10 125 15 -5 25 o 25 5 75 10 125 15 5 25 o 25 5 75 10 125 15

03 T

0z T

01T

01T

-5 25 0 25 5 75 10 125 15 -5 2.5 o 25 5 75 10 125 15 5 25 0 25 5 75 W0 125 15

9.28 grid_container aspect_ratio

Similar to grid_container.py, but demonstrates Chaco’s capability to used a fixed screen space aspect ratio for plot
components.

source: grid_container_aspect_ratio.py

100 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/grid_container_aspect_ratio.py

Chaco Documentation, Release 3.0.1

[\
[1
’ \ n .~ '
[\ J
/ [.\/
/\ \ LA /
\ [\ /
\ /N [/ |
/ \J / [|
/ \ I

9.29 image_ from file.py

Loads and saves RGB images from disk.

source: image_from_file.py

9.29. image_ from file.py 101

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/image_from_file.py

Chaco Documentation, Release 3.0.1

9.30 image_inspector.py

Demonstrates the ImageInspectorTool and overlay on a colormapped image plot. The underlying plot is similar to the
one in cmap_image_plot.py.

source: image_inspector.py

102 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/image_inspector.py

Chaco Documentation, Release 3.0.1

My First Image Plot

(400, 174)
(179, 255, 66}
0.663334944505

9.31 image_plot.py

Draws a simple RGB image

source: image_plot.py

9.31. image_plot.py 103

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/image_plot.py

Chaco Documentation, Release 3.0.1

S 00 Simple image plot

9.32 inset_plot.py

A modification of line_plotl.py that shows the second plot as a subwindow of the first. You can pan and zoom the
second plot just like the first, and you can move it around my right-click and dragging in the smaller plot.

source: inset_plot.py

104 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/inset_plot.py

Chaco Documentation, Release 3.0.1

Inset Plot

9.33 line_drawing.py

Demonstrates using a line segment drawing tool on top of the scatter plot from simple_scatter.py.

source: line_drawing.py

9.33. line_drawing.py 105

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/line_drawing.py

Chaco Documentation, Release 3.0.1

1
1
1
1
1
1
1
1
1
1
1
1
1
...... W
1
i
1
1
1
1

[ra—

9.34 line_plotl.py

Draws some x-y line and scatter plots.

source: line_plotl.py

Chapter 9. Annotated Examples

106

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/line_plot1.py

Chaco Documentation, Release 3.0.1

Line Plot Scatter plot

9.35 line_plot_hold.py

Demonstrates the different ‘hold’ styles of LinePlot.

source: line_plot_hold.py

render_style = hold render_style = connectedhold

—j0
0.8 T

0.6 T

04— -

0z -

9.35. line_plot_hold.py 107

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/line_plot_hold.py

Chaco Documentation, Release 3.0.1

9.36 log_plot.py

Draws some x-y log plots. (No Tools).

source: log_plot.py

0000000

5000000 + exp(x)
= gammalx)

1000000 —_— srt(x)

9.37 nans_plot.py

This plot displays chaco’s ability to handle data interlaced with NaNs.

source: nans_plot.py

108 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/log_plot.py
https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/nans_plot.py

Chaco Documentation, Release 3.0.1

9.38 polygon_plot.py

Draws some different polygons.

source: polygon_plot.py

9.38. polygon_plot.py 109

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/polygon_plot.py

Chaco Documentation, Release 3.0.1

o NN Basic Polygon Plot

My First Polygon Plot

9.39 polygon_move.py

Shares same basic interactions as polygon_plot.py, but adds a new one: right-click and drag to move a polygon around.

source: polygon_move.py

110 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/polygon_move.py

Chaco Documentation, Release 3.0.1

800 Polygon Plot

Polygon Plot

9.40 regression.py

Demonstrates the Regression Selection tool.

Hold down the left mouse button to use the mouse to draw a selection region around some points, and a line fit is
drawn through the center of the points. The parameters of the line are displayed at the bottom of the plot region. You
can do this repeatedly to draw different regions.

source: regression.py

9.40. regression.py 111

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/regression.py

Chaco Documentation, Release 3.0.1

9.41 scatter.py

Draws a simple scatterplot of a set of random points.

source: scatter.py

| | L_|
’
m m , J
’
¢
’
] |] + 0
[| ’ u
| K4
08+ u . .
iy
m [| [|
. '
[] u [
'
] - J’ - |] .
[| m ’
0.6 -i [] , 7
u ’ |
u P | E =
n e u n
] o BT =
/./ # []
| y # m
s+ gl = A o " u |
| #
| r []
i E_ = [My - g EHE "
| I'.I -
[| L [| |
’ L |
¢
’ | [}
0.2 + ¥ m
| ‘ m
’
’ | [|
‘ [|
’
¢ m H 1™
i
H m
’ |
P 1.25% - 0.10
1 1 - ! .
T T T T
02 0.4 0.6 0.8
P

112

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/scatter.py

Chaco Documentation, Release 3.0.1

800

Basic scatter plot

Scatter Plot

L [-
D0 O Corh
g 5

CFuCE A &
v2ele]
!r" 4'

LT

0z 0.4 06

9.42 scatter_inspector.py

Example of using tooltips on Chaco plots.

source: scatter_inspector.py

9.42. scatter_inspector.py

113

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/scatter_inspector.py

Chaco Documentation, Release 3.0.1

9.43 scatter_select.py

Scatter Inspector Demo
o - o
o o
s - oo” |
i
o [
o
o O
o o
T th
E m}
o
o o
o
2T O O lE‘
o
o
= o
1+ =] o
i o o
o
} } E] 1] |
2 4 [8
Y

Draws a simple scatterplot of random data. The only interaction available is the lasso selector, which allows you to
circle a set of points. Upon completion of the lasso operation, the indices of the selected points are printed to the

console.

source: scatter_select.py

114

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/scatter_select.py

Chaco Documentation, Release 3.0.1

Scatter plot with selection

800

Scatter Plot With Selection

0.8

06

0.4

0z

console output:

New selection:

[789 799 819 830 835 836 851 867 892 901 902 909 913 924 929
931 933 938 956 971 972 975 976 996 999 1011 1014 1016 1021 1030

1045 1049 1058 1061 1073 1086 1087 1088]

9.44 scrollbar.py

Draws some x-y line and scatter plots.

source: scrollbar.py

115

9.44. scrollbar.py

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/scrollbar.py

Chaco Documentation, Release 3.0.1

9.45 tabbed_plots.py

Draws some x-y line and scatter plots.

source: tabbed_plots.py

Plotl I Flot2

116 Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/tabbed_plots.py

Chaco Documentation, Release 3.0.1

SN Edit properties

Plotl || Plot2

9.46 traits_editor.py

This example creates a simple 1-D function examiner, illustrating the use of ChacoPlotEditors for displaying simple
plot relations, as well as Traits Ul integration. Any 1-D numpy/scipy.special function works in the function text box.

source: traits_editor.py

9.46. traits_editor.py 117

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/traits_editor.py

Chaco Documentation, Release 3.0.1

078 *

0S4 »

0.25 .

Value data
]
I

-0.25

-0.5 L

-0.75

Plot type: | scatter

Eq: |5in{x,‘|

9.47 zoomable_colorbar.py

Draws a colormapped scatterplot of some random data.

;

Interactions on the plot are the same as for simple_line.py, and additionally, pan and zoom are available on the colorbar.

Left-click pans the colorbar’s data region. Right-click-drag selects a zoom range. Mousewheel up and down zoom in

and out on the data bounds of the color bar.

source: zoomable_colorbar.py

118

Chapter 9. Annotated Examples

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/basic/zoomable_colorbar.py

Chaco Documentation, Release 3.0.1

9.48 zoomed_plot

The main executable file for the zoom_plot demo.

Right-click and drag on the upper plot to select a region to view in detail in the lower plot. The selected region can be
moved around by dragging, or resized by clicking on one of its edges and dragging.

source: zoomed_plot

9.48. zoomed_plot 119

https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/zoomed_plot/

Chaco Documentation, Release 3.0.1

120 Chapter 9. Annotated Examples

)

o U koW

CHAPTER
TEN

TECH NOTES

This section compiles some of the more detailed, architecture-level notes and discussions from the mailing list. Much
of the information here will eventually find its way into the User Manual or the Reference Manual.

10.1 About the Chaco Scales package

In the summer of 2007, I spent a few weeks working through the axis ticking and labelling problem. The basic goal
was that I wanted to create a flexible ticking system that would produce nicely-spaced axis labels for arbitrary sets of
labels and arbitrary intervals. The chaco2.scales package is the result of this effort. It is an entirely standalone package
that does not import from any other Enthought package (not even traits!), and the idea was that it could be used in
other plotting packages as well.

The overall idea is that you create a ScaleSystem consisting of various Scales. When the ScaleSystem is presented
with a data range (low,high) and a screen space amount, it searches through its list of scales for the scale that produces
the “nicest” set of labels. It takes into account whitespace, the formatted size of labels produced by each scale in the
ScaleSystem, etc. So, the basic numerical Scales defined in scales.py are:

 FixedScale: Simple scale with a fixed interval; places ticks at multiples of the resolution

* DefaultScale: Scale that tries to place ticks at 1,2,5, and 10 so that ticks don’t “pop” or suddenly jump when the
resolution changes (when zooming)

* LogScale: Dynamic scale that only produces ticks and labels that work well when doing logarithmic plots

By comparison, the default ticking logic in DefaultTickGenerator (in ticks.py) is basically just the DefaultScale. (This
is currently the default tick generator used by PlotAxis.)

In time_scale.py, I define an additional scale, the TimeScale. TimeScale not only handles time-oriented data using
units of uniform interval (microseconds up to days and weeks), it also handles non- uniform calendar units like “day
of the month” and “month of the year”. So, you can tell Chaco to generate ticks on the 1st of every month, and it will
give you non-uniformly spaced tick and grid lines.

The scale system mechanism is configurable, so although all of the examples use the CalendarScaleSystem, you don’t
have to use it. In fact, if you look at CalendarScaleSystem.__init__, it just initializes its list of scales with HMSScales
+ MDYScales:

HMSScales = [TimeScale (microseconds=1), TimeScale(milliseconds=1)] + \
[TimeScale (seconds=dt) for dt in (1, 5, 15, 30)] + \
[TimeScale (minutes=dt) for dt in (1, 5, 15, 30)1 + \
[TimeScale (hours=dt) for dt in (1, 2, 3, 4, 6, 12, 24)]

MDYScales = [TimeScale (day_of_month=range(1l,31,3)),

121

Chaco Documentation, Release 3.0.1

TimeScale (day_of_month=(1,8,15,22)),
TimeScale (day_of_month=(1,15)),
TimeScale (month_of_year=range(1,13)),
TimeScale (month_of_year=range(1l,13,3)),
TimeScale (month_of_year=(1,7)),
TimeScale (month_of_year=(1,))]

So, if you wanted to create your own ScaleSystem with days, weeks, and whatnot, you could do:

ExtendedScales = HSMScales + [TimeScale(days=n) for n in (1,7,14,28)]
MyScaleSystem = CalendarScaleSystem(xExtendedScales)

To use the Scales package in your Chaco plots, just import P1otAxis from chaco2.scales_axis instead of
chaco2.axis. Youwill still need to create a ScalesTickGenerator and pass it in. The financial_plot_dates.py

demo is a good example of how to do this.

e Search Page

122 Chapter 10. Tech Notes

	Quickstart
	Installation Overview
	Running Some Examples
	Creating a Plot
	Further Reading

	Installing and Building Chaco
	Installing via EPD
	easy_install
	Building from Source

	Tutorials
	Interactive Plotting with Chaco
	Modeling Van der Waal's Equation With Chaco and Traits
	Creating an interactive Hyetograph with Chaco and Traits
	WX-based Tutorial
	Exploring Chaco with IPython

	Architecture Overview
	Core Ideas
	The Relationship Between Chaco, Enable, and Kiva

	Commonly Used Modules and Classes
	Base Classes
	Data Objects
	Containers
	Renderers
	Tools
	Overlays
	Miscellaneous

	How Do I...?
	Basics
	Layout and Rendering
	Writing Components
	Advanced

	Frequently Asked Questions
	Where does the name ``Chaco'' come from?
	Why was Chaco named ``Chaco2'' for a while?
	What are the pros and cons of Chaco vs. matplotlib?

	Programmer's Reference
	Data Sources
	Data Ranges
	Mappers
	Containers

	Annotated Examples
	bar_plot.py
	bigdata.py
	cursor_tool_demo.py
	data_labels.py
	data_view.py
	edit_line.py
	financial_plot.py
	financial_plot_dates.py
	multiaxis.py
	multiaxis_using_Plot.py
	noninteractive.py
	range_selection_demo.py
	scales_test.py
	simple_line.py
	tornado.py
	two_plots.py
	vertical_plot.py
	data_cube.py
	data_stream.py
	scalar_image_function_inspector.py
	spectrum.py
	cmap_image_plot.py
	cmap_image_select.py
	cmap_scatter.py
	contour_cmap_plot.py
	contour_plot.py
	grid_container.py
	grid_container_aspect_ratio
	image_from_file.py
	image_inspector.py
	image_plot.py
	inset_plot.py
	line_drawing.py
	line_plot1.py
	line_plot_hold.py
	log_plot.py
	nans_plot.py
	polygon_plot.py
	polygon_move.py
	regression.py
	scatter.py
	scatter_inspector.py
	scatter_select.py
	scrollbar.py
	tabbed_plots.py
	traits_editor.py
	zoomable_colorbar.py
	zoomed_plot

	Tech Notes
	About the Chaco Scales package

